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ABSTRACT

We address software optimization for embedded control sys-
tems. The Esterel language is used as the front-end specifi-
cation; Esterel compiler v6 is used to partition the control
circuit and data path; the resulting intermediate represen-
tation of the design is a control-data network. This paper
emphasizes the optimization of the control circuit portion
and the code generation of the logic network. The new
control-data network representation has four types of nodes:
control, multiplexer, predicate and data expression; the con-
trol portion is a multi-valued logic network (MV-network).
We use an effective multi-valued logic network optimization
package called MVSIS for the control optimization. It in-
cludes algebraic methods to perform multi-valued algebraic
division, factorization and decomposition and logic simplifi-
cation methods based on observability don’t cares. We have
developed methods to evaluate a control-data network based
on both an MDD and sum-of-products representation of the
multi-valued logic functions. The MDD-based approach uses
multi-valued intermediate variables and generates code ac-
cording to the internal BDD structure. The SOP-based code
is proportional to the number of cubes in the logic network.
Preliminary results compare the two approaches and the op-
timization effectiveness.
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1. INTRODUCTION

We are concerned with software implementation in a hard-
ware/software codesign framework. We adopt a functional
architecture design methodology, which has three phases:
specification, optimization and implementation. The sys-
tem functionality is specified using a high-level language like
Esterel [1]; it is interpreted and translated into an interme-
diate representation. This is then optimized independent of
any final implementation. Finally an architecture binding
step decides the ultimate implementation strategy, whether
in hardware or in software.
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There has been much research in the literature on software
synthesis for Esterel. The Esterel compiler proposed by Ed-
wards [2] operates on a concurrent control flow graph and
translates an Esterel program directly into C. The scheme is
limited to statically schedulable Esterel programs and there
is no room for advanced logic optimizations. The circuit-
based Esterel compiler v4 and v5 [3, 4], translates an Esterel
program into logic gates and generates code from the gates.
The code is slow because all logic computation is generated
even if some is not needed because of idle cycles. There is
improvement by applying lazy code evaluation [5] in this re-
spect, but the computation of binary logic gates is not an
efficient use of the CPU. The BDD-based code generation
approach in the POLIS project [6, 7], generates code to ex-
haustively simulate the transition relation of the finite state
machine. For large circuits it tends to generate very large
size code.

We propose a code generation approach that uses multi-
valued logic optimizations and exploits bit-level parallelism
of the control structure. We use Esterel as the high-level
specification language and the Esterel compiler v6 to par-
tition the control circuit and data path; we translate the
result into an intermediate control-data network represen-
tation. Algorithms to optimize the control portion of the
network are applied. This includes: (a) grouping binary
control variables into multi-value ones; (b) optimizing the
control network itself by algebraic methods, don’t care-based
simplification, elimination and resubstitution; (c) generating
and passing don’t cares from the data path to the control
logic. After the optimization, we generate efficient code to
evaluate the multi-valued logic and code for the data com-
putation.

In Section 2, we describe the intermediate control data net-
work representation and the optimizations we apply at this
level. Section 3 gives the two code generation methods for
a multi-valued logic network evaluation. We present some
preliminary results and discussion in Section 4 and conclude
in Section 5.

2. CONTROL-DATANETWORK OPTIMIZA-
TION

A control-data network has control nodes and data nodes
interconnected with wires, or variables. A control variable
is a binary or a multi-valued variable that can take a finite
number of values; a data variable is an integer. According
to their input and output types, we categorize data nodes



Table 1: Node types in a control data network

node types operation nput output

control logical control control
expression | arithmetic data data
multiplexer | assignment control-data  data

predicate | predicate data control

into three types: data expression, multiplexer and predicate
nodes. They are shown in the Table 1. The distinction
of these node types clearly separates control variables from
the data path, yet preserves the functional information of
the original design. This creates new opportunities for logic
optimizations.

Data oriented optimizations like common subexpression elim-
ination, constant propagation and symbolic value numbering
are left for traditional compilers. We focus on the optimiza-
tion of the control structure using logic minimization tech-
niques. Although data nodes are treated as black boxes for
optimization algorithms, some internal information about
them can be interpreted and used for more aggressive logic
optimization.

2.1 Multi-V alued Logic Networks

Methods for optimizing a multi-valued logic network have
been generalized from binary logic. These include algebraic
decomposition [8], don’t care based simplification [9], elimi-
nation and resubstitution.

