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ABSTRACT found in digital signal processing applications, optimized applica-

tion of dynamic voltage scaling, and any sort of complex design
In this paper, we explore a hybrid global/local search optimization space exploration in general, is greatly complicated by communi-
framework for dynamic voltage scaling in embedded multiproces- cation resource contention. One example of this is a shared bus. A
sor systems. The problem is to find, for a multiprocessor system inprocessor must first gain access to the bus before it can execute an
which the processors are capable of dynamically varying their coreinterprocessor communication (IPC) operation. One consequence
voltages, the optimum voltage levels for all the tasks in order to of this contention is that under iterative execution thaeistimed
minimize the average power consumption under a given perfor-(processors synchronize with one another only based on interpro-
mance constraint. An effective local search approach for staticcessor communication requirements [11]), there is no known
voltage scaling based on the concept gledod graphhas been method for deriving an analytical expression for the throughput of
demonstrated in [1]. To make use of it in an optimization problem, the system, and thus, simulation is required to get a clear picture of
the period graph must be integrated into a global search algorithmapplication performance. However, simulation is computationally
Simulated heatinga general optimization framework developed in expensive, and it is highly undesirable to perform simulation
[19], is an efficient method for precisely this purpose of integrating inside the innermost optimization loop during synthesis. To avoid
local search into global search algorithms. However, little is such inner-loop simulation, it has been shown that a data structure
known about the management of computational (compile-time) called theperiod graphcan be used as an efficient estimator for the
resources between global search and local search in hybrid algosystem throughput [1]. In particular, the reciprocal of the maxi-
rithms, such as those coordinated by simulated heating. In thismum cycle mean of the period graph can be used as an efficient
paper, we explore various hybrid search management strategies fogstimate of the throughput. The maximum cycle mean is the maxi-
power optimization under the framework of simulated heating. We mum over all directed cycle€  of the sum of the task execution
demonstrate that careful search management leads to significantimes in C divided by the sum of the edge delay€in . A variety
power consumption improvement over add-hoc global search /of efficient, low polynomial-time algorithms have been developed
local search integration, and explore alternative approaches to perfor computing the maximum cycle mean (e.g., see [5]).
forming hybrid search management for dynamic voltage scaling.

The mean error and fidelity of the period graph estimator (i.e., its

Keywords maximum cycle mean) have been quantified, and this analysis has
demonstrated the accuracy of the estimation technique [1]. In this

simulated heating, dynamic voltage scaling technique, the maximum cycle mean of a period graph derived
from a simulation (including contention effects) is used to estimate

1. INTRODUCTION the throughput for the system as task execution times are varied.

Dynamic voltage scaling [13] in embedded processors is an impor_SpecificaIIy, relatively small variations i_n task execution_ times are
tant advancing technology that allows the tuning of power/perfor- ranslated to corresponding changes in the node weights of the
mance behavior as software execution evolves. For example, inP€riod graph, and the new maximum cycle mean is used to esti-
non-iterative execution, the operating voltage can be increased ofmate the performance impact of the given execution time varia-
decreased depending on whether a task lies on the critical pathtOns.
similarly, for iterative systems, the decision might be based on _ . ) ) ]
examining the critical cycles. By tuning power/performance Thls penod-gr_aph based apprqach is accurate if the task execution
behavior at the task level, this can allow the designer to meet a perlimes are varied around a limited region (local search). Thus, in
formance constraint with significantly lower energy consumption 9€neral, it must be combined with a global search strategy that
than if all tasks are required to execute at the same voltage [2].  havigates the sequence or “populations” of local regions to
explore. In the context of power optimization through voltage scal-
In iterative embedded multiprocessing systems, such as thosdnd, two hybrid search strategies using, respectively, genetic algo-
rithms and simulated annealing in conjunction with period-graph-
based local search were shown to yield significant benefit [1].
However, this work was limited in its focus on static, rather than
dynamic, voltage scaling, and its use @ikad local search config-



uration throughout the optimization process. wheref is the clock frequencg;  is the load capacitancepand

