
a-
ign
ni-
s. A
te an
nce

pro-
wn
 of
e of
lly
on
id

ture
e

xi-
ient
xi-

ion
ty
d

 its
has
this
ed

ate
ied.
re
the
sti-

ria-

tion
, in
that
to

al-
lgo-
h-
1].
an

Hybrid Global/Local Search Strategies for Dynamic
Voltage Scaling in Embedded Multiprocessors

Neal K. Bambha
Shuvra S. Bhattacharyya
ECE Department and UMIACS

University of Maryland, USA
{nbambha, ssb}@eng.umd.edu

Jürgen Teich
Computer Engineering
University of Paderborn

Paderborn, Germany
teich@date.uni-paderborn.de

Eckart Zitzler
Computer Engineering

Swiss Federal Institute of Technology
Zurich, Switzerland

zitzler@tik.ee.ethz.ch
ABSTRACT

In this paper, we explore a hybrid global/local search optimization
framework for dynamic voltage scaling in embedded multiproces-
sor systems. The problem is to find, for a multiprocessor system in
which the processors are capable of dynamically varying their core
voltages, the optimum voltage levels for all the tasks in order to
minimize the average power consumption under a given perfor-
mance constraint. An effective local search approach for static
voltage scaling based on the concept of a period graph has been
demonstrated in [1]. To make use of it in an optimization problem,
the period graph must be integrated into a global search algorithm.
Simulated heating, a general optimization framework developed in
[19], is an efficient method for precisely this purpose of integrating
local search into global search algorithms. However, little is
known about the management of computational (compile-time)
resources between global search and local search in hybrid algo-
rithms, such as those coordinated by simulated heating. In this
paper, we explore various hybrid search management strategies for
power optimization under the framework of simulated heating. We
demonstrate that careful search management leads to significant
power consumption improvement over add-hoc global search /
local search integration, and explore alternative approaches to per-
forming hybrid search management for dynamic voltage scaling.

Keywords

simulated heating, dynamic voltage scaling

1. INTRODUCTION
Dynamic voltage scaling [13] in embedded processors is an impor-
tant advancing technology that allows the tuning of power/perfor-
mance behavior as software execution evolves. For example, in
non-iterative execution, the operating voltage can be increased or
decreased depending on whether a task lies on the critical path;
similarly, for iterative systems, the decision might be based on
examining the critical cycles. By tuning power/performance
behavior at the task level, this can allow the designer to meet a per-
formance constraint with significantly lower energy consumption
than if all tasks are required to execute at the same voltage [2].

In iterative embedded multiprocessing systems, such as those

found in digital signal processing applications, optimized applic
tion of dynamic voltage scaling, and any sort of complex des
space exploration in general, is greatly complicated by commu
cation resource contention. One example of this is a shared bu
processor must first gain access to the bus before it can execu
interprocessor communication (IPC) operation. One conseque
of this contention is that under iterative execution that is self-timed
(processors synchronize with one another only based on inter
cessor communication requirements [11]), there is no kno
method for deriving an analytical expression for the throughput
the system, and thus, simulation is required to get a clear pictur
application performance. However, simulation is computationa
expensive, and it is highly undesirable to perform simulati
inside the innermost optimization loop during synthesis. To avo
such inner-loop simulation, it has been shown that a data struc
called the period graph can be used as an efficient estimator for th
system throughput [1]. In particular, the reciprocal of the ma
mum cycle mean of the period graph can be used as an effic
estimate of the throughput. The maximum cycle mean is the ma
mum over all directed cycles of the sum of the task execut
times in divided by the sum of the edge delays in . A varie
of efficient, low polynomial-time algorithms have been develope
for computing the maximum cycle mean (e.g., see [5]).

The mean error and fidelity of the period graph estimator (i.e.,
maximum cycle mean) have been quantified, and this analysis
demonstrated the accuracy of the estimation technique [1]. In
technique, the maximum cycle mean of a period graph deriv
from a simulation (including contention effects) is used to estim
the throughput for the system as task execution times are var
Specifically, relatively small variations in task execution times a
translated to corresponding changes in the node weights of
period graph, and the new maximum cycle mean is used to e
mate the performance impact of the given execution time va
tions.