A multi-valued combinational logic network, or M V-network,
is a network of nodes. Each node represents a multi-valued
function with a single multi-valued output and many multi-
valued inputs. There is a directed edge from node ¢ to node
7, if the function at node j syntactically depends on the out-
put variable at node ¢. The network has a set of primary
inputs and a set of nodes which are designated as the out-
puts of the network. An intermediate format for represent-
ing such a network is BLIF-MV [10] used in the VIS system
[11]. In general, a variable z; is multi-valued and takes on
values from the set P; = {0,1,...,|P;| — 1}. A literal of
a MV-variable z is associated with a subset of values for
that variable. For example, suppose = can take on 5 values
{0,1,2,3,4}; then z{%?} and 2z{1?% are literals of z. The
interpretation of z{%% is that it is a binary logic function
which is 1 if x has either the value of 0 or 2, and 0 otherwise.
Note that £1%1234} = 1 gince all five possible values appear
in the literal. A product term or cube is a conjunction
of literals and evaluates to 1 if each of the literals evaluates
to 1. A sum-of-products (SOP) is the disjunction of a set
of product terms. It evaluates to 1 if any of the products
evaluates to 1.

Algebraic methods [8] include methods for finding common
sub-expressions, semi-algebraic division, decomposing an MV-
network, factoring an expression, and algebraic resubstitu-
tion. Network simplification [9] uses a generalization of com-
patible observability don’t cares to minimize the logic of a
node in the network. This performs Boolean resubstitution
as well. Elimination merges a node into its fanouts. Resub-
stitution tries to substitute existing nodes into larger nodes
in order to save cubes or literals. These algorithms are im-
plemented in a software package called MVSIS, available at
[12].

2.2 Data Path Optimization

Data nodes are treated as black boxes by control optimiza-
tion methods; the functionality inside can not be changed.
However the information contained in data nodes is use-
ful in generating and passing logic don’t cares for control
optimizations. The following are two schemes that can be
effective in optimization; they are yet to be implemented.

e Data path don’t cares The output data variable of a
multiplexer might be deselected by a second multi-
plexer. When this occurs, the variable controlling the
first multiplexer is blocked by the one that controls
the second. The set of minterms that produces the
blocking value can be used as don’t cares for the logic
controlling the first multiplexer.

e Don’t care inheritance in data path The output control
signal of a predicate might be blocked by some don’t
care minterms. This don’t care set can be passed down
through the data path that drives the predicate and
given to the control variables that control the multi-
plexers driving the predicate node.

3. CODE GENERATION

The code generation for data nodes is a direct transforma-
tion from the data expression into C code. We incorpo-
rate the technique of lazy code evaluation introduced by [5].
Data variables are not evaluated until they are requested
by a fanout node. In this section, we mainly discuss two
new methods for generating code to evaluate a multi-valued
logic network. They are based on two representations of
multi-valued logic functions.

3.1 Sum-of-products Codefor Control Nodes
In this approach, the function for each MV-node is repre-
sented as a multi-valued sum-of-products. This is stored in
a table structure, similar to that used in VIS [11] for rep-
resenting BLIF-MV [10]. The table at a multi-valued node
stores a set of cubes for each output value. The cubes are
represented using positional notation. One of the output
values is the default value and is omitted in the represen-
tation. The following example MV-node has 5 inputs with
18 total input values and 4 output values, value 3 being the
default. We evaluate the function of a node on a minterm

1 T2 I3 T4 s

100 1001 0011 110 1111
010 0110 1001 100 1000
001 0111 0100 111 0110
101 0101 0010 001 1101
101 1100 1111 101 0001

NN O OIN

in the local fanin space by testing it against each cube in
the SOP table. If the minterm is contained by a cube, the
output is the value that owns this cube. The containment
test is achieved with an AND instruction. This is based on
the fact that m € C <& m-C = 0. The cubes are stored
in complement forms so that only one AND instruction per
cube is needed for this test.

We compare two software implementation schemes. (a) Table-
based approach stores the network structure and the cubes



for each node in the memory as static data variables. A
separate subroutine eval-network() is generated to tra-
verse the static data structure and evaluate the network.
It is a fixed code for all networks and can be implemented
rather efficiently. The data portion of the code has some
overhead in keeping the network structure, but it scales well
as the size of the network increases. (b) Flat-code approach
embeds the cubes as constants inside the eval-network()
procedure. There is no data structure overhead in storing
the network and no control overhead in evaluating it.

The experiments show that the flat-code approach has com-
parable code size, but is much faster than the table-based
approach. This is because in the table-based approach, (a)
the eval-network() has to deal with the most general cases,
and (b) a large amount of memory accesses for retrieving the
cubes causes cache misses. The following is an example of
the flat-code generated by MVSIS.