is the switching activity. The optimization problem we address
In this paper, we examine the more complex domain of dynamic consists of finding the voltage vectar= (v, v,, ..., V,) for the
voltage scaling, and explore adaptive (variable-configuration) n tasks in the graph, such that the energy per computation period
parameterized local searcformulations of period-graph-based (average power) is minimized and the throughput satisfies some
local search to optimize use of compile-time resources. For thispre-specified constraint (e.g., as determined by the sample period
purpose, we apply theimulated heatingoncept of [19], which in a DSP application). Dynamic voltage scaling requires extra
provides a general approach to controlling parameterized localhardware, which uses extra power. This was estimated at 10% for
search from within an enclosing global search process. We demonthe system given in [14]. The time required to switch between volt-
strate that careful search management leads to significant poweages was estimated &80us  for this system.
consumption improvement over add-hoc global search / local
search integration, and explore alternative approaches to perform2_3

ing hybrid search management for dynamic voltage scaling. Integratlng gIObal search and local search

For many useful optimization problems that arise in hardware-soft-

ware codesign, efficient algorithms exist for refining arbitrary

In this work, we assume that a schedule has been computed befores,iys i the search space into better solutions. Such algorithms are
hand so that the ordering of the tasks on the processors is Known., e djocal search algorithmbecause they define neighborhoods,
We also assume that the system hardware supports dynamic Volty icay hased on initial coarse solutions, in which to search for

age scaling .for. the purpose of power reduction. We address,theoptima. Many of these algorithms are parameterizable in nature.
problem of finding a set of voltages for the tasks (i.e., @ Mapping gseq on the values of one or more algorithm parameters, such a
from tasks into valid voltage values) in order to minimize average parameterizedocal search algorithmPLSA can trade-off time/

power (energy per computation period) while satisfying a pre- gnace complexity for optimization accuracy (quality of the opti-
specified throughput constraint. mized result).

2. RELATED WORK Local search techniques can often be incorporated naturally into
global search algorithm&S4As) in order to increase the effective-
: ness of optimization. This has the potential to exploit the comple-
2'].' Task level schedulllng . mentary advantages of GSAs like evolutionary algorithms
Estimates for task execution times can be obtained through severag . .
. . generality, robustness, global search efficiency), and problem-
methods. The most straightforward is for the programmer to pro- - o L i
. . . ) . ... specific PLSAs (exploiting application-specific problem structure,
vide them as annotations while developing a library of primitive rapid convergence t rd local minim
blocks. Analytical techniques also exist. Li and Malik [12] have apid convergence toward local minima).
proposed algorithms for estimating the execution time of embed-
ded software in an efficient manner. Much work has been done on
scheduling and binding methods for high level synthesis
[15][6][8][4]. These techniques attempt to optimize the schedule
makespan, which is a suitable performance metric for non-iterative
applications or fully-static implementations, but is not ideally
suited to the iterative, self-timed context that we address in this
paper.

Such hybridization of optimization algorithms arises naturally in
many contexts [7]. For instance, in the field of evolutionary com-
putation, many evolutionary algorithm/local search method combi-
nations can be found in the literature, e.g., [9, 16]. When
employing PLSAs in the context of embedded system implementa-
tion, however, a critical issue is how to use computational
resources most efficiently under a given compile-time budget (e.g.,
a minute, an hour, a day, etc.), which translates into a problem of
appropriately reconfiguring successive PLSA invocations to

2.2 Voltage scaling achieve appropriate accuracy/compile-time trade-offs as optimiza-
If processor voltages can be adjusted during run-time, then, bytjon progresses.

slowing down tasks that are not on the critical path or critical cycle

— by reducing the operating voltage in effect when each thosefFor example, a PLSA formulation of period-graph-based local
tasks executes — an overall power reduction can be achieved. Thigearch might involveN randomly-determined sets of execution
exploits the quadratic dependence of power on voltage in CMOStime variations, which are each evaluated using the period graph to
technology. Reducing the supply voltage also has the effect ofselect the “best” variation. A8l is varied, the local search con-
decreasing the clock Speed and increasing circuit delay. The CirCUitsumeS more time (drawing time away from the g|0ba| search under

delay can be modeled by a given compile-time budget), but in general, produces better
results. Under a fixed configuratioN,  would be fixed before opti-
Vad mization begins, and would remain the same across all PLSA invo-
delay = kx m (1) cations; whereas, in an adaptive approach, the PLSA parameter
dd t

would be varied in an attempt to streamline the allocation of
resources between global and local search.
whereV is the supply voltag®, s the threshold voltage, and

k is a constant [3]. We use a value®Bvolts for the threshold 3 Hybrid gIobaI/IocaI search

voltage. The power consumption is given by The general hybrid global/local search scenario can be described

