
Dynamic I/O Power Management for Hard Real-time Systems1

Vishnu Swaminathany, Krishnendu Chakrabartyy and S. S. Iyengarz
yDepartment of Electrical & Computer Engineering zDepartment of Computer Science

Duke University Louisiana State University
Durham, NC 27708, USA Baton Rouge, LA 70803, USA

ABSTRACT
Power consumption is an important design parameter for

embedded and portable systems. Software-controlled (or
dynamic) power management (DPM) has recently emerged
as an attractive alternative to inflexible hardware solutions.
DPM for hard real-time systems has received relatively little
attention. In particular, energy-driven I/O device schedul-
ing for real-time systems has not been considered before.
We present the first online DPM algorithm, which we call
Low Energy Device Scheduler (LEDES), for hard real-
time systems. LEDES takes as inputs a predetermined task
schedule and a device-usage list for each task and it gener-
ates a sequence of sleep/working states for each device. It
guarantees that real-time constraints are not violated and
it also minimizes the energy consumed by the I/O devices
used by the task set. LEDES is energy-optimal under the
constraint that the start times of the tasks are fixed. We
present a case study to show that LEDES can reduce energy
consumption by almost 50%.

1 Introduction

Energy consumption is now recognized as an important
design parameter for portable and embedded systems. Since
the amount of power available to these systems is limited, it
is desirable to minimize energy consumption such that the
life of the battery or battery pack can be extended. Energy
conservation is especially important for embedded systems,
such as concealed sensors which are deployed in the field
and which cannot be physically accessed.

There are several approaches to energy conservation via
power management. Figure 1 classifies these approaches
into several broad categories.

The bulk of system power is consumed by the proces-
sor (CPU) and the peripheral devices, especially hard disks

1This research was supported in part by DARPA under grant no.
N66001-001-8946 and in part by a graduate fellowship from the North
Carolina Networking Initiative.

[7, 11]. Processor designs incorporate several power man-
agement features. Several types of idle, standby and sleep
modes suspend processor operation during periods of in-
activity [4]. Designers also incorporate automatic power
saving features into their processors. Unused execution
units are shutdown automatically. Power consumption of
the CPU is also directly related to the clock speed. Many
processors use a variable-speed clock that may be tuned to
achieve the optimum performance for the application while
at the same time minimize power consumption.

Even more energy savings can be achieved if a soft-
ware power management system is used to take advan-
tage of the power reduction features of the hardware. In
1997, Intel, Toshiba America Information Systems and Mi-
crosoft developed the Advanced Configuration and Power
Interface (ACPI) standard for desktop and notebook sys-
tems [1]. This transfers the power reduction responsibil-
ity from the hardware (BIOS) to the software (OS). The
OS possesses information about new applications and ap-
propriately schedules tasks and devices in a power-aware
manner. Power management by the OS is commonly called
dynamic power management (DPM). When applied to the
CPU, DPM involves varying the clock speed dynamically
(making use of the fact that power is quadratically propor-
tional to the clock speed) to reduce power, while at the same
time meeting the application’s processor requirements [8].
A common DPM method used for minimizing the power
consumed by I/O devices is based on timeouts—shutting
down a device when it has been idle long enough. Other
DPM approaches involve the observation of past requests
to predict future idleness, stochastic models, and increas-
ing the lengths of idle periods by re-ordering task execution
[2, 3, 10].

Real-time systems are characterized by tasks that have
hard deadlines. However, the inclusion of deadlines as an
additional design constraint makes DPM for real-time sys-
tems difficult. So far, most research on real-time DPM
has been CPU-centric [5, 6, 12, 13]. I/O-centric DPM
has mostly been studied for non-real-time environments
[2, 3, 9, 10]. Although these I/O-centric methods have re-
sulted in power savings of over 50%, they cannot be applied
to real-time systems due to their inherently probabilistic na-
ture. In [9], a device-utilization matrix is used to keep track

Techniques

I/O-directed I/O-directed

Power Management

Software

CPU- CPU-
directed directed

Non-
real-time

Real-time

Hardware

Figure 1. Power management methods.

