

Automatic Datapath Tile Placement and Routing

 Tatjana Serdar and Carl Sechen
University of Washington, PO Box 352500, Seattle WA 98195

Abstract
We report the very first fully automatic datapath tile

layout flow. We subdivided the placement process into
two steps: a global placement step using simulated an-
nealing, and a new detailed placement step based on ex-
tensive modifications we made to the O-tree algorithm.
The modifications have enabled the extended O-tree al-
gorithm to handle the rectilinearly shaped transistor
chains and gates common in datapath tile layout. We
show that datapath tiles can be placed and routed auto-
matically at the transistor level or at the mixed transis-
tor/gate level, achieving results for the very first time that
are competitive to those obtained manually by a skilled
designer.

1. Introduction

Circuits implemented in high-performance logic fami-
lies and frequent technology changes have increased mo-
tivation for finding alternatives to manual layout of digi-
tal datapaths. High performance datapath design is still
very time consuming. Commercial design tools available
today cannot produce datapath circuits comparable to
skilled manual design. A datapath is a highly regular
structure with its own constraints and the physical design
stage is traditionally performed manually.
 We assume that floorplanning at the system level was
already performed and the estimated area for the datapath
design is one of the results of this process. The datapath
circuits perform bit-wise data operations in parallel on
multiple bits, so the estimated area can be divided into
identical bit-slices as shown in Fig. 1.

Bit 0 Bit 1 Bit 63

VDD GND VDD GNDVDD

…

…

…

…

CLK

CLK

CLK

:
:

tile

Detailed view of one possible tile is given in Fig. 2.

Fig. 1. Global view of a regular datapath structure.

 There are two signal flows in perpendicular directions
as shown in Fig. 1. One is data flow, which runs verti-
cally along the power rails. The other is control flow,
which goes horizontally (such as a CLK signal or SEL of
a MUX). Since a tile is replicated across an entire row, it
is sufficient to optimize the area of a single tile at a time.
This is indeed the focus of this paper.

The tiles within a row of the datapath array are typi-
cally mirrored. Therefore, devices should be placed such
that geometry sharing is possible between adjacent tiles
in a datapath array. In Fig. 2 the transistor chain shares
the diffusion contact over the left reflection line and the
single transistor shares the poly/metal1 contact over the
right reflection line. This generates the first constraint
where one bit of the datapath layout has to fit into a hori-
zontally constrained region, while the height of the layout
tile should be min imized.

VDD GNDBit slice K Bit K+1Bit K-1

CLK

designed gate
(black box)

transistor chain

left reflection line right reflection line

folded
transistor

Fig. 2. Possible placeable devices within a datapath
tile: single transistor with one or more fingers (folds),
a transistor chain and a pre-designed gate.

 The input to our tool is a netlist for a tile and a library
containing device sizes and pre-designed gates. Netlist
may be completely at the transistor level, or at the mixed
transistor/gate level. The input also includes the set of
design rules and constraints. Our goal was to automati-
cally produce tile layouts comparable to skilled manual
design.

Recently there have been several attempts to automati-
cally generate datapath cell layouts at the transistor level.
A geometry-based, greedy approach for digital datapath
cell design was presented in [13]. In this constructive
placement procedure, all components are represented as
rectangles with fixed height and width. This method pro-

duced layouts that were up to 30% worse than manual
layouts.
 A mixed integer linear programming technique was
applied in [14] in order to solve the same problem. This
solution has the advantage of being computationally effi-
cient, producing a deterministic output. Unfortunately,
this implementation is limited by the number of integer
variables that it can handle and is therefore limited to
smaller size circuits. This method can handle only rec-
tangular and L-shaped components.

The authors from [15] proposed a non-row-based 2-D
style placement tool based on simulated annealing algo-
rithm. Placeable components were allowed to merge or
change shape during the placement process. The comp u-
tation times were modest and the experiments showed
that this tool provides competitive results when compared
to skilled manual design.

Fig. 3a shows the flowchart of the physical design flow
applied in all previous works. The work presented in [13-
15] addressed only the placement stage; routing was per-
formed manually.

Automatic Placement

Manual Routing

Global Placement

Detailed Placement

Automatic Routing

(a) (b)
Fig. 3. Physical design flowchart used in: (a) [13-15]
(b) this paper.

