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ABSTRACT

Sequence-Pair based floorplanning has been revealed its limit
of usefulness in VLSI physical design. Among reasons, the
key issue is in its being non-hierarchical and indifferent to
the preceding step of partitioning. This paper restructure
the algorithm by the idea that the partition algorithm pro-
duces the constraint that is imposed on the sequence-pair

data. The partition algorithm is the one based on the balanced-

bipartition that works hierarchically. Thus a new floorplan
algorithm that is consistent with the hierarchical partition
algorithm is constructed. This is enhanced to include other
algorithms that are based on the binary search. Here, a
clock-tree synthesis by H-tree is shown to be consistent. Ex-
periments are given to show better achievements in length
and wire-density.

1. INTRODUCTION

Physical design of VLSI chips is becoming harder to con-
verge timing issues and spatial embedding as the target VL-
SlIs are becoming larger and more complex. Thus, physical
design plan itself is now requested to be restructured.

The key steps of physical design related with are circuit-
partition, block-placement, clock-tree-synthesis, and rout-
ing. Those steps are all controlled by floorplanning that de-
fines relative positions on the chip to accept circuit elements.
If we discuss the circuit design in block-level, a floorplan is
the 2-dimensional arrangement of rooms, spaces, and line
segments [1, 2, 4, 6, 7, 9]. The output of algorithms of these
four steps, whatever they are, shall be explained consistently
on the floorplan. Thus, in any physical design is understood
to go in a fashion that if the result is not satisfiable, change
the floorplan or the algorithm that is considered the bottle-
neck.

Floorplanning is to dissect the chip into rooms. Since
blocks are the main contents assigned to the rooms in the
following steps, block-placement or block-packing can be
used in the same context as floorplanning is if some space
is assumed on the peripherals of blocks. Efforts have long
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Figure 1: Possible placements by cluster size

been devoted to improve algorithms and floorplanning. As
for floorplanning (block-placement or block-packing), the in-
vent of data structures of BSG [7], Sequence-Pair (SP) [6],
and O-Tree (OT) [9] was a good leap. But few results have
been reported of significant success in practical use com-
pared with the conventional floorplanning that is based on
the Slice-Line (SL) data structure [2].

Good in respect to the generality, those BSG, SP or OT
based floorplan algorithms (BSGa, SPa or OTa, respectively)
is lack of consistency with the preceding step, partitioning.
For the circuit partition, though it seems so much variety
of methods has been proposed, the basic idea in the back is
the balanced-bipartition (BBP).

Those BSGa, SPa and OTa say that they do not mind be-
cause they list any possible floorplan for search. However,
BBPa minds since it produces the set of clusters unaware
of the clusters being embedded on the plane. This claim
is natural since the preceding circuit design is connectivity
oriented by nature, and so BBPa. Thus, we might say that
BSGa, SPa and OTa are not consistent with BBPa, neither
so SLa. Or more, any block placement algorithm so far pro-
posed is not consistent with BBPa. The same observation,
or worse, holds if we adopt the multi-way partition since
its instant independent application would produce more de-
tailed and less convincing informations.

Let us study what the above comments mean using a gen-
eral example. Let a graph G(V, E) denote a circuit where
vertices and edges represent the blocks and nets, respec-
tively, in a very conventional manner. Suppose that BBPa
gets clustering V' = V3 UV,. Any placement algorithm would
not have no other idea than to place them above and be-
low. BBPa successively partitions as Vi = Vi; U V12 and
Vo = V21U Vaz. The obtained clusters will be placed left and
right in each region.

Now they are going to be realized according to their op-
timality. Let them be denoted simply by labels a, b, ¢, and
d, respectively, as depicted in Figure 1.



So far we did not think of the block-sizes. According to
them, the vertical line between a and b is either left-of, right-
of, or on the same position of the line between ¢ and d, each
case corresponds to (a), (b), and (c), respectively, of the
figure. This difference will be significant later as hierarchical
BBPa proceeds. But there have been no idea to keep this
ambiguity, maybe by the reason that people do not like to
mix topological and physical features.

As long as BBPa goes hierarchically, there is no stage for
the non-slicing structure, e.g. spiral or Order-5 to play a
role. It seems that SLa is enough. But still, since BBPa
is not perfect (examples where only 4-way partition gets
an optimal placement in a spiral are easily constructed),
restriction to SL would cause serious degradation.