of device usage. When the utilization of a device falls be-
low a threshold, the device is put into the sleep state. This
method is called task-based power management. In [10],
tasks are reordered such that the I/O requests for each de-
vice are clustered together. This results in extended idle
times for each device. Hence each device can be shut down
for long periods of time resulting in greater energy savings.
However, these methods implicitly assume there is no task
execution penalty associated with the shutdown of devices.
In real-time systems, the penalty for missing a task dead-
line is enormous. Therefore, it is critical in real-time sys-
tems to have I/O devices powered up and running at the
correct times to guarantee that all application tasks meet
their deadlines. Moreover, these methods are oriented to-
wards minimizing energy consumption while maintaining
low response time. These methods work well for Unix-like
systems with a round-robin scheduling policy. With the in-
clusion of hard deadlines, probabilistic methods become in-
applicable.

In this paper, we present a novel I/O-centric DPM al-
gorithm for hard real-time systems. We are given a pre-
computed task schedule that guarantees that all tasks meet
their respective deadlines. The start times of all the tasks
are fixed and cannot be changed at run-time. Each I/O de-
vice can be in one of two states—a low-power sleep state
and a high-power working state. Scheduling occurs at the
start and completion of each task. We assume that the OS
has complete knowledge of the device usage of each task.
Our algorithm schedules the wake-up and sleep times for
the devices such that the energy consumed by the devices is
minimized, while guaranteeing that no task misses its dead-
line. The algorithm is optimal under the constraints that the
start times of the tasks are fixed and may not be changed at
run-time. To the best of our knowledge, this is the first at-
tempt at minimizing the energy consumption of I/O devices
for real-time systems.

A more precise description of the problem is given in the
next section.

2 Problem Statement

In this section, we present our notation and the under-
lying assumptions. We are given a task schedule S =

s1s2s3 : : : sn consisting of the start times for a set R of n
tasks. Associated with each task ri 2 R are the following
parameters:
� its release (or arrival) time ai, where ai � si,
� its deadline di,
� its completion (or execution) time ci, and
� a device usage list k

0

i
, consisting of all the devices used

by ri.
We are also provided with a set K of devices used in the
system. The following parameters are associated with each
device k 2 K:
� two power states—a low-power sleep state lowk and a

high-power working state highk,
� a transition time from lowk to highk represented by
tk
wu

,
� a transition time from highk to lowk represented by
tk
sd

,
� power consumed during wake-up Pwu,
� power consumed during shutdown Psd,
� power consumed in the working state Pw, and
� power consumed in the sleep state Ps.

We assume that requests can be processed by the devices
only in the working state. The start times s1; s2; : : : sn of
the tasks are fixed and cannot be changed. Each task must
complete its execution by its associated deadline. Initially,
at time t = 0, all devices are powered up. The power con-
sumed by a device in the sleep state is less than the power
consumed during transition, which in turn is less than the
power consumed in the working state, i.e., Ps < P0 < Pw.
We assume without loss of generality that tk

wu
= tk

sd
= t0

andPwu = Psd = P0. The execution times c1; c2; : : : cns of
the tasks are all greater than the transition time t0. The en-
ergy consumed by device k is Ek = Pwtw+Psts+mP0t0,
where m is the number of state transitions, tw is the total
time spent by the device in the working state, and ts is the
total time spent in the sleep state.

The problem we address is that of online device schedul-
ing, i.e., determining a sequence of states for each device k
such that the total energy

P
k
Ek is minimized while ensur-

ing that all tasks meet their deadlines.
In the following section, we present our approach to

DPM for real-time systems and the basic underlying theory.

3 Background and Approach

There are several approaches to I/O DPM for real-time
systems. The best solution, i.e., one that has the least energy
consumption while guaranteeing that all tasks meet their re-
spective deadlines) can only be found by examining the en-
tire taskset and re-ordering the tasks. This will allow I/O
devices to be left in the sleep (low-power) state for as long
as possible. However, for large tasksets, this is not possible

Task Arrival time Completion time Deadline Device list
r1 0 3 4 k1; k3

r2 1 2 6 k3

r3 3 5 10 k2; k1

r4 14 3 18 k3

r5 17 3 21 k1; k2; k3

Table 1. Taskset example.

online since the scheduler must schedule tasks with mini-
mum delay.

