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ABSTRACT

In this paper, we describe a software-controlled approach for
adaptively minimizing energy in embedded systems for real-
time multimedia processing. Energy is optimized by clock
speed setting: the software controller dynamically adjusts
processor clock speed to the frame rate requirements of the
incoming multimedia stream. The speed-setting policy is
based on a system model that correlates clock speed with
best-case, average-case and worst-case sustainable frame rate,
accounting for data-dependency in multimedia streams. Ex-
periments on an MP3 decoding application show that com-
putational energy can be drastically reduced with respect to
fixed-frequency operation.

1. INTRODUCTION

One of the most critical constraints on portable embed-
ded systems is power consumption, that is directly linked
to battery size, weight and lifetime, and impacts system
cost and reliability. In the design of embedded systems, a
microprocessor-based architecture is often a forced choice
because of its flexibility and fast time-to-market. In these
architectures, the CPU must handle a large fraction of the
computational load imposed by applications and it is a ma-
jor contributor to the power budget. In general, CPU energy
consumption depends on the type of workload imposed by
applications. We focus on ultra-portable embedded devices
targeted to streaming multimedia applications, such as au-
dio and video decoding.

An algorithm can dynamically reconfigure the system to
provide the required services and performance levels in a
power-efficient way. Modern hardware components provide
a large freedom in dynamically adjusting important power-
correlated parameters such as clock frequency and supply
voltage allowing quick adaptation also at run time. Hence,
it is possible to reduce power consumption by adjusting sys-
tem speed and supply voltage at the minimum level nec-
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essary to match real-time constraints. Algorithmic power
optimization is not a new concept. In [5], Chandrakasan et
al. explore dynamic voltage setting in DSP with a variable
workload. Differently from custom DSP, general purpose
SOCs are not targeted to a particular application, then an
adaptation is necessary even with a fixed workload, in order
to reconfigure the hardware resources in a power-efficient
way. The work by Chandrakasan et al. demonstrate the
effectiveness of decreasing together speed and voltage with
respect to simply shut down the system in idle periods.

Voltage regulation is seen as a generalization of shutdown
where the voltage levels are quantized in more than two val-
ues (on and off); from this point of view, variable voltage
allows better adaptation to different workloads. Recently,
Sinha in [10] has investigated the idea of applications that
are aware of their power requirements and help the operating
system in taking decisions about resources to be allocated,
clock frequency and supply voltage. The energy model by
which the actual values of voltage and frequency are de-
rived, however, assumes a linear relationship between clock
frequency of the processor core and execution time of a cer-
tain task. This model is not suitable in the context of real
time processing, and in general does not take into account
real-life systems bottlenecks like memory latency.

In [6], the authors take a dual approach: here the algorithm
adapts its requirements to resource availability. The same
work also shows that a large amount of power is spent by
the processor when in idle state because of limited network
bandwidth or real-time synchronization requirements. The
assumption at the basis of the variable voltage power man-
agement techniques is that power consumption scales down
with k®, where k is the voltage and speed scaling factor [4].
In addition, being the execution time inversely proportional
to k, energy depends on the square of the supply voltage
and not on the clock frequency, so is not useful to change
only processor speed in order to save energy, unless supply
voltage is scaled down as well.

On the contrary, recent results [1][3][8][9] on real systems
have demonstrated that running at less than the maximum
frequency can be advantageous. In the following section we
provide a theoretical explanation for this fact, which mo-
tivates the adaptive algorithmic power optimization strat-
egy presented later in the paper. In such a context, this
work analyzes the power-performance trade-off of multime-



dia applications running on embedded processors, to obtain
a characterization and a methodology to determine proces-
sor speed which allows energy saving while satisfying real-
time constraints.

2. MULTIMEDIA SYSTEM MODEL

In multimedia stream processing, data come into the system
from the environment through a wireless network or a wired
link from a host computer. The main processing unit is a
general-purpose microprocessor, integrated in a SOC archi-
tecture. The CPU processes a block of data and sends the
results to the output interface when finished. To improve ef-
ficiency and parallelism, current SOCs contain input-output
hardware units that can buffer data and manage standard
communication channels (e.g. serial port, parallel port) in
parallel with the CPU. High-bandwidth input-output de-
vices often use DMA for enhanced performance. Our target
system is based on the StrongARM1100 core [2]. Stron-
gARM1100 implements several power management capabil-
ities. For example, we can adjust the frequency in a range
of discrete values or we can stop the clock for some compo-
nents also at run-time. Frequency can be programmed via
software by writing a control word in a processor register.
In StrongARM1100 twelve frequency levels are available by
programming a PLL.