We would like to be able to guarantee that the final
placement is within the given tile width and without any
overlap, something that could not be achieved with the
approach presented in [15]. We saw the possibility to
solve these problems using an ordered tree (O-tree) algo-
rithm that recently was proposed in [1,2] to represent
non-slicing floorplans. The O-tree representation was
developed to replace the commonly used constraint
graph.

The O-tree representation has several advantages. The
run-time to generate the placement from its correspond-
ing O-tree is linear in the number of blocks. The O-tree
needs a smaller amount of encoding storage and also it
has a smaller search space, when compared to the other
topological representations such as sequence pair [3-8]
and BSG [9-12]. The sequence pair and BSG approaches
were enhanced for floorplanning in order to handle L and
T-shaped, as well as other complex non-rectangular
blocks, while in previous work the O-tree approach was
applied only for rectangular shapes.
 The O-tree structure was applied in a floorplanning
process in [1,2]. The enhanced perturbation algorithm

from [2] determines the position that minimizes the cost
function without constructing entire new placements at
every insertion position, which improves the running time
of the algorithm.

In this paper we propose a new application of the O-
tree algorithm. In order to handle the complex non-
rectangular shapes typical of transistor chains and pre-
designed gates (black boxes), we added new features to
the O-tree algorithm.

2. Datapath Tile Layout Flow
 In order to mimic skilled manual design, a tool has to
be able to explore the options that a human would take
into account. We would like to be able to create transistor
chains dynamically during placement as well as to change
the number of fingers of the single transistor or transis-
tors within a transistor chain. This possibility increases
the search space for an optimal result. It is therefore use-
ful to base the placement engine on simulated annealing,
which is more dynamic and flexible in nature. Device
folding, transistor chaining and placement of the devices
straddling the reflection line are supported directly in the
move set [15].
 On the other side, the simulated annealing approach
applied in [15] doesn’t guarantee that the final placement
will be within a given bin width and without any overlap.
It would be therefore useful to consider a topological
approach such as the O-tree method to guarantee that the
tile width and design rule constraints are met. However,
applying only the O-tree algorithm, without using simu-
lated annealing, wouldn’t give us satisfying results. The
O-tree, like the BSG or sequence pair data structure, is
not a flexible framework. Within the O-tree algorithm,
the number and the shape of devices during the place-
ment process must be fixed.
 Fig. 3b shows the flowchart of the physical design
process we used to generate datapath tile layouts. Know-
ing that one algorithm won’t be able to handle all of the
constraints for datapath tile layout generation, we applied
simulated annealing as the global placement algorithm
and our modified O-tree algorithm as the detailed place-
ment algorithm.
 The last step in our layout flow is routing. It was per-
formed automatically in four metal layers by applying an
industrial router.
 The global placement engine is described in [15], and
an industrial tool performs the routing. Therefore, the
remainder of this paper focuses on the implementation of
the detailed placement algorithm. We will show that the
layout results we achieved are quite competitive with
manual layouts of the same datapath tiles.

3. The Detailed Placement Algorithm
 The goal of the detailed placement algorithm was to
guarantee that the final placement result obeys all design

rules. If the global placement result exceeded the given
tile width constraint (W), then the detailed placement
algorithm has to find a solution where all devices are
placed within that given W. Our detailed placement ap-
proach is based on modifications to the O-tree algorithm
presented in [2].

3.1. Overview of the O-tree Structure and Initial
O-tree Generation from Global Placement

 A n-node O-tree is a tree with n+1 nodes and is en-
coded by (T,?), where T is a 2n-bit string that identifies
the branching structure of the tree, and ? is a permutation
of the n node labels (excluding the root) [1]. Placement
blocks are represented as the nodes in (T,?). The edges in
(T,?) determine the horizontally related positions be-
tween blocks. The root of the horizontal O-tree represents
the left boundary of the placement area. While traversing
the O-tree, we write a ‘0’ for descending each edge and a
‘1’ for subsequently ascending that edge in the T string.
For each node in the order of traversal, we write one
component in the ? set. The permutation ? determines the
vertical position of the component when two blocks have
overlap in their x-coordinate projections. Visiting the O-
tree in a depth first manner, we can construct the corre-
sponding placement. Fig. 4 shows an example of an en-
coded O-tree (Fig. 4a) and its matching placement (Fig.
4b). Notice that in Fig. 4 all blocks are placed with zero
separation distance. In our case, all devices have to be
placed such that all design rules are obeyed.