A simpler but non-optimal approach is to schedule de-
vices given a predetermined task schedule. In this scenario,
it is possible to adjust the start times of tasks within the con-
straints of their arrival time and deadline. This approach is
less complex than the previous one but still not practically
feasible for an online algorithm.

For large tasksets that need to be scheduled online, our
algorithm guarantees optimality given that the task start
times are fixed. This ensures that I/O device energy con-
sumption can be reduced without missing task deadlines or
incurring scheduling overhead. The remainder of this sec-
tion discusses and explains the underlying concepts that are
used in our algorithm.

Table 1 is a simple taskset of 5 tasks and 3 devices that
will be used as a running example. We assume that t0 = 1

unit, P0 = 3 units, Pw = 5 units and Ps = 1 unit. The
schedule for this taskset is shown in Figure 2. Arrival times
are marked with upward-pointing arrows and deadlines with
arrows that point downward.

���
���
���
���

�������
�������
�������
�������

����
����
����
����

����
����
����
����

����
����
����
����

r2

r4

r5
10 15 20

r1

r3

0 5

Figure 2. Task schedule for the taskset of Table 1.

From this example, we can easily see that without a pri-
ori knowledge of future device usage, it is not possible to
guarantee timely completion of tasks. A naive algorithm
that shuts devices down when they are unused cannot be
used for real-time tasks. At t = 5 (start of task r3), if de-
vices k2 and k1 are shutdown (since they are not used by
r2), r3 will miss its deadline. Devices k2 and k1 take 1 unit
of time to enter the working state and this causes r3 to start
at t = 6 units. Since c3 = 5 units, r3 completes at t = 11

units, which is greater than the deadline.
The following theorem shows that if task start times

are fixed a priori, timeliness can be ensured with a limited

amount of look-ahead for I/O device usage. This allows dy-
namic power management with low scheduling overhead.

Theorem 1 Given a task schedule for a set R of n tasks
with completion times c1; c2; : : : cn, a set K of I/O devices,
and the device utilization for each task, it is necessary and
sufficient to look ahead only m tasks to guarantee timeli-
ness, where

P
m

i=1
ci � t0.

Proof: First we prove necessity. Let us assume that at
some scheduling instant si, task ri is being scheduled and
ri uses device kl. Also, suppose task rj ; j 6= i, uses device
kp; p 6= l, sj�si < t0 and sj+cj = dj . Further, kl is pow-
ered up and kp is in the sleep state. We can easily see that
without look-ahead, at sj , kp is not powered up and cannot
serve requests for rj . This means kp needs to be powered
up before rj can start. This results in sj + cj + t0 > dj .
Moreover, if sj � si < t0, the device will not have enough
time to wake up before sj . Hence we need to look ahead m
tasks such that

P
m

i=1
ci � t0.

We prove sufficiency as follows. As long as there is a
look-ahead of m, we can guarantee that there is at least one
valid scheduling instant between the start times of two tasks
that require different devices. This leads to the conclusion
that with a look-ahead of m, there is sufficient time to wake
a device up before the start time of a task requesting it. This
completes the proof of the theorem. 2

In most practical cases, the completion times of all tasks
in the taskset are greater than the transition times t0 of the
devices. This leads to the following corollary to Theorem 1.

Corollary 1 Given a task schedule for a set R of tasks with
completion times c1; c2; : : : cn, a set K of I/O devices, and
the device utilization for each task, it is necessary and suf-
ficient to look ahead one task to guarantee timeliness if the
completion times of all tasks ri 2 R is greater than the
transition time t0 of the devices.

We next show that if start times of the tasks are fixed,
the energy consumed by the I/O devices is minimum if the
limited look-ahead given by Theorem 1 is used.

Theorem 2 Given a task schedule for a set R of tasks and
a set K of devices, the schedule generated using the look-
ahead strategy of Theorem 1 is energy-optimal if the task
start times are fixed.