Multimedia stream processing algorithms take as an input
a stream of encoded with a rate established by the input
channel bandwidth. The input stream is generally struc-
tured in frames. Each frame is processed by the CPU which
extract the encoded information and forward it to the output
channel. The processing speed of the CPU and the synchro-
nization framework with the I/O drivers must guarantee the
output data rate required to mach real time constraints.

3. VARIABLEFREQUENCY AND ENERGY
OPTIMIZATION

In this section we discuss how energy reduction can be ob-
tained by setting clock frequency even in the absence of an
associated voltage regulation. This is in contrast with the
common assumption that speed-setting is effective only ac-
companied by an adequate voltage-setting policy. Of course,
if voltage is scaled with frequency, more power can be saved,
but the point here is that this is not a forced choice. To
demonstrate our claim, we start by looking at the usual ex-
pression of dynamic power consumption:

P=Vip-Cess- f (1)

(where V& p is the supply voltage, Ceyy is the average switched

capacitance, and f is the CPU clock frequency). Because
multimedia streams have a frame-based structure, it is useful
to consider the frame processing time Tfrqme. The energy
consumption in time T'f,qme can be immediately obtained
as:

Eframe = V;D : Ceff : f : Tframe (2)

where T, qme is the frame processing time. Tframe = Nframe-

t, where N¢,qme and t are the number of clock cycle neces-
sary to elaborate a frame, and the cycle time respectively.
We have then:

Ef'rame = Ceff . V2 . Nframe (3)

because f = 1/t. Ejframe depends on Nf,gme, i.€., on the
workload. Now, because of the CPU must interface with
external hardware which is in general slower (ex: off-chip
memories), there are times in which the CPU is idle, so let
us now express Nframe aS:

Nf'rame = {Vuseful + Nidle (4)

We conservatively assume that Nysefw: (the number of cy-
cles spent in execution useful operations) is fixed for a given
algorithm, while N;q;. (the number of cycles wasted with the
CPU being idle) can be seen as a function N;q.(f) where
f is one of the available processor frequencies. Njqie is a
non-decreasing function of f.

Niaqie identifies CPU idleness finely dispersed among use-
ful operations (mainly during memory wait cycles on cache
misses). This term varies with fsince memory access time is
fixed, adjusting the frequency involves variation in number
of wait states in a bus cycle. This happens when the CPU
is not the speed limiting element.

Thus:

Efra.me =Vpp - Ceff . (Nuseful + Nidle(f)) (5)

Now it must be considered that real time algorithm have
the constraint of provide a minimum amount of data output
in a given time T4, depending on the output bandwidth
required. For example in audio MPEG decoding, this band-
width depends on the sample rate of the decoded sound.
The output bandwidth is directly proportional to the frame
elaboration speed, that can be expressed as 1/Tframe. To
keep the real time constraints, this speed must be greater
than 1/Tmaz.

The target of power optimization is to reduce E¢rqme acting
on N;gie, under the constraint:
1
f >
Nuseful + Nidle Tmaz

(6)

Speed-setting pursues the target of power minimization by
decreasing f so that in (6) N;que decreases while Nygefu
and Tpe, are fixed, because they affect the output data
bandwidth. The lower bound of f, namely fop: is fixed by
the requirement that all the useful work be executed in Thaz
(just-in-time computation).

From the expression of Tf,qme, it can be observed that in-
creasing f by a certain factor

Speed-setting effectiveness depends on the workload charac-
teristics and the system’s architecture (both hardware and
software). It reduces the costs of memory latency in terms
of CPU wait states, hence, in execution dominated by mem-
ory access (high miss rate), and where memory latency is
higher, this technique is more effective [3]. In addition, from
a system energy perspective, since the CPU clock often feeds
other on-chip components, additional system power can be
saved by reducing useless work on these as well (even if
in some cases they implement power down and gated clock
strategies).



On the other hand, since the frequency cannot be adjusted
continuously, it is hard to completely eliminate CPU idle-
ness. As an additional concern when evaluating the effec-
tiveness of a speed-setting policy, the delay and the energy
spent to set the processor speed must be considered. How-
ever, in the context of the proposed algorithm, this penalty
is not noticeable because the appropriate frequency value is
choosen at the beginning of the stream.

4. IMPACT OF CLOCK FREQUENCY ON
PERFORMANCE

As previously mentioned, the effectiveness of a speed setting
policy depends on the hardware characteristics and on the
workload. Therefore a characterization of the system perfor-
mance as a function of clock frequency is needed in order to
choose the speed which guarantees the level of performance
required.

Multimedia processing is carried out on a frame by frame
basis, every iteration yielding a variable amount of output
data. Since real-time applications must produce a fixed
amount of output data in a given period of time, the frame
processing rate FR(f) is an appropriate metric to indicate
the level of performance supported by the system at a given
clock frequency f. The main challenge in modeling the
frame rate as a function of clock frequency is that it de-
pends on the characteristics of the multimedia stream as
well. In general, we have FR(f,s,d), where s is a parame-
ter representing characteristics of the entire stream, namely
the sample rate sr and the bit rate br, and d represents
characteristics of a single frame in the stream (e.g., frame
size). For MP3 audio, the achievable FR at a given clock
frequency is a strong function of the stream’s bit rate and
sample rate.