This period-graph based approach is accurate if the task execu
times are varied around a limited region (local search). Thus
general, it must be combined with a global search strategy
navigates the sequence or “populations” of local regions
explore. In the context of power optimization through voltage sc
ing, two hybrid search strategies using, respectively, genetic a
rithms and simulated annealing in conjunction with period-grap
based local search were shown to yield significant benefit [
However, this work was limited in its focus on static, rather th
dynamic, voltage scaling, and its use of a fixed local search config-

C
C C

ss

riod
me
riod
tra
 for
lt-

ft-
ry
 are

s,
for
re.

ch a

ti-

into
-
le-
s
m-
e,

in
-

bi-
en
ta-
al
.g.,
 of
to
za-

al
ion
h to
n-
der
tter
ti-
vo-
eter
of

ibed
 set
uration throughout the optimization process.

In this paper, we examine the more complex domain of dynamic
voltage scaling, and explore adaptive (variable-configuration)
parameterized local search formulations of period-graph-based
local search to optimize use of compile-time resources. For this
purpose, we apply the simulated heating concept of [19], which
provides a general approach to controlling parameterized local
search from within an enclosing global search process. We demon-
strate that careful search management leads to significant power
consumption improvement over add-hoc global search / local
search integration, and explore alternative approaches to perform-
ing hybrid search management for dynamic voltage scaling.

In this work, we assume that a schedule has been computed before-
hand so that the ordering of the tasks on the processors is known.
We also assume that the system hardware supports dynamic volt-
age scaling for the purpose of power reduction. We address the
problem of finding a set of voltages for the tasks (i.e., a mapping
from tasks into valid voltage values) in order to minimize average
power (energy per computation period) while satisfying a pre-
specified throughput constraint.

2. RELATED WORK

2.1 Task level scheduling
Estimates for task execution times can be obtained through several
methods. The most straightforward is for the programmer to pro-
vide them as annotations while developing a library of primitive
blocks. Analytical techniques also exist. Li and Malik [12] have
proposed algorithms for estimating the execution time of embed-
ded software in an efficient manner. Much work has been done on
scheduling and binding methods for high level synthesis
[15][6][8][4]. These techniques attempt to optimize the schedule
makespan, which is a suitable performance metric for non-iterative
applications or fully-static implementations, but is not ideally
suited to the iterative, self-timed context that we address in this
paper.

2.2 Voltage scaling
If processor voltages can be adjusted during run-time, then, by
slowing down tasks that are not on the critical path or critical cycle
— by reducing the operating voltage in effect when each those
tasks executes — an overall power reduction can be achieved. This
exploits the quadratic dependence of power on voltage in CMOS
technology. Reducing the supply voltage also has the effect of
decreasing the clock speed and increasing circuit delay. The circuit
delay can be modeled by

, (1)

where is the supply voltage, is the threshold voltage, and
 is a constant [3]. We use a value of for the threshold

voltage. The power consumption is given by

(2)

where is the clock frequency, is the load capacitance, and
is the switching activity. The optimization problem we addre
consists of finding the voltage vector for the

 tasks in the graph, such that the energy per computation pe
(average power) is minimized and the throughput satisfies so
pre-specified constraint (e.g., as determined by the sample pe
in a DSP application). Dynamic voltage scaling requires ex
hardware, which uses extra power. This was estimated at 10%
the system given in [14]. The time required to switch between vo
ages was estimated at for this system.

2.3 Integrating global search and local search
For many useful optimization problems that arise in hardware-so
ware codesign, efficient algorithms exist for refining arbitra
points in the search space into better solutions. Such algorithms
called local search algorithms because they define neighborhood
typically based on initial coarse solutions, in which to search
optima. Many of these algorithms are parameterizable in natu
Based on the values of one or more algorithm parameters, su
parameterized local search algorithm (PLSA) can trade-off time/
space complexity for optimization accuracy (quality of the op
mized result).

Local search techniques can often be incorporated naturally
global search algorithms (GSAs) in order to increase the effective
ness of optimization. This has the potential to exploit the comp
mentary advantages of GSAs like evolutionary algorithm
(generality, robustness, global search efficiency), and proble
specific PLSAs (exploiting application-specific problem structur
rapid convergence toward local minima).