P = aC V3,f (2 as follows [19]. Suppose that we have a GSA  operating on a set



of solution candidates and a PL34Ap) , where s the parame-low C(p) andA(p) ) and increase it at certain points in time. The
ter of the local searéhLet 0 andO respectively denote the set intention is to focus on the global search at the beginning and to
of real numbers, and the set of natural numbers, and let: find promising regions first; for this phase, the PLSAuns with

low accuracy. Later, more time is spentlbyn order to improve

the solutions found so far and/or to assess them more accurately.
As a consequence, fewer global search operations are possible dur-
with regarding this phase of optimization. Sinéd p) is steadily increased in
to p; and the course of time, we use the term simulated heating by analogy
RO DO denote the set of permissible values (fe@ameter to simulated annealing where a temperature is continuously
domain) for parametep (for exampl®  may be described by decreased according to a given cooling scheme.

an interval[pminr pmax] )-

C(p) denote the complexity (worst-case run-time)Lof  for
the parameter choice ;

A(p) be the average accuracy (effectiveness) of

Definition: LetH : 0 — R, whereR is the parameter domain of a
of parameter val- PLSA A, be a function that specifies the PLSA parameter value
p = H(t) to be used during local search at iteration of a GSA/
PLSA hybrid involving A . The functiorH is calledteeating
schemeof the associated hybrid search algorithm if it is monotoni-
cally non-decreasing — that is, for ajl, t, 0 [ with<t, , we
o . i . haveH(t;) < H(t,) .

That is, increasing parameter values in general result in increased
consumption of compile-time, as well as increased optimization \ye can distinguish heating schemes according to whether they are
effectiveness. computed at compile-timesfatic) or at run-time gynamig.
Another orthogonal classification is whethier an equal number
Generglly, it is very difficult, if not impossible, to analxtically of iterations is performed for each parameter in theRs& R of
determine the function€(p) and(p) , but these functions are yarameters considered during optimizationjigr ~ constant opti-
useful conceptual tools in discussing the problem of designing mization time is spent for each memberRf . We call the first
cooperating GSA/PLSA combinations. The techniques that we .j355 of schemes FIFixed number of iterations per parameter
explore in this paper do not require these functions to be known. ;4 the second class FTixéd time per parametgrWith FTP, the
The only requirement we make is that the monotonicity property ptimization time is spread equally for each parameter. As a conse-

(3) be obeyed at least in an approximate sense (fluctuations abou&uence, the number of iterations that may be performed for each
relatively small variations in parameter values are admissible, butyqq parameter decreases for higher values of

significant increases in the PLSA parameter value should corre-

spond to increasing cost and accuracy). Consequently, a tunabl

trade-off emerges: whef\(p) is low, refinement is generally low % OB‘.]ECTI.VE FUNCTIQN
as well, but not much time is consumedi( p) is also low). Con- ThPT quality functionF  will take as mput a volt.age vector . and a
versely, higherA(p)  requires higher computational (@) period graphPG . Each node execution time is scaled by its corre-

Furthermore, suppose that for any pgig, p,)
ues we have that

(p1=py) 0 (C(py) = C(py)) and (A(p) <A(py)) . (3)