Only the possible solution is: Given a circuit, start with
partition by BBPa and general placement by SPa. Represent
the ambiguity or remaining freedom somehow. Letting it as
a constraint on the placement by SPa, look for the optimal
one.

The main contribution of this paper is in coding of such
mixed feature of topology and dimension in SP, by the name
of ”super-constraint on SP”, such that any feasible SP bears
the implication which the applied BBPa intended to give. It
is an easy form for computation to use in a heuristic search
by simulated annealing. Thus we get a floorplanning, which
we call the Sequence-Pair with super-constraint, or SPa-
super.

Further considerations will reveal that any algorithm as
long as it follows the fashion of binary search can be embed-
ded in this floorplanning consistently. Here we only refer to
clock-tree synthesis by H-tree.

Finally we would like to mention about our contribution
in the context of two historical discussions.

One is about the merit or demerit of treating physical di-
mensions of blocks and topological relations between blocks
in separate form. BSGa and SPa consider topology first
and take the dimensions into consideration in the last com-
paction stage. In this sense, they are called the topological
packing. While, OTa is the one that uses physical dimension
from the beginning. SLa claims that any time the dimension
can be considered. This merit is by a trade-off to the struc-
tural generality. A new type floorplanning by Q-Sequence
(QS) [10] or Corner-Block-List [11] is classified to the cate-
gory of topological packing. However, what is to be stressed
is that only the dimensions that affects the topology in the
following stages are significant. To consider all (OTa) or to
consider after (BSGa, SPa, QSa), or to restrict the structure
(SLa) are not on the way to the solution. The Sequence-Pair
with super-constraint proposed here is the answer.

The other is a blame: Partition algorithm BBPa works
hierarchically while those BSGa, SPa, OTa and QSa all ex-
ecute flat computation. So by definition, there will be no
nice matching with BBPa. Another key contribution of this
paper is to answer this. Any hierarchical condition induced
by BBPa is nicely translated as a constraint on SP.

Because of the feature that the mixed and hierarchical
data is coded in a single form, our proposing floorplan algo-
rithm is named ”Sequence-Pair Based Floorplan Algorithm
with Super-constraint”.

A prototype was implemented very faithfully without speed-

ing up ideas, and experimented on a bench-mark. It showed
expected performances.

2. PRELIMINARIES

Given a placement of n blocks, gridding is a procedure to
determine a pair of sequences («, ), called the Sequence-
Pair (SP). It is defined such that blocks can be removed one
after another along « () in the above-left (below-left) direc-
tion without touching the remaining blocks. (The original
definition[6] is more complicated but this simplified defini-
tion does not loose generality.) The resultant is not unique
in general. For the placements shown in Figure 1 (a), (b)
and (c), they are

(a) : «a = (abed) or (acbd), B = (cdad),
() : a=(abcd), B = (cdab) or (cadb), (1)
(¢) : a=(abcd) or (acbd), B = (cdab) or (cadb).

Given an SP, it uniquely represents the relative relation
(topology) of {right-of, left-of, above, below } for each pair
according to the following reasoning. If a block z is taken
before block y in the above-left direction, and also before in
below-left direction, a reasonable conclusion is that z must
be right-of y. Analogously, if x is taken before y in above-left
direction and after y in below-left direction, it is concluded
that = is above y. This observation is formalized as the
decoding rule from the SP to the topology. It is well-known
that a topology defines a unique placement after x- and y-
direction 1-D compactions. Thus, with 1-D compaction, the
sequence-pair is a data structure to store the placements.

The point of this paper is in the discovery that the differ-
ence of the placements as shown in Figure 1 can be mapped
to the difference of the corresponding sequence-pairs as ob-
served in Equation (1).

A logic is introduced to represent the ambiguity of se-
quences. The fact that « is possible to be (abed) or (achbd)
is represented by formula a(b + ¢)d. Here addition 7z + y”
denotes a commutative relation that order (ry) and (yzx)
are both feasible, while product ”xy” non-commutative re-
lation, that order (xy) is unique. Remember that this is the
order constraint not adjacency constraint. Another example
to show this is: formula a(b+ cd) means that all the possible
sequences are (abed), (acbd) and (acdb).