_PIO_START: I[0] |= 1<<(PI[0]+0);
_PI1_START: I[0] |= 1<<(PI[1]+4);

_NO_START:
if ((I[0] & OxFF93) != 0)
if ((I[0] & OxFF6C) != 0)
goto _NO_PART2;
goto _NO_FOUND_1;
_NO_PART2:
if ((I[0] & OxFFC6) != 0)
if((I[0] & OxFF39) != 0)
goto _NO_DEFAULT;
goto _NO_FOUND_2;
_NO_DEFAULT: value=0; goto _NO_END;
_NO_FOUND_1: value=1; goto _NO_END;
_NO_FOUND_2: value=2;
_NO_END:

The primary inputs are stored in vector PI[]. Each node
has a bit vector storing the input minterm. The first several
lines of code sets up the input vector I[0]; the code that
follows performs the cube containment test for each output
value except the default. Here we make the assumption that:
(1) the total number of input values for each table does not
exceed 32 so that they can fit in a single integer; (2) one of
the output values is configured as the default and need not
be involved in the evaluation (in this case value 0).

Since the evaluation process is sequential, it proceeds to the
next cube if and only if the input minterm is not contained
in any of the cubes that have been tested. Therefore, after
a cube is tested, it can be used as don’t cares to minimize
the remaining functions to be tested. We call this priority
don’t cares.

Definition 1. Priority Don’t Care Given a multi-valued
function f with n values, {0,...,n — 1}, and a priority or-
dering of the values, {r1,r2,... ,72}, 0 < r; < n, the priority

don’t care for value function f,, is PDC,;, = Ui_} fr. .

In the minimization process, the observability don’t cares
(ODC) and satisfiability don’t cares (SDC) generated by
node simplification are common to all value functions. Pri-
ority don’t cares (PDC) are combined with ODC and SDC
to minimize each individual value function. Obviously the
last value in the priority ordering can always be minimized
into an empty set.

The priority ordering problem for output values is difficult.
‘We apply a heuristic ordering scheme. It assigns each value
a cost, which is a weighted sum of the cube count C; and the
literal count L; for the cover, i.e. Cost; = aC; + BL;. The
priority is obtained by ordering the values from the least to
highest cost. The value with the least cost has the highest
priority and is evaluated first. The reasoning is (a) the gen-
erated code is directly related to the cube count of a cover.
High priority values have less PDCs available for minimiza-
tion. Thus values with less cubes should be given higher
priority; (b) Larger functions with more minterms produce
more PDCs for downstream functions. Thus values with less
literals should be given higher priority. Experiments show
that using PDCs the total cube count for evaluation can be
reduced to as much as 50% for some examples.

3.2 MDD Codefor Control Nodes

This approach uses an MDD representation for each node.
We build the characteristic function of the output relation
by introducing the output variable into the MDD. The out-
put variable is treated as the last one in the MDD variable
ordering. If the output is ordered before all inputs, the gen-
erated code would be a set of direct computation of the logic
function without branches. According to [7], this results in
larger and slower code. A mixed ordering approach with the
output variables possibly appearing anywhere is not adopted
in our approach for the same reason.

The MDD package [13] uses an internal BDD engine, and
keeps a correspondence between a multi-valued variable and
the internal binary variables that are used to encode it.
From the internal BDD structure we generate an if-then-
else type of code for each BDD node; a constant integer bit
mask is generated to extract the desired binary bit of the
intermediate multi-valued variable.

{01} x {0,1,2} x {0,1,2} — {0,1,2}
0 0 — — 0
0 1 {0,1} — 0
0 1 2 — 1
0 2 — — 1
1 0 0 — 1
1 0 {1,2} — 2
1 {1,2} — — 2

Above is an example of a multi-valued node with three in-
puts {u,v,w} and one output {z}. Variable u is binary;
variables v, w,z have three values. The table shows the
sum-of-products representation of the output function for
each value. The MDD representation for each value of z is
shown in Figure 1(a). u(2) denotes the second bit of variable
w and (1) the first bit. In the BDD structures, solid edges
denotes then branches; dashed edges denote else branches;
black dots denote complement edges.

The characteristic function is built by adding the output
variable at the bottom and combining the MDDs for each
value. This is shown in Figure 1(b). This representation
is similar to an ADD [14]. The size of the generated code
is proportional to the number of BDD nodes in the MDD
of the characteristic function. BDD dynamic variable re-
ordering using sifting is performed after each characteristic
function is built. The binary encoding variables are allowed
to interleave as long as the output variable stays at the bot-
tom. Experiments show that frequent dynamic reordering
gives considerable improvement in code size. The code for
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Figure 1: MDD construction of the characteristic function

the top several nodes of this example is shown below, where
NO denotes the index of this MV-node; LO denotes the inter-
nal BDD node.