Such hybridization of optimization algorithms arises naturally
many contexts [7]. For instance, in the field of evolutionary com
putation, many evolutionary algorithm/local search method com
nations can be found in the literature, e.g., [9, 16]. Wh
employing PLSAs in the context of embedded system implemen
tion, however, a critical issue is how to use computation
resources most efficiently under a given compile-time budget (e
a minute, an hour, a day, etc.), which translates into a problem
appropriately reconfiguring successive PLSA invocations
achieve appropriate accuracy/compile-time trade-offs as optimi
tion progresses.

For example, a PLSA formulation of period-graph-based loc
search might involve randomly-determined sets of execut
time variations, which are each evaluated using the period grap
select the “best” variation. As is varied, the local search co
sumes more time (drawing time away from the global search un
a given compile-time budget), but in general, produces be
results. Under a fixed configuration, would be fixed before op
mization begins, and would remain the same across all PLSA in
cations; whereas, in an adaptive approach, the PLSA param
would be varied in an attempt to streamline the allocation
resources between global and local search.

3. Hybrid global/local search
The general hybrid global/local search scenario can be descr
as follows [19]. Suppose that we have a GSA operating on a

delay k
Vdd

Vdd Vt–()2
----------------------------×=

Vdd Vt
k 0.8volts

P αCLVdd
2 f=

f CL α

V v1 v2 … vn, , ,()=
n

10µs

N

N

N

G

e
 to

tely.
 dur-
 in
ogy
sly

 a
lue
A/

i-

 are

er
 of
pti-
st

se-
ach

 a
rre-
of solution candidates and a PLSA , where is the parame-
ter of the local search1. Let and respectively denote the set
of real numbers, and the set of natural numbers, and let:

• denote the complexity (worst-case run-time) of for
the parameter choice ;

• be the average accuracy (effectiveness) of with regard
to ; and

• denote the set of permissible values (the parameter
domain) for parameter (for example, may be described by
an interval).

Furthermore, suppose that for any pair of parameter val-
ues we have that

. (3)

That is, increasing parameter values in general result in increased
consumption of compile-time, as well as increased optimization
effectiveness.

Generally, it is very difficult, if not impossible, to analytically
determine the functions and , but these functions are
useful conceptual tools in discussing the problem of designing
cooperating GSA/PLSA combinations. The techniques that we
explore in this paper do not require these functions to be known.
The only requirement we make is that the monotonicity property
(3) be obeyed at least in an approximate sense (fluctuations about
relatively small variations in parameter values are admissible, but
significant increases in the PLSA parameter value should corre-
spond to increasing cost and accuracy). Consequently, a tunable
trade-off emerges: when is low, refinement is generally low
as well, but not much time is consumed (is also low). Con-
versely, higher requires higher computational cost .

In Fig. 1, the GSA/PLSA hybrid that is taken as the basis for the
optimization scenario in this paper is explained:

The GSA operates on a set of solution candidates (may be
equal to one for, e.g., simulated annealing or greater than one for,
e.g., an evolutionary algorithm); per optimization step, it creates a
new set of solution candidates depending on the previous solution
set and the quality function associated with it. The PLSA is used
to refine and/or to evaluate the solution candidates generated by

; its parameter is adapted in each iteration according to a pre-
defined scheme. Furthermore, a fixed time limit determines how
many iterations of the main loop of the hybrid may be performed.
At the end, when the given time limit is exceeded, is applied to
the best solution in using maximum accuracy .

4. SIMULATED HEATING
The idea of simulated heating [19] can be summarized as follows:
Instead of keeping the PLSA parameter value constant for the
entire optimization process, we start with a low value (leading to a

low and) and increase it at certain points in time. Th
intention is to focus on the global search at the beginning and
find promising regions first; for this phase, the PLSA L runs with
low accuracy. Later, more time is spent by L in order to improve
the solutions found so far and/or to assess them more accura
As a consequence, fewer global search operations are possible
ing this phase of optimization. Since is steadily increased
the course of time, we use the term simulated heating by anal
to simulated annealing where a temperature is continuou
decreased according to a given cooling scheme.