In Fig. 1, theGSAPLSAhybrid that is taken as the basis for the

optimization scenario in this paper is explained: Input: N (size of solution candidate set)
Tmax (Maximum time budget)
The GSAG operates on a setdf  solution candiddtes ( may be Output: s (best solution found) .
equal to one for, e.g., simulated annealing or greater than one for, Step 1. Initialization: Create an initial multi-set S

e.g., an evolutionary algorithm); per optimization step, it creates a
new set of solution candidates depending on the previous solution
set and the quality function associated with it. The PILSA  is used
to refine and/or to evaluate the solution candidates generated by
G its parametep is adapted in each iteration according to a pre-
defined scheme. Furthermore, a fixed time limit determines how
many iterations of the main loop of the hybrid may be performed.
At the end, when the given time limit is exceeded, s applied to
the best solution I8 using maximum accuraﬁ(ypmax)

4. SIMULATED HEATING

The idea of simulated heating [19] can be summarized as follows:
Instead of keeping the PLSA parameter vglue  constant for the
entire optimization process, we start with a low value (leading to a

1. For clarity, we assume here tpas a scalar rather than a vec-

containing N randomly generated solution candi-
dates. Set T = 0 (time used) and t=0 (iterations per-
formed).

Step 2: Parameter adaptation: Choose p O R
according to a given heating scheme H: p = H(t).

Step 3: Local search: Apply L with parameter p to
each s Sand assign it a quality (fithess) F(s).

Step 4: Set T =time elapsed since Step 1.

Step 5:  Termination: If T > T,,athen go to Step 7.
Step 6: Global search: Based on Sand F, generate a
new set S’ of solution candidates using G. Set S=S’
and increase the iteration counter t. Go to Step 2.
Step 7: Output: Apply L with parameter p,,,, to the
best solution in Sregarding F; the resulting solution s
is the outcome of the algorithm.

Figure 1. Global/local search hybrid

tor of parameters.



sponding voltage. Le¥l  be the maximum cycle meaR Gf with tion is fulfilled. The amount of increase is based on the fime

the node voltages scaled by . The energy consumed by each tasépent with the last parameter, the time limit for the overall optimi-
(node) is equal to the power times its execution time. The averagezationT .. , the current elapsed tiriig,,.  , the last paranpeter
power is the total energy divided by the perl“l?)sq)Iution (recipro- and Pmax - fT.  >T the optimization is terminated. Other-

cur max ’
cal of M). If T violates the period constraint wise, letN = ((Tmax_Tcur)/Tp—| . Thenp is increased by

solution L= o step ~
(Tsolution> Tconstrain} , the power consumption is multiplied by a (pmax_ p)/ Nstep'

large penalty factoexp(100(Tg . tion— Tconstraind)

8. EXPERIMENTS
6. LOCAL SEARCH ALGORITHMS We ran experiments with the following application graphs: fft1,

We implement two different local search strategies - hill climbing fft2, fft3, karp10, gmf4, and meas. The fft graphs are different
and Monte Carlo. The benefit of using a local search algorithm is implementations of the fast fourier transform from [10], and con-
that within a restricted voltage range we can use the period graphain 28 nodes. Karp10 refers to the Karplus-Strong music synthesis
estimator for the throughput, which is much faster than performing algorithm with 10 voices (21 nodes), gmf4 is a quadrature mirror
a simulation. For the hill climbing algorithm, we define a parame- filter bank (14 nodes), and meas is a measurement application (14
ter & which is the voltage step, and we define a resimulation nodes). From the application graph, we constructed a schedule
thresholdr , which is the maximum amount that the voltage vector using the dynamic level scheduling algorithm given in [17]. We
can vary from the point at which the period graph was calculated.used the estimate of 10% for the power overheadl@pd for the
The algorithm is run fot  iterations. So for this case, the PLSA L switching time from [14]. The global search algorithm was an
has 3 parameters r, , add . One iteration of local search conincremental genetic algorithm using one-point crossover, mutation

sists of changing the node voltages, one at a timex®y , andprobability of 0.1, crossover probability 0.9, and population size
choosing the direction in which the objective function is mini- 50. This genetic algorithm is similar to those based on the GENI-
mized. From this, the worst case c@tl, r, d) for iterations TOR [18] model. It uses overlapping populations, with the worst

would correspond to evaluating the Objective functdin times, two individuals being replaced each generation. We compare
and resimulating1/[r/d7) times. For our experiments wel fix  results obtained for a fixed compile time using simulated heating
and & and define the local search parameter (from section 3)with results obtained without using simulted heating (keeping

p= 1/r.Then for smallep (corresponding to larger resimulation PLSA parametelp constant for the entire optimiztion process).