Proof: We prove the theorem by contradiction. The energy
consumption is not optimal if some devices are left in the
powered up state when they should in fact be in the sleep
state. But by construction of the algorithm, we ensure that
any devices not used in the immediate future (i.e., by the
currently scheduled task and the task immediately following

it) are in the sleep state. Hence, we see that no device is left
in the powered up state unnecessarily. 2

To summarize, we have shown that without a look-ahead
of m tasks such that

P
m

i=1
ci � t0 for the general case (one

task if all completion times are greater than t0), it is not
possible to use DPM for real-time systems. This implies
a certain amount of book-keeping overhead for the OS in
keeping track of task order and per-task device usage lists.
In the next section, we explain our algorithm and provide
an example of the operation of the algorithm.

4 The LEDES Algorithm with an Example

We call our scheduling algorithm the Low Energy
Device Scheduler, or LEDES, and in this section, we ex-
plain LEDES and its operation. Figure 3 provides the
pseudo-code for it. We assume that initially (at time t = 0)
all devices in the system are powered up. All completion
times are greater than t0.

4.1 The LEDES algorithm

Procedure LEDES()
begin
Repeat forever
At s1:

8k 2= k
0

1 [k
0

2

Shutdown k

8k 2 k
0

2 � k
0

1

if s2 � (s1 + c1) � twu shutdown k

At s1 + c1:
8k 2 k

0

2

Wake up k

At si; i 6= 1:
8k 2 k

0

i+1 � k
0

i

if si+1 � (si + ci) � twu shutdown k

else Wake up k

8k 2 k
0

i�1 � k
0

i
� k

0

i+1

if ci � tsd shutdown k

At si + ci; i 6= 1:
8k 2 k

0

i+1

Wake up k

8k 2 k
0

i
� k

0

i+1

if si+1 � (si + ci) � tsd shutdown k

end
Figure 3. The LEDES algorithm

The algorithm operates as follows. At the first schedul-
ing instant (i.e., the start of the first instance of the first task),
all devices not used by the next “immediate” tasks r1 and r2
are put in the sleep state (lowk). The “slack” (difference be-
tween the start time of the next task and completion time of
the present task) is checked. If the slack is greater than the
wake-up time twu, those devices used by r2 and not by r1
are put into the sleep state. Since scheduling instants are at

every task’s start and completion times, devices used before
r2 are guaranteed to be awake before r2’s start.

At the next scheduling instant (s1+ c1), all devices used
by r2 are woken up (since start times of tasks are fixed,
we cannot defer scheduling to the next scheduling instant,
which is s2). Further, those devices used by r1 and not used
by r2 are put in the sleep state if the slack between s2 and
s1 + c1 is more than the shutdown time tsd of the device.
The check is performed so that at the next scheduling instant
(s2), the algorithm must guarantee that the device is fully in
the sleep state if there is a need for it to be woken up again.

The process is similar at other scheduling instants, with
a few minor changes. At other start times the first check is
not performed. This is because at the last scheduling instant
(sn + cn), only those devices used by r1 will be powered
up. Instead, it is modified slightly to consider the effect of
previous scheduling decisions. The modified rule ensures
that at some start time si, devices that are not used by either
the present task or the succeeding task but were used by the
previous task are shut down correctly. This entire process
continues in a periodic manner.

We now apply this algorithm to the taskset shown in Ta-
ble 1. Figure 4 shows the state of the devices through the
“hyperperiod”.

4.2 Example

0 5 10 15 20

k1

k2

k3

Device is in the high
state

Device is in the low
state

Transition from low to high
state

Figure 4. Device schedule for the taskset in Table 1.

A full walk-through of the example taskset shown in Ta-
ble 1 is both tedious and boring. So we will first comment
on it and then point out the salient features that warrant at-
tention.