_NO_LO: if (0x1 & uw) { goto _NO_L1; }
else { goto _NO_L2; }
_NO_L1: if (0x2 & v) { goto _NO_L3; }
else { goto _NO_L4; }
_NO_L2: if (0x2 & v) { goto _NO_L5; }
else { goto _NO_L6; }
_NO_L3: I[0] = 2;
goto _NO_END;

Compared with other BDD-based code generation approaches
[7], our approach combines multiple binary variables into a
single multi-valued variable. It has the following advantages:
(a) it consumes less memory for storing intermediate results;
(b) it shares BDD nodes between multiple output values
yielding less code size; (c) it updates multiple binary bits
for the same MV-variable simultaneously, compared with
updating each binary bit separately. Also, the multi-level
multi-valued minimization and decomposition done in MV-
SIS serves as a method for clustering functionality into ta-
bles and hence into compatible MDDs.

4. EXPERIMENTS

The code generation methods are implemented in MVSIS, a
software infrastructure for multi-valued logic optimization.
We first compare the code size and performance of both
MDD and SOP codes for pure multi-valued logic network
examples. Most of the examples come from the multi-valued
logic benchmark suite from Portland State University; some
are hand-made examples. The characteristics of the exam-
ples are shown in Table 2. It shows, for each MV-network,
the total number of primary inputs, followed in parenthe-
sis by the ranges of their values, and the total number of
primary outputs followed by the ranges of their values. Be-
fore generating code, the following optimization methods are
applied iteratively until no further improvement in a cost
function that estimates the final code size.

sweep; simplify; eliminate; merge
fast_extract; decompose; resubstitute
reset_default; full_simplify

Table 2: Multi-valued network examples

examples PI PO examples PI PO
adder-mod4 | 3 (4) 1(4) nursery 8(3-5) 1(5)
conv35 4(2) 2(5) pal3 6(3) 1(2)
decoder 3(4) 2(8) balance 4(5) 1(5)
plus8 2(8) 1(15) car 6 (3-4) 1(4)
max 8(8) 1(8) mm3 5(3) 1(3)
matmul 8(3) 4(3) mm4 5(4) 1(4)
XOr-mux 3(4-6) 1(4) mm5 5(6) 1(5)
ex2 5(3) 2(2-3) iris 4 (5-12) 1 (3)
ex5 7(2) 2(2) | monks3te | 6(2-4) 1(2)
employl 9(3-5) 1(4) | monks2tr | 6 (24) 1(2)
employ2 7(3-5) 1(4) | monks3tr | 6 (2-4) 1(2)

In Table 3, the SIZE column shows object code size gener-
ated using gcc -03 -c and measured by GNU utility size.
The SPEED column shows simulation run time. We gener-
ate random input vectors and execute the evaluation code
1,000,000 times; the total run time is recorded using the
GNU profiling tool gprof. The size of the code that gener-
ates test benches is subtracted from the total size.

In general these two methods are comparable in run time.
The code size comparison varies for different examples. For
small examples; MDD code tends to be smaller; for larger
examples SOP code size is better. On average, the SOP
code has smaller size. This gives one the option of trading
off between speed and code size depending on different real-
time applications.

We are not yet able to compare our results with other code
generation approaches for Esterel since we currently do not
have support for data path representations. We believe the
techniques introduced in this paper, combined with new
multi-valued logic optimization methods, will improve the
quality of the code generated from Esterel and provide a
useful method for trading run time and code size. In addi-
tion, these results are preliminary and not yet definitive in
comparing the relative merits of the two methods.

5. CONCLUSIONS

‘We proposed a code optimization and generation scheme for
embedded control applications. This includes an intermedi-
ate control data network representation, multi-valued logic
optimization for control, and two methods for code gener-
ation from multi-valued logic networks. We showed some
preliminary results for comparing the two code generation



Table 3: Comparison between SOP code and MDD
code

SIZE(byte) | SPEED(ms)
examples | SOP MDD | SOP MDD
adder-mod4 238 264 110 160

conv3h 262 940 90 190
decoder 290 280 220 100
plus8 618 456 150 130
max 1026 1740 410 170

matmul 1042 1360 330 320
XOr-mux 210 200 120 110
ex2 198 320 80 90
exbh 174 136 60 80
employl 342 608 130 110
employ2 318 808 140 100

nursery 390 540 200 140
pal3 154 260 130 50
balance 982 1180 200 90
car 378 728 120 110
mm3 150 256 50 110
mm4 422 672 130 140
mmb5 870 1856 200 60
iris 338 1500 70 70
monks3te 58 100 80 20

monks2tr 442 1240 170 130
monks3tr 382 1092 160 190
average 1 184% 1 93%

approaches. By using multi-valued variables, we explore the
bit-level parallelism of the generated real-time code. We be-
lieve this is faster and smaller than the code generated from
the encoded binary version of the same logic network.

This is ongoing research. We expect to conduct more ex-
tensive experiments using larger logic examples as well as
Esterel benchmarks. The next step is to incorporate data
representation into MVSIS and develop logic optimization
algorithms to take advantage of data path don’t cares, data
path don’t care inheritance and possibly arithmetic opti-
mization.
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