threshold) the voltage vector can move a greater distance before &/e use the dynamic heating scheme outlined in section 7. The
new simulation is required. For a fixed number of iteratibns  in throughput constraint was calculated by setting all the task volt-
the local search, a smaller  will correspond to a shorter running

time C(p) for L(p) . The accuracA(p)  will be lower, since the

accuracy of the period graph estimate decreases as the voltage veg=
tor moves farther away from the simulation point. S
Input to hill climbing local search: Voltage vector V, 3,
In the Monte Carlo algorithm, we generdde  random voltage vec- r. 1, period graph PG.. . N
tors within a distanceD  from the input vector. For all points Pseudo -code for Hil Climbing
within a resimulation threshold , we use the period graph to esti- LocaISearch(V, o11,PG):
mate performance. We use a greedy strategy to evaluate the  COPY V into another vector Vi,
remaining points. Specifically, we select one of the remaining for(k'= O;_k.< i k= k+_1.) .
points at random, we simulate and construct a new period graph for(i = 0; '.< length(V); i =1i+1)
and we then use the resulting estimator to evaluate all points within VO, = VIi]
a distancer from this point. If there are points remaining after VI = _\/O(1+6)
this, we choose one, resimulate, and repeat. For our experiments . f1=F(V, PG)
we fix N andD and define the local search parampter 1/r VIl =_VO(1_6)
As for the hill climbing local search, smaller valuespf  corre- .f2 = F(V,PG)
spond to shorter run times and less accuracy for the Monte Carlo V[i] = Vo
local search. The pseudo-code for the local search algorithms ig ) f = F(V,PG)
given below in Figures 2 and 3. If (fL < f.)
V[i] = VO(1+39d)
else if (f2 <f)
7. SIMULATED HEATING ALGORITHM V[i] = VO(1-3)
For the following experiments, we consider a GSA/LSA hybrid end if
using a dynamic heating scheme and assume that the parameter end for
domainR takes the form of an interv[e;bmin, pmax] , and that
parameters are uniformly chosen owr to form the Ret of distance = Vector distance between V and Vinit
parameters to consider. The paranger is initially sed.al, Lt if (distance > r)
is increased when for a user-given timél’gggseconds the quality Resimulate(PG)
of the best solution in the solution candidate set has not improved . S
(stagnation). As a consequence, for each parameter a different Figure 2. Hill climbing local search
number of iterations may be considered until the stagnation condi-




ages to a fixed reference voltage of 5 volts and calculating theTable 1 shows the results for a hill climbing local search keeping
period. The average power was calculated by summing the energfPLSA parametep fixed during the entire optimization (no simu-
for each task (power from equation 2 multiplied by the task execu- lated heating). Optimization runs were performed for valugs of

tion time) and dividing by the period. The total compile time between 1.1 and 5.0. The first entry for each application corre-

alloted to the optimization was 1200 seconds.

Pseudo - code for Monte Carlo Local Search
Input: Voltage vector V, N, r, D where N is the number
of random vectors to generate, r is the resimulation
threshold, D is the distance within which the random
vectors are generated.
Generate N random vectors within a distance D from
\%
Create list<vector> L1, L2, L3
Initially, L1 holds all N vectors, L2 and L3 are empty
while (size(L3) < N)
Simulate at V and create period graph
while (L1 is not empty)
Remove a voltage v from L1
Calculate distance d from v to V
if (d<r)
Evaluate v using period graph estimate
Place vin L3
else
Place vin L2
end if
end while
Swap L1 and L2
Pick first element v from L1, and setV =v

Figure 3. Monte Carlo local search

Table 2. No simulated heating, hill climbing local
search, compile time 1200 seconds