Definition: Let , where is the parameter domain of
PLSA , be a function that specifies the PLSA parameter va

 to be used during local search at iteration of a GS
PLSA hybrid involving . The function is called a heating
scheme of the associated hybrid search algorithm if it is monoton
cally non-decreasing — that is, for all with , we
have .

We can distinguish heating schemes according to whether they
computed at compile-time (static) or at run-time (dynamic).
Another orthogonal classification is whether an equal numb
of iterations is performed for each parameter in the set
parameters considered during optimization, or constant o
mization time is spent for each member of . We call the fir
class of schemes FIP (fixed number of iterations per parameter)
and the second class FTP (fixed time per parameter). With FTP, the
optimization time is spread equally for each parameter. As a con
quence, the number of iterations that may be performed for e
fixed parameter decreases for higher values of .

5. OBJECTIVE FUNCTION
The quality function will take as input a voltage vector and
period graph . Each node execution time is scaled by its co

1. For clarity, we assume here that p is a scalar rather than a vec-
tor of parameters.

L p() p
ℜ ℵ

C p() L
p

A p() L
p

R ℜ⊆
p R

pmin pmax,[]

p1 p2,()

p1 p2≤() C p1() C p2()≤() A p1() A p2()≤()and⇒

C p() A p()

A p()
C p()

A p() C p()

G N N

L

G p

L
S A pmax()

p

Input: N (size of solution candidate set)
Tmax (maximum time budget)

Output: s (best solution found)
Step 1: Initialization: Create an initial multi-set S
containing N randomly generated solution candi-
dates. Set T = 0 (time used) and t=0 (iterations per-
formed).
Step 2: Parameter adaptation: Choose p ∈ R
according to a given heating scheme H: p = H(t).
Step 3: Local search: Apply L with parameter p to
each s ∈ S and assign it a quality (fitness) F(s).
Step 4: Set = time elapsed since Step 1.
Step 5: Termination: If T > Tmax then go to Step 7.
Step 6: Global search: Based on S and F, generate a
new set S’ of solution candidates using G. Set S = S’
and increase the iteration counter t. Go to Step 2.
Step 7: Output: Apply L with parameter pmax to the
best solution in S regarding F; the resulting solution s
is the outcome of the algorithm.

T

Figure 1. Global/local search hybrid

C p() A p()

A p()

H ℵ R→: R
A

p H t()= t
A H

t1 t2, ℵ∈ t1 t2≤
H t1() H t2()≤

i)
R′ R⊆

i i)
R′

p

F V
PG

i-
 ,
-

1,
nt
n-
esis
ror
 (14
ule
e

 the
n

ion
ze
NI-
rst
are
ing
ng
s).
The
olt-
sponding voltage. Let be the maximum cycle mean of with
the node voltages scaled by . The energy consumed by each task
(node) is equal to the power times its execution time. The average
power is the total energy divided by the period (recipro-
cal of). If violates the period constraint

, the power consumption is multiplied by a
large penalty factor .

6. LOCAL SEARCH ALGORITHMS
We implement two different local search strategies - hill climbing
and Monte Carlo. The benefit of using a local search algorithm is
that within a restricted voltage range we can use the period graph
estimator for the throughput, which is much faster than performing
a simulation. For the hill climbing algorithm, we define a parame-
ter which is the voltage step, and we define a resimulation
threshold , which is the maximum amount that the voltage vector
can vary from the point at which the period graph was calculated.
The algorithm is run for iterations. So for this case, the PLSA L
has 3 parameters , , and . One iteration of local search con-
sists of changing the node voltages, one at a time, by , and
choosing the direction in which the objective function is mini-
mized. From this, the worst case cost for iterations
would correspond to evaluating the Objective function times,
and resimulating times. For our experiments we fix
and and define the local search parameter (from section 3)

. Then for smaller (corresponding to larger resimulation
threshold) the voltage vector can move a greater distance before a
new simulation is required. For a fixed number of iterations in
the local search, a smaller will correspond to a shorter running
time for . The accuracy will be lower, since the
accuracy of the period graph estimate decreases as the voltage vec-
tor moves farther away from the simulation point.