The first difference comparing to the previous applica-
tions of the O-tree is in the initial configuration. In [1,2]
the initial O-tree was generated at random. In our case,
the initial O-tree must correspond to the global placement
result with positions determined for each device. So our
first problem was how to transfer the global placement
result into the O-tree algorithm, without losing any in-
formation.

For construction of an initial O-tree, we already have
an admissible global placement result. Given an admissi-
ble placement, from the corollary of the lemma 3 in [1],
we can construct a horizontal adjacency graph (HAG). In
order to find a shortest path spanning tree of the HAG,
which represents the horizontal O-tree of the placement,
we traversed the HAG in a depth first manner.

The HAG retains information about the devices in the
horizontal direction (x-coordinates). In order to preserve
the vertical relationships between blocks, we have to con-
sider the y coordinates of the lower left corners of the
devices. While traversing the HAG, if there is more than
one branch going out from the current node of the graph,
we have to check the y placement coordinate and first
traverse the node with the lower y coordinate. For the
placement shown in Fig. 4b, the HAG should look like
the O-tree given in Fig. 4a without information about
vertical relationships between devices. Starting from the

left side, this check is first performed for nodes a and b.
After this check we know that a is placed below b and in
? we recorded first a and then b. The second branching
happens after node b is processed, and this check is per-
formed again for nodes c and e. If we don’t perform this
check, it can happen that in ? we first recorded e, and
then c and d. In this case, (T,?) = (0100100111,abecd)
wouldn’t correspond to the starting placement from Fig.
4b. The corresponding placement for this wrong O-tree
shown in Fig. 4c is given in Fig. 4d, which is different
from the starting placement given in Fig. 4b.

11

0

0

0

0

0

e

dc

b

a

1

1

1

 (T,?) = (0100011011,abcde)

(a)

a

b

c
d

e

(b) a

b
c d

e

(d)

1

1

00

0

0

0

c d

e

b

a

1

1

1

 (T,?) = (0100100111,abecd)

(c)

Fig. 4. O-tree examples and their corresponding
placements.

3.2. Original O-tree Algorithm

 Before explaining the modifications that we developed,
a quick overview of the enhanced perturbation algorithm
[2] will be given. Given an initial O-tree, a new place-
ment configuration can be generated by deleting a com-
ponent from the O-tree and placing it in another insertion
position. For n components there are 2n-1 possible per-
turbed positions. If the component a from the O-tree
given in Fig. 4a is chosen first to be deleted and per-
turbed, then the possible insertion positions for this com-
ponent are shown in Fig. 5. To simplify the algorithm, the
insertion positions are considered only at the external
nodes of the tree. The numbers next to the insertion posi-
tions indicate the visitation order.

5
9

8

2
1

e

dc

b

7

3

6

4

Fig. 5. The numbers indicate the possible insertion
positions for component a, which was deleted from
the O-tree given in Fig. 4a.

 Once the component is deleted and its insertion posi-
tions are determined, the rest of the components are slid
to the ceiling corresponding to the top of the placement
area (the bottom of the placement area is called the floor)
as shown in Fig. 6a. The first insertion position for a,
which is actually its original position, is shown in Fig. 6a.
After virtually placing a component at the new insertion
position, the cost function (a weighted sum of total area
and wirelength) is evaluated. The total area is given as
Width*(H-Gap), where all these variables are shown in
Figs. 6a and 6b. The ceiling and floor contours are used
to speed up the insertion (and peeling) process. Following
the cost function evaluation, the next insertion position is
evaluated. Fig. 6b shows the virtual floor placement of
perturbed component a at insertion position 2, after com-
ponent b was peeled from the ceiling and placed on the
floor. In general all components prior to the insertion
position must be peeled from the ceiling and placed on
the floor. The procedure iterates until all insertion posi-
tions for a are evaluated. The algorithm given in [2] de-
termines the best insertion position without constructing a
whole new placement for each new O-tree.

a

b

c d

e

insertion position 1 for ̀ a`

Gap

Width

Floor
contour

Ceiling
contour

H

(a)

a

b

c d

e

insertion position 2 for `a`

Gap

Width

Floor
contour

Ceiling
contour

H

(b)

Fig. 6. Two subsequent steps in the enhanced pertur-
bation O-tree algorithm. Component a inserted at the:
(a) first insertion position, (b) second insertion posi-
tion after b was peeled from the ceiling.