Application PLSA param p | P/Po
fftl 1.7 0.78
fftl 5.0 0.93
fft2 2.2 0.71
fft2 5.0 0.87
fft3 25 0.67
fft3 5.0 0.75
karpl10 1.67 0.66
karp10 5.0 0.82
gmf4 3.3 0.62
gmf4 5.0 0.79
meas 4.7 0.61
meas 5.0 0.64

sponds to the parametpr  which yielded the best results. The next
entry corresponds to the highest accuracy parameter (5.0 in this
case). The headinB/ P, refers to the ratio of the average power
of the best solution found by the optimization to the initial average
power. Table 2 shows results under the same conditions for Monte
Carlo local search. From tables 1 and 2, it can be seen that when
not using simulated heating, the optimum parampter s different
in general for different applications and different local search tech-
niques. It is hard to predict in advance which parameter should be
used. For these applications, the hill climbing local search pro-
duced slightly better results overall.

Table 1. No simulated heating, Monte Carlo local
search, compile time 1200 seconds

Application PLSA param p | P/Po
fftl 1.67 0.81
fftl 5.0 0.96
fft2 2.4 0.74
fft2 5.0 0.88
fft3 1.67 0.74
fft3 5.0 0.94
karp10 2.7 0.69
karp10 5.0 0.79
gmf4 3.4 0.71
gmf4 5.0 0.75
meas 4.0 0.66
meas 5.0 0.72

Table 3. Dynamic heating, Monte Carlo local
search, TStag = 200 seconds, p, = 1.1,

Pmax = 5, compile time 1200 seconds
Application P/Po
ffitl 0.72
fft2 0.65
fft3 0.62
karp10 0.58
gmf4 0.60
meas 0.63




Next, simulated heating experiments were performed with the

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-pow-

dynamic heating scheme, using a range of parameters fromer CMOS digital designlEEE Journal of Solid State Circujts

Pmin = 1.1 10 pyax = 5 With Ty, = 200 seconds. Table 3
summarizes results for the Monte 8arlo local search, and table
summarizes results for the hill climbing local search. Comparing

27(4):473-484, 1992.

44] J. M. Chang and M. Pedram, “Register allocation and binding

for low power,”Design Automation Conflune, 1995.

tables 3 and 4 with tables 1 and 2, it can be seen that the dynamif5] A. Dasdan and R. K. Gupta. Faster maximum and minimum
heating scheme produced better overall results for fixed compilemean cycle algorithms for system-performance analyEEE

time than those obtained by keepipg  constant.

9. CONCLUSION

In this paper, we have explored the efficient exploitation of
dynamic voltage scaling technology to minimize the average

power consumption of an embedded multiprocessor system unde
a given throughput constraint. To address the complex underlying
design space, we have explored hybrid global/local search strate

gies for this problem using the previously-developed tools of

period-graph-based performance estimation, and simulated heatin
for integrating parameterized local search algorithms (PLSAS) into
global search. Our approach systematically allocates compile-time

Transactions on Computer-Aided Design of Integrated Circuits and

Systems17(10):889-899, October 1998.

[6] A. Dasgupta and R. Karri, “Simultaneous scheduling and bind-

ing for power minimization during microarchitecture synthesis,” in

Proceedings of the Internation&ymposium on Low Power De-
ign,April 1995.

f?] D. E. Goldberg and S. Voessner. Optimizing global-local search

hybrids. InProceedings of the Genetic and Evolutionary Computa-

tion Conferencgpages 220-228, 1999.

8] L. Goodbhy, A. Orailoglu, and P. M. Chau, “Microarchitectural
ynthesis of performance-constrained low-power VLSI designs,” in

Proceedings of the International ConferenceGomputer Design,

9] H. Ishibuchi and T. Murata. Multi-objective genetic local search

resources between the global search and parameterized Ioc:?)Ct' 1994.

search processes — this is done by adaptively determining th
accuracy/run-time settings with which successive PLSA invoca-
tions should be configured to attain maximum search efficiency.
Our experiments show that 1) the best parameter setting for fixed
configuration PLSA optimization is highly application-dependent,

and 2) even with the best (application-specific) configuration set-
ting, fixed-configuration PLSA use is outperformed by our dynam-
ically-reconfigured PLSA approaches, which yield significantly

reduced power consumption.
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