In the Monte Carlo algorithm, we generate random voltage vec-
tors within a distance from the input vector. For all points
within a resimulation threshold , we use the period graph to esti-
mate performance. We use a greedy strategy to evaluate the
remaining points. Specifically, we select one of the remaining
points at random, we simulate and construct a new period graph,
and we then use the resulting estimator to evaluate all points within
a distance from this point. If there are points remaining after
this, we choose one, resimulate, and repeat. For our experiments
we fix and and define the local search parameter .
As for the hill climbing local search, smaller values of corre-
spond to shorter run times and less accuracy for the Monte Carlo
local search. The pseudo-code for the local search algorithms is
given below in Figures 2 and 3.

7. SIMULATED HEATING ALGORITHM
For the following experiments, we consider a GSA/LSA hybrid
using a dynamic heating scheme and assume that the parameter
domain takes the form of an interval , and that
parameters are uniformly chosen over to form the set of
parameters to consider. The paramter is initially set at . It
is increased when for a user-given time of Tstag seconds the quality
of the best solution in the solution candidate set has not improved
(stagnation). As a consequence, for each parameter a different
number of iterations may be considered until the stagnation condi-

tion is fulfilled. The amount of increase is based on the time
spent with the last parameter, the time limit for the overall optim
zation , the current elapsed time , the last parameter
and . If , the optimization is terminated. Other
wise, let . Then is increased by

.

8. EXPERIMENTS
We ran experiments with the following application graphs: fft
fft2, fft3, karp10, qmf4, and meas. The fft graphs are differe
implementations of the fast fourier transform from [10], and co
tain 28 nodes. Karp10 refers to the Karplus-Strong music synth
algorithm with 10 voices (21 nodes), qmf4 is a quadrature mir
filter bank (14 nodes), and meas is a measurement application
nodes). From the application graph, we constructed a sched
using the dynamic level scheduling algorithm given in [17]. W
used the estimate of 10% for the power overhead and for
switching time from [14]. The global search algorithm was a
incremental genetic algorithm using one-point crossover, mutat
probability of 0.1, crossover probability 0.9, and population si
50. This genetic algorithm is similar to those based on the GE
TOR [18] model. It uses overlapping populations, with the wo
two individuals being replaced each generation. We comp
results obtained for a fixed compile time using simulated heat
with results obtained without using simulted heating (keepi
PLSA parameter constant for the entire optimiztion proces
We use the dynamic heating scheme outlined in section 7.
throughput constraint was calculated by setting all the task v

M PG
V

Tsolution
M Tsolution

Tsolution Tconstraint>()
100 Tsolution Tconstraint–()()exp

δ
r

I
I r δ

δ±

C I r δ, ,() I
3I

I r δ⁄⁄() I
δ

p 1 r⁄= p

I
p

C p() L p() A p()

N
D

r

r

N D p 1 r⁄=
p

R pmin pmax,[] n
R R′

p pmin

Input to hill climbing local search: Voltage vector , ,
, , period graph .

Pseudo -code for Hill Climbing
LocalSearch():

copy into another vector
for (; ;)

for(; ;)

if (f1 < f)

else if (f2 < f)

end if
end for

distance = Vector distance between and
if (distance >)

Resimulate()

V δ
r I PG

V δ r I PG, , , ,
V Vinit

k 0= k I< k k 1+=
i 0= i length(V)< i i 1+=

V0 V i[]=
V i[] V0 1 δ+()=

f1 F(V, PG)=
V i[] V0 1 δ–()=

f2 F(V,PG)=
V i[] V0=

f F(V, PG)=

V i[] V0 1 δ+()=

V i[] V0 1 δ–()=

V Vinit
r

PG

Figure 2. Hill climbing local search

Tp

Tmax Tcur p
pmax Tcur Tmax>

Nstep Tmax Tcur–() Tp⁄= p
pmax p–() Nstep⁄

10µs

p

ing
u-

re-
next
this
wer
ge
nte
hen

ent
ch-
 be
ro-
ages to a fixed reference voltage of 5 volts and calculating the
period. The average power was calculated by summing the energy
for each task (power from equation 2 multiplied by the task execu-
tion time) and dividing by the period. The total compile time
alloted to the optimization was 1200 seconds.