Detailed_placement_algorithm()
1. Generate the initial O-tree (OT) from the
global placement as described in section
3.1 /* initially all the components are
on the floor */

2. Set the initial cost as
Best_cost = ? * Wire_length + (1-?) * H

 /* The wire length is calculated as the
half parameter bounding box. ? is de-
termined experimentally */

3. If the placement width exceeds W, try to
meet the constraint by changing the num-
ber of folds for devices exceeding W

 If W is still exceeded
 Best_cost = infinite

 If Best_cost is infinite do steps 4-
21 in two passes

 else do steps 4-21 only in one pass
4. For each component K from OT do steps 5-21
5. Delete K from OT and create resulting OT1(T1, ?1)
6. Slide remaining components from floor to ceiling

For each component C slid to the
ceiling do Adjustment(C)

7. /* floor_contour variable will be used to point to the
current insertion position for K and now it points to
the root, which is the lower left tile corner */
floor_contour->xcur = 0

8. Insert K at the first insertion position (floor_contour-
>xcur) and evaluate the new cost function as done
in step 19; evaluate the cost function for a rotation
of K and pick better result /* in this case all other
components are on the ceiling, so we don’t have to
perform the steps below as for all other insertion
pos itions */

9. index = 1
10. For T1[j] , j=1,...,2n do steps 11-20
11. If T1[j] is 0
12. Peel one component L from OT1 ->?1[index]

down to the floor and do Adjustment(L)
/*proceeding with the placement on the floor,
we create a new insertion position for K */

13. Increment index
14. Update the contour structure of the ceiling

and floor, and set:
floor_contour->xprev = floor_contour->xcur

 floor_contour->xcur=floor_contour->xprev + WL

 /* WL represents the width of L */
15. If any component under contours

has non-rectangular shape do
 Extract_contour()

16. else
17. /* Update floor contour to point to previous */

floor_contour->xcur = floor_contour->xprev
18. Virtually place K at the current insertion position

(floor_contour->xcur) and do Adjustment(K)
19. Evaluate this insertion pos ition:

 Cost = ? * Wire_length + (1-?) * (Hceiling-Gap)
 If (Cost < Best_cost and W is not exceeded)

 Best_cost = Cost
Best_insert_position = index+1

20. Rotate K, and repeat steps 14, 15, 18 and 19. /*
swap WL with HL, the height of L */

21. Place the deleted component K at the best insertion
position and construct OTnew

 OT = best (OT, OTnew)

Subroutine Adjustment(K)
1. Vertical_component_adjustment(K)
2. Horizontal_component_adjustment(K)
3. Place K on a reflection line, if possi-

ble.

Fig. 7. Detailed_placement_algorithm

 After evaluating all possible insertion positions for a
component, the lowest cost result is chosen to create the
new initial O-tree. From this new O-tree, the next com-

ponent is deleted and perturbed. The algorithm iterates
until all components have been perturbed.

3.3. Detailed Placement Algorithm

 From the global placement result we have the esti-
mated height H. If the global placement result exceeds W,
the goal of our detailed placement algorithm is to place
all components within W, along with the possibility to
improve H.
 Our detailed placement algorithm can run in one or two
passes. In the first pass it tries to find an acceptable O-
tree where the tile width constraint is met, while in the
second pass only the height may be improved. If the ini-
tial placement doesn’t exceed W, the algorithm will only
try to reduce H in one pass. In the first pass, components
that are out of the tile width will be placed inside and the
first O-tree where all the components are within the given
W will be saved as the best. At that point the initial O-tree
will be formed for the second pass and the emphasis will
be on the minimization of the height and wire length.
 In order to mimic manual design and save area, poly or
diffusion contacts may straddle the reflection line as seen
in Fig. 2. If a device position is not in the vicinity of the
reflection lines, this kind of area savings is not possible.
In the detailed placement algorithm (Fig. 7), steps 6, 12
and 18 contain the test for possible reflection line place-
ment.
 The outline of the detailed placement algorithm is given
in Fig. 7, where the modifications are written in cou-
rier font.
 The main difference between the enhanced perturba-
tion O-tree algorithm given in [2] and our modified ver-
sion is in the ability to handle the wide range of con-
straints that are characteristic for datapath tile layout
(fixed tile width, placement on the reflection line, and the
ability to handle non-rectangular shapes). In the follow-
ing sub-sections the detailed implementation of the sub-
routines (Vertical and horizontal component adjustment
and contour extraction) that deal with non-rectangular
device shapes will be given.