With this notation, Equation (1) is mapped to the set of
formula

(a) : a=a(b+c)d, B = (cdab),
() : a=(abcd), B = c(d+ a)b, (2)
(¢) : a=alb+c)d, B=c(d+a)b.

The binary relation of implication is defined on these for-
mula. A formula f is defined to imply formula g if the former
contains the latter as a case. For example, a(b+ ¢)d implies
abed. For the set of formula, formula A that implies every
formula and there is no formula in the set that implies h
is called the least upper bound (lub) of the set. It is not
required that an lub is in the set.

Now let us come back to our subject to get a convenient
form to represent all the possible sequence-pairs. Find an
lub to cover all a’s. In our case, it is a(b+ c¢)d. For 3, it is
c(a + d)b. Then the sequence-pair (c(a + d)b,c(a + d)b) is
considered to represent all the possible sequence-pairs, and
called SP with a super-constraint.

All the sequence pairs implied in this are feasible sequence-
pairs that are worth to be considered because they are fit to
the BBP.

The proposing placement system is a heuristic search that
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Figure 2: Matrix of placement with 16 clusters

generates feasible sequence-pairs and evaluate each, and choose

the best by the strategy of simulated-annealing. In this ex-
ample, all the feasible seq-pairs are obtained by expanding
(c(a+d)b,c(a+d)b): (abed, cadb), (acbd, cadb), (abed, cdab),
(acbd, cdab). Each corresponds to a floorplan.

We started to list all the meaningful SP’s from the point of
BBP. But it is a constraint from the point of free SP, which
is used in conventional SPa. In fact, SPa will generate all
the combinations, so of (n!)? = 576 SP’s (n = 4).

This simplification comes from the feature of the partition
algorithm. To consider all these 576 cases is the consequence
of the old fashion that each step shall be optimized believing
that the input is given (by god) and perfect. But we know
the truth. It is simply an output of that may-not-be smart
but diligent BBPa.

To make clear our proposing system to generate only the
sequence-pairs consistent with BBPa, following a more en-
hanced example will suffice.

The placement shown in Figure 2 is the result of two-times
application of pairs (horizontal partition, vertical partition)
in BBPa. This matrix form is called the formal placement
since the elements are block-labels without physical dimen-
sion and partition is regular. For a real instance, some of
partition may be skipped and some of elements are empty.
But the following explanation covers these cases.

In the following, a sub-matrix consisting of elements x, y, ...

is referred to as [xy...]-part. As for o, the super-constraint
imposed on the [1256]-part is 1(24 5)6. From [bcfg]-part, it
is b(c+ f)g. From [3478]- and [9ade]-parts, they are 3(4+7)6,
9(a + d)e, respectively. Furthermore, [1256]-part comes be-
fore [bcfg]-part. Thus, the super-constraint is

a = 1(245)6(9(a+d)e+3(4+T7)8)b(c + f)g
B A9+ e)a(5(1+6)2 + f(b+ 9)c)7(3 + 8)4

This is the underlying constraint. Somehow on the way of
placement, suppose we had an information from the library,
for example, that the line A is left-of line B, we get additional
constraint added to [ as [1256]-part comes before [bcfg]-
part. So 8 in Equation (1) is strengthened to

1(2 + 5)6(9(a + d)e + 3(4 + 7)8)b(c + f)g
d(9 +e)a(5(1 +6)2)(f(b+ g)c)7(3 + 8)4

®3)
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The packing algorithm SPa with super-constraint is strongly

aware of balanced bipartition algorithm BBPa, by which the
solution space is drastically reduced. Hence, if we apply
this algorithm for minimizing the area by assigning physical
dimensions to these 16 blocks, we may have some inferior
result with respect to area. In fact, we will have to search
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Figure 3: Placement satisfying Equation (2) whose
SP is (15269dae3478bfcg, de9ab f16bg2cT834)

only the placements that contain block a at the above-left
corner. Still we tried an example that searches the place-
ments satisfying Equation (2). The result is shown in Figure
3 which somehow by God is not bad.

3. FLOORPLANNINGBY SPWITH SUPER-
CONSTRAINT

The basic idea of the consistent physical design was de-
scribed with stress on the consistency between partition and
packing. It was also mentioned that clock-tree synthesis by
H-tree is merged consistently. However, before getting into
that subject, a floorplanning with consistent partitioning al-
gorithm will be fixed since steps that follow are affected how
the preceding step behaves.