Table 1 shows the results for a hill climbing local search keep
PLSA parameter fixed during the entire optimization (no sim
lated heating). Optimization runs were performed for values of
between 1.1 and 5.0. The first entry for each application cor
sponds to the parameter which yielded the best results. The
entry corresponds to the highest accuracy parameter (5.0 in
case). The heading refers to the ratio of the average po
of the best solution found by the optimization to the initial avera
power. Table 2 shows results under the same conditions for Mo
Carlo local search. From tables 1 and 2, it can be seen that w
not using simulated heating, the optimum parameter is differ
in general for different applications and different local search te
niques. It is hard to predict in advance which parameter should
used. For these applications, the hill climbing local search p
duced slightly better results overall.

Pseudo - code for Monte Carlo Local Search
Input: Voltage vector V, N, r, D where N is the number
of random vectors to generate, r is the resimulation
threshold, D is the distance within which the random
vectors are generated.
Generate N random vectors within a distance D from
V
Create list<vector> L1, L2, L3
Initially, L1 holds all N vectors, L2 and L3 are empty
while (size(L3) < N)

Simulate at V and create period graph
while (L1 is not empty)

Remove a voltage v from L1
Calculate distance d from v to V
if (d < r)

Evaluate v using period graph estimate
Place v in L3

else
Place v in L2

end if
end while
Swap L1 and L2
Pick first element v from L1, and set V = v

Figure 3. Monte Carlo local search

Table 2. No simulated heating, hill climbing local
search, compile time 1200 seconds

Application PLSA param

fft1 1.7 0.78

fft1 5.0 0.93

fft2 2.2 0.71

fft2 5.0 0.87

fft3 2.5 0.67

fft3 5.0 0.75

karp10 1.67 0.66

karp10 5.0 0.82

qmf4 3.3 0.62

qmf4 5.0 0.79

meas 4.7 0.61

meas 5.0 0.64

p P P0⁄

Table 1. No simulated heating, Monte Carlo local
search, compile time 1200 seconds

Application PLSA param

fft1 1.67 0.81

fft1 5.0 0.96

fft2 2.4 0.74

fft2 5.0 0.88

fft3 1.67 0.74

fft3 5.0 0.94

karp10 2.7 0.69

karp10 5.0 0.79

qmf4 3.4 0.71

qmf4 5.0 0.75

meas 4.0 0.66

meas 5.0 0.72

p P P0⁄

Table 3. Dynamic heating, Monte Carlo local
search, seconds, ,

, compile time 1200 seconds

Application

fft1 0.72

fft2 0.65

fft3 0.62

karp10 0.58

qmf4 0.60

meas 0.63

Tstag 200= pmin 1.1=

pmax 5=

P P0⁄

p
p

p

P P0⁄

p

ow-

ng

m

nd

d-
in

rch
a-

l
 in

h
ry

sor
s

ft-

-

d

nd

w

t-

ce

tic
itec-
s

e:

s

ef-
re-
y

Next, simulated heating experiments were performed with the
dynamic heating scheme, using a range of parameters from

 to with seconds. Table 3
summarizes results for the Monte Carlo local search, and table 4
summarizes results for the hill climbing local search. Comparing
tables 3 and 4 with tables 1 and 2, it can be seen that the dynamic
heating scheme produced better overall results for fixed compile
time than those obtained by keeping constant.

9. CONCLUSION
In this paper, we have explored the efficient exploitation of
dynamic voltage scaling technology to minimize the average
power consumption of an embedded multiprocessor system under
a given throughput constraint. To address the complex underlying
design space, we have explored hybrid global/local search strate-
gies for this problem using the previously-developed tools of
period-graph-based performance estimation, and simulated heating
for integrating parameterized local search algorithms (PLSAs) into
global search. Our approach systematically allocates compile-time
resources between the global search and parameterized local
search processes — this is done by adaptively determining the
accuracy/run-time settings with which successive PLSA invoca-
tions should be configured to attain maximum search efficiency.
Our experiments show that 1) the best parameter setting for fixed-
configuration PLSA optimization is highly application-dependent,
and 2) even with the best (application-specific) configuration set-
ting, fixed-configuration PLSA use is outperformed by our dynam-
ically-reconfigured PLSA approaches, which yield significantly
reduced power consumption.