3.3.1. Extracting the contour for non-rectangular
shapes. The O-tree algorithm in [1,2] dealt only with
rectangular blocks, but in our case components (pre-
designed gates or transistor chains) can have non-
rectangular shapes. Fig. 8a shows one possible situation
where the contour on the ceiling was extracted such that
the non-rectangular shape of a pre-designed gate was
ignored. In this example transistor T1 is the perturbed
component and X0 is the current insertion position. In this
case the new calculated gap is smaller than it can be and
this potentially good insertion position has higher than
necessary cost.
 To get the contour segments along the component’s
edges and to get the correct new gap for the cost function,

the following new subroutine was developed and applied
in step 12 of the Detailed_placement_algorithm .

Extract_contour()
1. For each component (on either the floor or ceiling)

whose x-span overlaps the consideration range
(X0,X0+Wcomponent) where X0 is the current insertion posi-
tion of the perturbed component and Wcomponent is the
width of the perturbed component (Fig. 8a) do steps 2-
5:

2. Add the component’s vertical edges to the array Av and
its horizontal edges to array Ah ; Sort Av

3. For j = 1 to num_edges -1 in array Av do steps 4-5
4. Within the segment bounded by the X coordinates of

vertical edges j and j+1 (XAv[j], XAv[j+1]) (Fig. 8b) do
step 5

5. Case 1: For ceiling contour extraction, find the
smallest Y coordinate within array Ah and record
it
Case 2: For floor contour extraction, find the big-
gest Y coordinate within array Ah and record it

 X0 X0 + WT1

 X0 X0 + WT1

gap

first segment contains
vertical dashed edges in
the range XAv[1]- XAv[2]

new gap

(a)

(b)

T1

T1

second segment contains
vertical dashed edges in
the range XAv[2]- XAv[3]

third segment contains
vertical dashed edges in
the range XAv[3]- XAv[4]

G1

G1

floor
contour

ceiling
contour

XAv[1] XAv[2]

Fig. 8. Extracting the ceiling contour where a compo-
nent has a non-rectangular shape.

 The range (X0,X0+Wcomponent) is marked in Figs. 8a and
8b for perturbed component T1 where component G1 is
on the ceiling within this range. In Fig. 8b notice that
there are 4 vertical edges (dashed lines) of the pre-
designed gate G1 that create 3 segments, drawn with dif-
ferent shades. The segments will be examined in sorted
order. Within each segment bounded by the X coordinates
of vertical edges, the horizontal edge with the smallest y
coordinate was recorded, and it is drawn as a bold line in
Fig. 8b. At the end of this subroutine, the list of recorded
horizontal edges will represent the ceiling (floor) contour
along the component’s edges. The new gap found in Fig.
8b is bigger than the gap found in Fig. 8a which results in
a lower value of the cost function. This promotes this
insertion position as a possible good placement choice for
T1.

3.3.2. Handling non-rectangular shapes. Fig. 9 shows
one example with a pre-designed gate a and a transistor
chain c placed above each other and what would happen
if we applied the O-tree algorithm for detailed placement
without any modifications.
 The idea from previous approaches for the sequence
pair and BSG data structures [5,10] on how to handle
non-rectangular shapes was to break the component into
rectangular pieces, place them separately and later make
adjustments to recover the original shape. This method
would increase n (the number of components to perturb)
and the overall running time of the algorithm. Plus, re -
covering the original shape can significantly perturb the
placement.