3.1 Balanced-Bipartitioning

The algorithm in [1] is adopted for balanced-bipartition
algorithm BBPa. Among many candidates of partition al-
gorithms, the reason for this is in its procedure: Along with
circuit-partitioning, it partitions the chip area into rooms
with current clusters assigned simultaneously. This feature
helps us because otherwise we have to start with a formal-
ization of the matrix as shown in Figure 2.

This BBPa is applied hierarchically to the circuit and area
until small clusters are in regular small rooms. Therefore,
the initial placement is fixed when the partition ends.

The procedure is illustrated in Figure 4 through Figure 6.
The first figure shows an image of the input, blocks and nets.
First, the chip is divided horizontally and then vertically as
shown in the 2nd figure.

The objective of partitioning is set each time as to min-
imize the number of nets that have terminals in both sub-
clusters. Two clusters born by BBPa are assigned to two
divided subregions arbitrarily. This situation is depicted in
the 2nd and 3rd figures.

For this matrix representation, get the SP with super-
constraint, which is Equation (3). If the circuit designer
gives a hint about the relative position, add it as additional
constraint. (It is an interesting subject to discuss the way
of addition, but omitted here for the space.)

3.2 Simulated Annealing

Optimization of block-placement by simulated annealing
needs to make clear several issues.

Members of the solution space are not floorplans SP’s.
Therefore, we need to define a way to get the packing from
each SP. We follow a conventional way as in [6].

The evaluation function of a floorplan is the product of
total wiring length and area of the chip.



Figure 4: Input blocks and nets
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Figure 6: Clusters and rooms by two-times BBPa

Generation of solutions is by changing one SP to another.
This operation is, as in [6], chosen from

1. (Full-exchange:) Take a pair of blocks such that they
are not in any ordered relation in both sequences, and
interchange them in both sequences.

2. (Half-exchange:) Take a pair of blocks such that they
are not in any order relation in either of sequences,
and interchange them in the focused sequence.

3. (Rotation:) Take a block and rotate it 90 degrees.

The parameters of the simulated annealing such as initial
temperature, cooling rate, repetition, termination condition,
are defined very conventionally.

4. CLOCK-TREE SYNTHESISBY H-TREE

The input of a clock-tree synthesis is fl-terminals, which
are on the flip-flops, and one source-terminal, from which
the clock is supplied, that are distributed on the chip. The
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Figure 7: Behavior of Clock-Tree Synthesis MMMa

purpose is to construct a tree that connects all those ter-
minals. Optimization is to make the skew minimum, where
the skew is the difference of the maximum and minimum of
the path length from the source-terminal to ff-terminals.

Since the problem is essential in timing plan, many al-
gorithms have been proposed so far but we adopt the one
by [3], which is called the Method-of-Means-and-Medians
(MMMa). It will be shown that this is consistent with our
packing algorithm, which we name as SPa-super because it
is based on SP with super-constraint.

MMMa follows a strategy very similar to the H-tree algo-
rithm. It is simply described as follows when the number
of fi-terminals is even. The recursive step is: Partition the
concerned region into two by a slice line such that the center
of the mass lies on the line, where the mass is in effect the
number of terminals and the line is horizontal or vertical so
that it is orthogonal to the previous drawn line. Continue
the step until there is only one terminal in each rectangular
sub-region.

Then, the desired tree is constructed backwards by con-
necting the center of mass. A further detail will be under-
stood by an example shown in Figure 7.

The behavior of MMMa is very similar to SPa-super. Only
the difference is that SPa-super partitions the area into two
of equal area while MMMa depends on the distribution of
terminals.

To make the partitioning consistent with a clock-tree, we
introduce a ratio-cut technique [5] to the partitioning. It
removes the restriction on the area being constant. Consider
to partition the set of blocks by a line into two clusters C;
and Cj. Let II be the number of cut-nets between C; and
Cj, and H; and H; the numbers of ff-terminals included in
respective area. Then, the optimization is set to minimize
the ratio:

II

R=—n—— .
|Cil|C5 || Hi || Hj

Thus, partitioning gives a critical balance between C; and
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Figure 8: (a)Spaces between clusters and dividing
lines, (b)Buffer area and clock-tree

Cj according to the number of flip-flops and area. Two
divided regions are determined by the size of C; and Cj,
respectively.