For a fixed br = br*, and sr = sr”, frame-by-frame varia-
tions are quite small, but non-negligible. To build our per-
formance model, we analyze several streams at br* bit rate
and sr™ sample rate, and we monitor the worst-case frame
processing time, as well as the best-case frame processing
time at various frequencies. Then, we define three curves
FRg(f), FRA(f), FRw(f), representing best case frame
rate (i.e., the frame rate that could be achieved if all frames
in the stream could be processed at max speed), the average
case frame rate, and the worst-case frame rate, respectively.
By construction, FRp(f) > FRA(f) > FRw(f). The three
curves are normalized with respect to FRa(fmax), the av-
erage frame rate achieved when the processor is run at max-
imum speed. All three curves are monotonically increasing
in frequency. The normalized FRA(f) has maximum value
1.

The same process is repeated for several different values of br
and sr, including all corner cases (i.e., maximum and mini-
mum br and sr in a range of allowed values). The normal-
ized curves are plotted on the same FR x f plane. We then
obtain three normalized curves: the overall best FR%(f),
the overall average F R (f) and the overall worst F Ry (f).
The first one is obtained by selecting the largest F'R value
among all FRp curves for each frequency point. The sec-
ond one is obtained by averaging all values of FR4 curves
at every frequency. The third one is obtained by selecting
the smallest F'R value among all FRw curves for each fre-

T6KHz | 24KHz
T6KBit/s | 65.36 | 69.67
32KBit/s | 63.25 | 67.95
64KBit/s | 60.61 | 66.56

Table 1: Frame Rate look-up table: the values rep-
resent FR(fmaz) in frame/sec at different sample
rate (row) and bit rate (column).

quency point. The curves FR%(f), FR%(f) and FRY, (f)
are the performance model for the system.

The frequency setting algorithm exploits the knowledge of
FR%(f), FR%(f) and FRyy, (f) curves, as well as the knowl-
edge of the FRA(famax) for each allowed combination of
br and sr. It can be summarized as follows: when stream
decoding begins, the algorithms extracts the br and sr in-
formation from the stream header, and looks up the corre-
sponding value of FRA(fmax) in the table shown in fig-
ure 1. Furthermore, given the sr value, it is possible to
determine what is the average frame rate F'R that the sys-
tem must support to guarantee real-time playback of decom-
pressed audio by the following equation:

ST

FRreq = (7)

Nsamples

where Nyumpies is the number of samples per frame .

Given a F'R requirement, the frequencies fmin, fav, fmaz
are computed by intersecting the curves FR%(f), FRL(f),
F Ry, (f) with the horizontal line FRyeq = FR/FRA(frmax),
and finding the abscissas of the intersections, as shown in
Figure 2. Frequencies fmin, fav, fmaz define a range of al-
lowed frequencies for speed setting. Running the processor
at fa» should be enough to provide real-time playback, but
some buffering is required to accommodate frame decoding
rate jitter. Alternatively, it is possible to run the proces-
sor at fmaez- At this frequency, real-time performance is
guaranteed on a frame-by-frame basis, with minimal jitter
compensation buffering. However, the processor consumes
more energy than what is needed most of the time. Fi-
nally, fmin frequency can be used for short periods of time
if we find out that frames are consistently processed faster
than the average rate. Clearly, it is also possible to run
the processor faster than fmaee (if fmaz is smaller than the
maximum processor frequency). This is clearly sub-optimal
from the energy viewpoint, but it can be a forced choice in
systems where processor time is not fully dedicated to MP3
decoding. In this case, the performance model described
above makes it possible to quantify the fraction of processor
time that is made available for other tasks by clocking the
processor at f > fmaz-

It is important to stress that the FR(f) curves are not lin-
ear in general. This is because the memory system and
interfaces do not speed up like the processor with increasing
clock frequency. Increasing f leads to a decrease of the ratio
Nyse fui /Nidie, therefore the frame rate does not increase lin-
early with f. The slower the speed of the external hardware

!This number is fixed to 576 for MPEG1, and to 576 for
MPEG]1 phase2



(e.g., memory access time), with respect to the processor,
the flatter the performance curve, and the greater can be
the effectiveness of the speed-setting policy. Other than the
hardware characteristics, the shape of the curve depends on
the ratio between the computation time spent inside the
CPU and that spent outside the CPU. Considering the non
ideality of the external memory, this can be expressed also as
the ratio between the external accesses and the total mem-
ory accesses, which in turns is equal to the cache miss rate.
It must be observed that the minimum frame rate also takes
into account the decrease in bandwidth caused by the syn-
chronization of the processor with the I/O controllers and
the external peripherals as well.