1
1

1
0

0

0
T=[010011]
?=[cab]

a

c

b

H = 60

a

c

b

Fig. 9. O-tree and its corresponding placement apply-
ing the algorithm from [2], which handles only rectan-
gular shapes and doesn’t consider design rules.

 In this section we will demonstrate that it is possible to
handle non-rectangular shapes within the O-tree algo-
rithm without breaking the component into rectangular
pieces. Furthermore, we will show that our proposed
method doesn’t disturb the existing placement (it doesn’t
need any post placement adjustments).
 The goal is to place the components as close as possi-
ble to each other (i.e., compact them), without violating
design rules. Instead of having the placement shown in
Fig. 9, we would like to have the placement shown in Fig.
10c. Our compaction routines will be applied whenever
we are placing a non-rectangular component or if any
surrounding component of the current placeable comp o-
nent has a non-rectangular shape.
 A conventional constraint-graph compaction approach
could be employed. However, in our problem, only a
single new component is introduced (i.e., is initially un-
compacted) at each step and there will be very many such
steps. While rebuilding the various constraint graphs
many, many times is technically possible, it would be
overly complex and quite expensive in terms of comp uta-
tion time. We therefore developed a new problem-
specific approach, especially for the case when only one
additional new component must be compacted.
 For any non-rectangular component, at the moment of
placement (compaction), we will extract edges into verti-
cal and horizontal sets. In the vertical adjustment direc-
tion, vertical edges will be used for probing in order to
get the right spacing. In Fig. 10a or Fig. 10b, we extend
each vertical edge until it hits the closest horizontal edge.

This intersection and the starting point from vertical edge
will give us the distance, which will be recorded. The
smallest distance found, reduced by the design rule dis-
tance, represents how close we can place the two adjacent
components with non-rectangular shapes. Using these
ideas, we developed the subroutines: Vertical component
adjustment (and Horizontal component adjustment).
 Fig. 10 shows the application of procedure Verti-
cal_component_adjus tment to the example shown in Fig.
9. In Fig. 10a the procedure found how much we could
slide pre-designed gate a towards the transistor chain c in
the vertical direction. Fig. 10b shows the application of
the same procedure between single transistor b and tran-
sistor chain c. The final placement shown in Fig. 10c
shows the area savings achieved by applying this proce-
dure. This subroutine for the vertical direction can be
summarized as follows:

Vertical_component_adjustment(C)
1. Initially a current component is placed as if it had rec-

tangular shape, including the design rule spacing
2. If the current component C (with width Wc and height

Hc) which is going to be placed at position X0 is not a
rectangle or if any of the components covered under
the contour in the range R(X0, X0 + Wc) have a non-
rectangular shape do steps 3-8 /* if there is more than
one component in R, consider them one at the time in
steps 3 – 8 */

3. Extract in the set S1 vertical edges of C and hori-
zontal edges in set S2 of the component covered in
R

4. For each extracted edge from S1 with coordinates
 ((XS1 ,Y1S1), (XS1 ,Y2S1)), do steps 5-7
5. From S2 find the edges with coordinates

((X1S2 ,YS2), (X2S2 ,YS2)) where X1S2 ? XS1 ?
X2S2

6. From this set of edges within S2, pick the one
with the largest YS2 (the smallest YS2 if the
procedure is performed on the ceiling)

7. In a set D memorize the difference:
 ? = |Y2S1 - YS2|

8. Repeat steps 4-7 where we extract horizontal
edges of C in S2 and extract vertical edges of the
component within R in S1

9. From set D choose minimum ? and reduce it by a
legal design rule distance; this is the amount that C
can be moved down in the vertical direction for floor
placement (or can be slid up for ceiling placement)

 The vertical and horizontal bold edges shown in Fig.
10a were recorded in two different sets. In Fig. 10a, start-
ing from the left side, all vertical bold edges are within
the range R. While examining vertical edges 1 and 2,
steps 5 and 6 of the subroutine will choose horizontal
edge 4 in order to determine ? . For vertical edge 3, steps
5 and 6 will find horizontal edge 5 in order to determine
the new ? , which is larger than the one previously found.
Thus, step 9 of the subroutine will choose the ? found by

examining edges 1, 2 and 4, which determines the spac-
ing between these two devices. (The probes generated in
step 8 from the component in R to component C are not
shown in either Figs. 10a or 10b.)