Furthermore, we must consider about the location of buffers
in a clock-tree algorithm. Buffers are inserted into a clock
tree to meet zero-skew and phase-delay constraints. Buffers
cannot be overlapped with any block (if hard-block) , so
they must be placed between blocks.

In a step of SPa-super, two clusters by the first parti-
tioning be ¢’ and ¢”. Buffers may be inserted at the center
of ¢ and ¢’ by MMMa. Applying partitioning next, let
the created four clusters be ci,ce, cs, and c4. Assume that

¢ =c1Ucy and ¢’ = ¢c3 U cs. Accordingly, the center of
¢ is between c¢; and ca, a buffer can be inserted without
overlapping.

Furthermore, we can get a clock-tree close to an H-tree,
even if buffers are inserted. If the super-constraint is « :
(ci(c2 + c3)ca) and B : (e3(er + ca)e2), the placement is ob-
tained as shown in Figure 8(a). We adopt a ratio-cut tech-
nique for the balance between clusters according to the area
and number of fl-terminals. So it is expected that s(c1)
s(c2) = s(es) = s(ca) and f(c1) = f(e2) = f(es) = f(ca),
where s(c) and f(c) are the size of cluster ¢ and the number
of flip-flips in c.

If s(c1) = s(c2) = s(c3) = s(ca), then the placement is ob-
tained as shown in Figure 8(b). Due to the super-constraint,
a clock-tree is close to an H-tree. This fact is obtained by
observing a relationship between cluster size and dividing
lines of clusters. (In Figure 8(a), the lines are L1, L2, L3,
L4.) Details are omitted here for the space.

5. EXPERIMENTS

We implemented SPa-super consisting of partitioning and
floorplanning, but not yet clock-tree synthesis. Experiments
were to demonstrate a basic performance for MCNC bench-
mark circuits. Its framework of the algorithm has been ex-
plained already.

The data of the developing environment and input circuits
are shown in Table 1 and Table 2.

As the competent algorithm, we choose SPa, the Sequence-
Pair based one[6]. A cost function and annealing schedule
are same in both. The evaluation of total length is based
on the minimum spanning tree (MST) for each net. It is
the sum of Manhattan distances between pairs of terminals
taken in order from the shortest pair.

SPa searches the space of size (n!)2. While, for our SPa-
super, the super-constraint is imposed on the one-time 2 x 2
partition as shown in Figure 8. Four clusters c1, c2, c3 and c4
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Linux on Celeron 433MHz
C++

Comp. Environment
Prog. Language

Table 1: Computing environment

circuits || no. of blocks | no. of nets |

apte 9 97
Xerox 10 203
ami33 33 123
ami49 49 408

Table 2: Circuit data (MCNC)

are the ones obtained by BBPa. Hence, the super-constraint
is @ = (ci(e2 + e3)ea), B = (cs(er + ca)e2). If a cluster
consists of k blocks, the space our SPa-super searches is of
size (k!(2k)!k")?, far smaller than (n!)? since n = 4k.

The results are shown numerically in Table 3. As for
ami33, the resultant layouts are demonstrated in Figure 9
and Figure 10. Furthermore, the distribution maps of wire-
density are shown in Figure 11 and 12.

It is observed that our method achieved superior results
to SPa both with respect to length and wire-density.

The fact encourage us an important future work. The ex-
periment in this paper was done, for simplicity, using wire-
length aware BBPa. However, if we adopt timing-driven
partitioning, the super-constraint will convey useful infor-
mation so that we can control the block-level timing.

6. CONCLUDING REMARKS

We introduced ” consistent floorplanning” on the Sequence-
Pair. The main frame is based on the understanding that
circuit partitioning is always connectivity-oriented biparti-
tion and the Sequence-Pair is a data-structure of general
floorplans. The idea is to convey the former feature into the
latter as a constraint. By this idea, the solution space is
drastically reduced, and experiments showed the effect.

This brings us to an expectation that we can control the
block-level timing if we adopt timing-driven partitioning.

Future works are to implement consistent clock-tree al-
gorithm, to get more efficient way of representing the con-
straint, and to show that timing-driven circuit-partitioning
enables us to control block-level timing.
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