5. EXPERIMENTAL RESULTS

The results presented in this work are obtained for the sys-
tem architecture of the HP SmartBadgelll prototype hand-
held device [11], based on the StrongARM SA-1100 embed-
ded core. The embedded application is MPEG-layerIII au-
dio decoding. Performance and power are obtained using
the simulation tools described in [11], which has been val-
idated against hardware measurements. The first plot, in
Figure 1, shows how energy per frame changes with clock
frequency for two MP3 streams, with different br (same sr).
The plot is obtained by running MP3 decode at the maxi-
mum frame rate achieved at a given clock frequency. This
can be slower or faster than the one required for real time
playback. The purpose of this plot is to show that energy per
frame monotonically increases with frequency (contradicting
the simplistic model where energy is constant with variable
frequency), because the processor wastes energy waiting for
slow memories during cache misses.
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Figure 1: Energy consumption per frame

The actual energy penalty for excessive clock speed is even
larger than what is shown in Figure 1, because active decod-
ing must be stopped when the output buffer is full, to avoid
frame loss. Even if we stop decoding by forcing the proces-
sor in idle state, power consumption in idle state is non-null
(50mW). Hence, idle power is consumed when the processor
is idle waiting for the output frame buffer to empty.

Figure 2 shows the overall FR vs. clock frequency curves,
obtained with the procedure described in the previous sec-
tion. All three curves are normalized on the y axis to the

FRA(fumax) value. This is all the information needed by
the speed setting algorithm. A frame rate specification, set
on the y axis, implies three frequency values, shown on the
z axis. Remember that the tree curves do not depend on sr
and br, hence they are a characteristic of the MP3 decode
algorithm, and can be used with any MP3 stream, with the
only caveat that the FRA(famax) must be available, and it
must be pre-stored in a lookup table for every possible sr
and br.
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Figure 2: Frequency setting

Finally, Figure 3 shows the energy penalty paid when run-
ning the processor at a clock frequency larger than fi,n.
The solid line shows the energy overhead in the assumption
that when the processor is idle it consumes negligible power.
The dashed curve shows the actual power penalty, that ac-
counts for processor idle power as well. Notice how the two
curves diverge at higher frequencies, as the percentage of
idle time becomes larger. Energy-per-frame savings of more
than 40% are obtained with respect to the trivial policy that
clocks the processors always at maximum speed. As an ex-
ample, consider an audio stream with sr = 16KHz and br
= 16KBit/sec. At the maximum frequency, and hence with-
out optimization, the energy per frame results 10.989m.J, as
shown in figure 1. In order to apply our algorithm, first the
frame rate required F' R,.q must be obtained directly by the
knowledge of sr. In this case, from equation 7 it follows:
FRyeq = 27.78 frame/sec. By looking in the look-up table
with the appropriate value of sr and br the corresponding
value of FRA(fmaz) = 65,36 frame/sec can be obtained,
with frmee = 287MHz. This value is used to scale the nor-
malized frame rate curve shown in figure 2. At that point,
we find fmin = 85.7MHz, frmee = 106.7M Hz as abscissas
corresponding to the ordinate F R, in the plot of the scaled
frame rate curve obtained above. In this case favgy is either
equal t0 fmaz OF fmin because there is not an allowed pro-
cessor value between 85.7 and 106.7MHz. Looking at the
energy plot of figure 3 it can be found that, if we conser-
vatively choose fmaz, the energy per frame results 8.64m.J.
Hence we obtain 21% of energy reduction. It must be noted
that in this case fin is lower than the minimum frequency
indicated in the plot of figure 3 because the former refers
to the best case frame rate indicated by the FRp curve in
figure 2.
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Figure 3: Energy Penalty for a 16KHz, 16Bit/sec
audio stream

6. CONCLUSIONSAND FUTURE WORK

In this paper we have introduced an approach for automatic
run-time setting of the optimum processor frequency that
minimizes energy for streaming MP3 audio decoding. The
technique has been applied on an embedded portable ap-
pliance based on the StrongARM SA-1100 core, obtaining
sizable energy-per-frame reduction. Adaptive speed setting
is based on a performance vs. clock frequency model that is
obtained by pre-characterization once for all for a given ap-
plication. At run time, frame rate requirements are obtained
by analyzing the MP3 steam header, and then a range of
acceptable processor clock frequencies is automatically de-
termined based on the performance model.

Future work in this area will focus on speed setting policies
for embedded applications (such as MPEG2 video) where
clock speed requirements change rapidly even within a sin-
gle stream. Variable speed setting policies that take into
account the impact of input and output buffering also war-
rants further investigation.
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