In Fig. 10b only one vertical bold edge (1) plays a sig-
nificant role in determining the spacing in step 9. While
examining edge 2, step 5 of the subroutine won’t find any
horizontal edges and therefore this edge is out of further
consideration. The final placement shown in Fig. 10c has
a reduced overall height compared to the placement
shown in Fig. 9.

(a)

min ?

R(X0 , X0+Wc)

((X1S2 ,YS2), (X2S2 ,YS2))

((XS1 ,Y1S1), (XS1 ,Y2S1))

(c)

H=46

C

(b)

min ?

R(X0 , X0+Wc)

C
design rule spacing
taken into account in
step 1 of the algorithm

1 2

3

1

2

4

5

3

6

a b

c

probing edge

Fig. 10. Application of the vertical component adjust-
ment subroutine between: (a) a pre-designed gate and
a transistor chain, and (b) a single transistor and a
transistor chain. The final placement is shown in (c).

In general, it is necessary to probe both from C’s verti-
cal edges to the component in R’s horizontal edges, and
vice versa. For example, in Fig. 11a vertical probing from
edges 1, 2 and 3 will miss horizontal edges 4, 5 and 6.
However, as shown in Fig. 11b, vertical edges 4 and 6
will be able to determine the right spacing with horizontal
edge 2.
 For the horizontal direction, the idea is the same, only
the method of edge extraction is the opposite, i.e. the
roles of x and y are reversed. This subroutine is applied if
a perturbed component or a component to the left of the
insertion position has a non-rectangular shape.

1

2

3

4

5

6

1

2

3

4

5

6

(a) (b)

Probing edge

 Fig. 11. Example that shows how to extract the
edges.

 As it can be noticed in this subroutine, there is no need
to break the component into smaller rectangular pieces.
In our approach, all shapes are considered at once, with-
out any need for later adjustments.

3.3.3. Detailed Placement Summary. In this section we
proposed a detailed placement algorithm for transistor
and mixed transistor/gate level netlists, part of a complete
automatic layout flow for datapath tiles. The algorithm
handles rectilinear shapes using our modified O-tree al-
gorithm. Also, this algorithm allows us to place comp o-
nents on reflection lines as well as obeying design rules.
Furthermore this algorithm produces a detailed placement
within a given tile width, while minimizing the height.
 In our detailed placement algorithm, a constant amount
of work proportional to the number of edges is needed
whenever a device with non-rectangular shape is placed
either on the floor or towards the ceiling. This constant
amount of work doesn’t change the upper bound of the
whole algorithm. The modifications in creating the initial
O-tree in step 1 of the algorithm don’t increase the upper
bound either. All modifications add a constant amount of
work to the worst case, so that the whole detailed place-
ment algorithm still runs in O (n2), where n is the number
of components.

4. Results

 Our physical design flow for datapath tile layout has
been applied to Compaq Computer Corp. benchmark
circuits. An experienced Compaq designer did the manual
layouts for all of our benchmark circuits. Routing was
performed in four metal layers. To automatically route all
our placement results, we used the detailed router pro-
vided by InternetCAD.com. Since our global placement
is based on a stochastic optimization algorithm, it is
likely that it will achieve a different result every time it is
run. Our results summarized in Table 1 use the smallest
height obtained in 100 diffe rent trials.
 C1 has a mixed transistor/gate level netlist, and con-
tains pre-designed gates and transistor chains with vari-
ous rectilinear shapes. Each run lasted less than one min-
ute on a DEC AlphaStation. The automatic routing was
done within the automatically produced placement area.
The manual layout is only 8% better than our automati-
cally generated result.

 C2 is also an example with a mixed transistor/gate net-
list. This example has considerably more placeable com-
ponents than C1. The run time for this example was 8
minutes. The overall layout is 17% worse than skilled
manual design.
 For benchmark circuit C3, the overall height was the
same as the reported manual design. Meanwhile, for cir-
cuit C4, the height of the layout was only 3.8% worse
than manual. C3 and C4 are very similar in size and their
run times are similar - around 5minutes. For the four
benchmark circuits, the fully automatic flow generated
tile layouts that were within 7% of the skilled manual
layouts, on average.