First, we observe that our algorithm does indeed sched-
ule devices such that all task deadlines are met. This shows
that LEDES is a robust device scheduling algorithm in that
no real-time constraints are violated. Next, we observe that
all devices are powered up before the start times of the tasks
that utilize them. This may not be energy-optimal, but the
energy savings accrued is still enormous. The underlying
reason behind non-optimality is that the start times of the

Task Arrival time Completion time Deadline Device list
r1 0 3 5 k3

r2 2 7 10 k2

r3 11 6 20 k1; k5

r4 20 4 25 k4

r5 20 5 30 k1; k3; k5

r6 30 3 35 —
r7 31 4 38 k1; k2; k5

r8 40 2 45 —

Table 2. Taskset with relaxed deadlines.

tasks may not be modified. Finally, we see that the energy
saved is about 26%. This may appear to be low, but the dif-
ference from an optimal (minimum energy) solution is only
1.8%.

The time points that stand out in the example are t = 10,
t = 14 and t = 17. At t = 10, since schedule modification
is not allowed, device k3 has to be woken up in order for it
to be in the powered up state before r4’s start time. This re-
sults in greater energy consumption. To obtain a minimum-
energy schedule, we can exploit the fact that both r4 and
r5 have a difference of 1 time unit between their respective
deadlines and completion times. This will have result in
the devices k1, k2, and k3 sleeping for an extra time unit.
At t = 14 all three devices can be scheduled for wake-up.
Task r4 will now start at t = 15 and still meet its deadline.
Similarly, r5 will start 1 time unit after the “scheduled” start
time and still finish on time. From this, it becomes apparent
that to obtain a minimum-energy schedule,
(i) we must allow start times of tasks to be changed, and
(ii) we must consider the device usage of all tasks in the
system.

In the next section, we present some experimental re-
sults. We evaluated LEDES for two separate tasksets, one
with relaxed deadlines and the other with very tight dead-
lines. These tasksets consist of 8 tasks with 5 devices each.

5 Experimental Results

��
��
��
��

������
������
������
������

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

��
��
��
��

����
����
����
����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

r1

r2

r3

r4

r5

r6

r7

r8

0 5 10 15 20 25 30 35 40 45

Figure 5. Task schedule for the taskset in Table 2.

We assume a Pw of 5 units, Ps of 1 unit, and a tsd =

twu of 1 unit. We have only considered the case where the
completion times of all tasks is greater than or equal to the

k1

k2

k3

k4

k5

0 5 10 15 20 25 30 35 40 45

Figure 6. Device schedule for the taskset in Table 2.
Task Arrival time Completion time Deadline Device list
r1 0 3 4 k5

r2 1 3 6 k1; k3

r3 3 14 20 k2; k4; k5

r4 10 4 24 k2; k3

r5 20 3 27 k1; k5

r6 25 7 35 k1; k2; k4

r7 33 6 40 k5

r8 40 5 45 k3; k2

Table 3. Taskset with tight deadlines.
transition time.

The two tasksets are shown in Tables 2 and 3. Table 2
shows a taskset with relaxed deadlines. This taskset also
contains CPU-intensive tasks (tasks that don’t use any de-
vices). Figure 5 shows the task schedule generated by the
earliest deadline first (EDF) algorithm. We can also see that
there are intervals of slack in the schedule (t = 10; 15 and
37) which may be used to achieve greater energy savings.
Figure 6 shows the sequence of states each device is in dur-
ing the hyperperiod. Note that there is a large amount of
switching activity. This is because the completion times of
the tasks are realtively small, and also because of the slack
present in the schedule. The energy consumption through
DPM results in 583 units. Compared to the energy con-
sumption of the taskset with all devices in the powered up
state at all times (1125 units), this results in energy savings
of almost 50%.