10. REFERENCES
[1] N. K. Bambha and S. S. Bhattacharyya. A joint power/perfor-
mance optimization technique for multiprocessor systems using a
period graph construct. In Proceedings of the International Sympo-
sium on Systems Synthesis, pages 91-97, September 2000.
[2] T. Burd and R. Broderson, “Design Issues for Dynamic Voltage
Scaling”, In Proceedings of 2000 International Symposium on Low
Power Electronics and Design, pages 76-81, July 2000.

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-p
er CMOS digital design. IEEE Journal of Solid State Circuits,
27(4):473-484, 1992.
[4] J. M. Chang and M. Pedram, “Register allocation and bindi
for low power,” Design Automation Conf., June, 1995.
[5] A. Dasdan and R. K. Gupta. Faster maximum and minimu
mean cycle algorithms for system-performance analysis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits a
Systems, 17(10):889-899, October 1998.
[6] A. Dasgupta and R. Karri, “Simultaneous scheduling and bin
ing for power minimization during microarchitecture synthesis,”
Proceedings of the International Symposium on Low Power De-
sign, April 1995.
[7] D. E. Goldberg and S. Voessner. Optimizing global-local sea
hybrids. In Proceedings of the Genetic and Evolutionary Comput
tion Conference, pages 220-228, 1999.
[8] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectura
synthesis of performance-constrained low-power VLSI designs,”
Proceedings of the International Conference on Computer Design,
Oct. 1994.
[9] H. Ishibuchi and T. Murata. Multi-objective genetic local searc
algorithm. In Proceedings of the IEEE Conference on Evolutiona
Computation, pages 119-124, 1996.
[10] A. Kahn, C. McCreary, J. Thompson, and M. McArdle, “A
Comparison of Multiprocessor Scheduling Heuristics”, in Proceed-
ings of 1994 International Conference on Parallel Processing, vol.
II, pages 243-250, 1994.
[11] E. A. Lee and S. Ha. Scheduling strategies for multiproces
real time DSP. In Proceedings of the Global Telecommunication
Conference, November 1989.
[12] Y. S. Li and S. Malik. Performance analysis of embedded so
ware using implicit path enumeration. In Proceedings of the Design
Automation Conference, 1995.
[13] D. Marculescu, “On the Use of Microarchitecture-Driven Dy
namic Voltage Scaling”, Proceedings of ISCA 2000.
[14] T. Pering, T. Burd, and R. Broderson, “The simulation an
Evaluation fo Dynamic Voltage Scaling Algorithms”, In Proceed-
ings of International Symposium on Low Power Electronics a
Design, pages 76-81, August 1998.
[15] A. Raghunathan and N. K. Jha, “Behavioral synthesis for lo
power,” in Proc. Intl. Conf. Computer Design, Oct. 1994.
[16] M. Ryan, J. Debuse, G. Smith, and I. Whittley. A hybrid gene
ic algorithm for the fixed channel assignment problem. In Proceed-
ings of the Genetic and Evolutionary Computation Conferen,
pages 1707-1714, 1999.
[17] G. C. Sih and E. A. Lee. A compile-time scheduling heuris
for interconnection-constrained heterogeneous processor arch
tures. IEEE Transactions on Parallel and Distributed System,
4(2): 75-87, February 1993.
[18] D. Whitley. The GENITOR Algorithm and Selective Pressur
Why Rank-Based Allocation of Reproductive Trials is Best. In Pro-
ceedings of 3rd International Conference on Genetic Algorithm,
pages 116-121. Morgan Kauffman, 1989.
[19] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Optimizing the
ficiency of parameterized local search within global search: A p
liminary study. In Proceedings of the Congress on Evolutionar
Computation, pages 365-372, San Diego, California, July 2000.

Table 4. Dynamic heating, hill climbing local
search, seconds, ,

, compile time 1200 seconds

Application

fft1 0.75

fft2 0.61

fft3 0.59

karp10 0.54

qmf4 0.56

meas 0.58

Tstag 200= pmin 1.1=

pmax 5=

P P0⁄

pmin 1.1= pmax 5= Tstag 200=

p

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