Table 1. Experimental Results

C
irc

ui
t

tra

ns
is

to
rs

pr

e-
de

si
gn

ed

ga
te

s

ne

ts

Fi
xe

d
W

 M
an

ua
l l

ay
-

ou
t h

ei
gh

t

A
ut

om
at

ed

la
yo

ut
 h

ei
gh

t

D
iff

er
en

ce
 in

he

ig
ht

 (%
)

 C1 10 4 15 108 175 190 +8
C2 70 4 43 126.5 191.5 225 +17
C3 30 0 25 108 85 85 0
C4 32 0 32 108 80 83 +3.8

5. Conclusion

In this paper we have presented the very first automatic
design flow for datapath tile layout. Our new approach
uses a simulated annealing based global placer and an
extensively modified O-tree algorithm as the detailed
placer. All of our benchmark circuits were automatically
routed, in contrast to previous work where routing was
done manually. Our fully automatic approach provides
results that are competitive with those obtained manually
by a skilled designer.

6. Acknowledgement
We are grateful for the financial support provided by

Compaq via Ken Slater. The authors would also like to
acknowledge the contributions of Bill Swartz and Samuel
Levitin.

7. References
[1] P. N. Guo, C.K. Cheng and T. Yoshimura, “An O-tree Rep-
resentation of Non-Slicing Floorplan and its Application”, Proc.
36th ACM/IEEE DAC, 1999, pp. 268-273.
[2] Y, Pang, C.K. Cheng and T. Yoshimura, “An Enhanced
Perturbing Algorithm for Floorplan Design Using the O-tree
Representation”, Proc. ISPD, 2000, pp. 168-173.
[3] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “Rec-
tangle-Packing-Based Module Placement”, Proc. ICCAD, 1995,
pp. 472-479.

[4] H. Murata, K. Fujiyoshi and M. Kaneko, ”VLSI/PCB
Placement with Obstacles Based on Sequence-Pair”, IEEE
Trans. On Computer-Added Design, vol. 17, pp. 60-68, 1998.
[5] J. Xu, P. N. Guo and C. K. Cheng, “Rectilinear Block
Placement using Sequence Pair”, Proc. International Sympo-
sium on Physical Design, 1998, pp. 173-178.
[6] M. Z. W. Kang and W. W. M. Dai, “Topology Constrained
Rectilinear Block Packing”, Proc. International Symposium on
Physical Design, 1998, pp. 179-186.
[7] K. Fujiyoshi and H. Murata, ”Arbitrary Convex and Con-
cave Rectilinear Block Packing”, IEEE Trans. Computer-Added
Design, vol.19, no.2, 2000, pp. 224-233.
[8] M. Z. Kang and W. W. M. Dai, “Arbitrary Rectilinear Block
Packing Based on Sequence Pair”, Proc. ICCAD, 1998, pp.259-
266.
[9] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani,
“Module Placement on BSG Structure and VLSI Layout Appli-
cation”, Proc. ICCAD, 1996, pp. 484-491.
[10] M. Kang and W. W. M. Dai, “General Floorplanning with
L-shaped, T-shaped and Soft Blocks Based on BSG Structure”,
Proc. ASP-DAC, 1997, pp. 265-270.
[11] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani,
“Module Packing based on the BSG-structure and IC Layout
Application”, IEEE Trans. Computer-Added Design, vol.17,
no.6, 1998, pp. 519-530.
[12] K. Sakanushi, S. Nakatake and Y. Kajitani, “The Multi-
BSG: Stochastic Approach to an Optimum Packing of Convex-
Rectilinear Blocks”, Proc. ICCAD, 1998, pp. 267-274.
[13] D. Vahia and M. Ciesielski, “Transistor Level Placement
for Full Custom Datapath Cell Design”, Proc. ISPD, 1999., pp.
158-163.
[14] S. Askar and M. Ciesielski, “Analytical Approach to Cus-
tom Datapath Design”, Proc. ICCAD, 1999, pp. 98-101.
[15] T. Serdar and C. Sechen, “AKORD: Transistor Level and
Mixed Transistor/Gate Level Placement Tool for Digital Data-
paths”, Proc. ICCAD, 1999, pp. 91-97

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