Table 3 is an example of a taskset that is more I/O-
intensive. Figures 7 and 8 show the corresponding task
and device schedules. Observe that device k5 is used in ev-
ery alternate task, and that there is no slack between tasks,
i.e., there is always a task ready to execute the instant the
previous task finishes. In such a situation, k5 is in the pow-
ered up state throughout the hyperperiod. The reduction in
energy in this case is not as much as in the example with
relaxed deadlines. We see that the schedule generated by
LEDES has an energy consumption of 909 units. The en-
ergy consumption in the case where all devices are powered
up is 1125 units. This is an energy reduction of about 20%.
Moreover, compared to the device schedule in Figure 6, the
switching activity is much less. This is due to the fact that

��
��
��
��

���
���
���
���

�����������
�����������
�����������
�����������

������
������
������
������

����
����
����
����

����
����
����
����

�
�
�
�

����
����
����
����

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

r1

r2

r3

r4

r5

r6

r7

r8
0 5 10 15 20 25 30 35 40 45

Figure 7. Task schedule for the taskset in Table 3.

k1

k2

k3

k4

k5

0 5 10 15 20 25 30 35 40 45

Figure 8. Device schedule for the taskset in Table 3.

the completion times in this taskset is relatively large and
there is no slack in the system.

6 Conclusions

In this paper, we have presented a novel device schedul-
ing algorithm (LEDES) for dynamically managing power
consumption of I/O devices in a hard real-time system. We
have shown that device scheduling for real-time tasksets is
not possible without future knowledge of device requests.
We have also shown that low-energy I/O schedules can
be obtained while at the same time guaranteeing timeli-
ness. Low-overhead online scheduling is achieved by re-
stricting the amount of look-ahead. Further, we have shown
that LEDES is energy-optimal under the condition that task
schedules cannot be modified. We have shown that DPM
for real-time tasks can result in energy savings of over 50%.
Finally, we conclude that DPM for I/O devices can provide
tremendous energy savings and is of great practical impor-
tance for embedded and portable systems.

We are currently extending the LEDES algorithm and
evaluating it for scenarios involving more practical I/O de-
vices with upto four power states. Results for these experi-
ments will be presented at the CODES symposium.

References

[1] ACPI. http://www.teleport.com/�acpi

[2] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey
of design techniques for system-level dynamic power
management”, IEEE Trans. on VLSI Systems, vol. 8,
no. 3, June 2000.

[3] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D.
Micheli, “ Policy optimization for dynamic power
management”, IEEE Trans. on Computer Aided De-
sign of Integrated Circuits and Systems, vol. 16, no. 6,
pp. 813–833, June 1999.

[4] Motorola MPC823 Users’ Manual. ebus.mot-
sps.com/collateral/M951448674345collateral.html

[5] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-line
scheduling of hard real-time tasks on variable-voltage
processor”, Proc. Intl. Conf. on Computer-Aided De-
sign, pp. 653–656, 1998.

[6] C. Hwang and A. C-H. Wu, “A predictive system shut-
down method for energy saving of event-driven com-
putation”, Proc. Intl. Conf. on Computer-Aided De-
sign, pp. 28–32, 1997.

[7] K. Li, R. Kumpf, P. Horton, T. Anderson, “A quan-
titative analysis of disk drive power management in
portable computers”, Proc. Usenix Winter 1994 Conf.,
pp. 279–292, 1994.

[8] J. R. Lorch and A. J. Smith, “Software strategies for
poertable computer energy management”, Personal
Communications, vol. 5, no. 3, pp. 60–73, 1998.

[9] Y-H. Lu, L. Benini and G. De Micheli, “Operating
system directed power reduction”, Proc. Intl Conf. on
Low-Power Electronics and Design, pp. 37–42, 2000.

[10] Y-H. Lu, L. Benini, and G. De Micheli, “Low-
power task scheduling for multiple devices”, Proc.
Intl. Workshop on Hardware/Software Codesign, pp.
39–43, 2000.

[11] M. Newman and J. Hong, “A look at power con-
sumption and performance of the 3Com Palm Pilot”,
http://guir.cs.berkeley.edu/projects/p6/finalpaper.html

[12] V. Swaminathan and K. Chakrabarty, “Investigating
the effect of voltage-switching on low-energy task
scheduling in hard real-time systems”, To appear in
Proc. Asia-South Pacific Design Automation Conf.,
January 2001.

[13] M. Weiser, B. Welch, A. Demers and S. Shenker,
“Scheduling for reduced CPU energy”, Proc. Symp.
on Operating System Design and Implementation, pp.
13–23, 1994.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

