Whole program compilation for embedded software:
the ADSL experiment

A. Johan Cockx, IMEC, Belgium

ABSTRACT

The increasing complexity and decreasing time-to-market of
embedded software forces designers to write more modular
and reusable code, using for example object-oriented tech-
niques and languages such as C++. The resulting mem-
ory and runtime overhead cannot be removed by traditional
optimizing compilers; a global, whole program analysis is
required. To evaluate the potential of whole program opti-
mization techniques, we have manually optimized the em-
bedded software of a commercial ADSL modem. Using only
techniques that can be automated, a memory footprint re-
duction of nearly 60% has been achieved. We conclude that
a consistent and aggressive use of whole system optimization
techniques is feasible and worthwhile, and that the imple-
mentation of such techniques in a compiler for embedded
software will allow software designers to write more modu-
lar and reusable code without suffering the associated im-
plementation overhead.

Keywords
Whole program compilation, embedded software, interpro-
cedural optimization, C++

1. INTRODUCTION

Due to increasing complexity and decreasing time-to-market,
embedded software designers are feeling an increasing pres-
sure to write more modular and reusable code. The use
of OO (Object-Oriented) techniques and languages can im-
prove modularity and reusability, but the acceptance of OO
in the embedded world has been very slow. We believe that
embedded software designers are reluctant to embrace these
techniques because they are afraid of the additional overhead
in an embedded environment with limited memory and com-
putational power. A compiler that automatically removes
such overhead would therefore be very useful.

OO techniques encourage the use of many small objects that
are relatively stand-alone and thus easy to understand and

Pcrmission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 01 Copenhagen Denmark

Copyright ACM 2001 1-58113-364-2/01/04...$5.00

214

reuse. This is a clear advantage at the source level, but
a disadvantage for efficient implementation. It leads to a
large number of small (member) functions, and thus not only
causes a function call overhead, but also seriously compli-
cates other optimizations such as dataflow analysis, constant
propagation and dead code elimination. The use of poly-
morphism with dynamic binding (virtual functions in C++,
non-final functions in Java) enables even further splitting of
objects and thus better modularity and reusability, at the
cost of an increased function call overhead and optimizations
problems.

Traditional optimizing C++ or Java compilers cannot re-
move this overhead, because these compilers examine the
cade file per file (more precisely: compilation unit per com-
pilation unit), and never see the whole program at once.
Since the calling context of functions is usually not known,
optimization is done function per (small) function, and the
context information necessary for aggressive optimizations
is not available. The linker, on the other hand, does see
the whole program at once, but the object code no longer
contains sufficient information for most optimizations.

Interprocedural optimization is a well established discipline
that attempts to reduce or eliminate the performance penalty
of using procedure (or function) calls to structure software.
Most research on interprocedural optimization targets high
performance scientific computing, often on multiprocessor
hardware, and typically using FORTRAN as a programming
language. Care must be taken when applying the results of
this research to embedded software; some techniques obtain
improved performance at the cost of seriously increased code
size, which is often inappropriate for embedded software.
Also, techniques developed for FORTRAN caunot always
be applied for C4++[13].

Interprocedural optimization for object-oriented languages
and the associated problem of polymorphic calls was pio-
neered in 1991 in the SELF system{6] and since then, tech-
niques have been developed that are adapted for use in most
abject-oriented languages including Cecil{7], Eiffel(1, 2, 3, 4],
C++{5], and Javal8, 7]. A recently started project on inter-
procedural optimization for object-oriented languages is the
OSUIF project at UCSBI[9].

Research projects that specifically target interprocedural op-
timization for embedded software are rare and limited in
scope. The MOVE project(11] will try to parallelize FOR-

HW RX dat apat h
bench T
RX 1~ ™
TU TU
TX datapathii=------
o e [t |
A A A :
N v
ARM core / control SW

Figure 1: Architecture of the ADSL modem. The embed-
ded software on the ARM processor controls the hardware
datapath through two timing units (TU).

loops for mapping on multiple embedded processors. Sjdin[12]
reports a technique using whole program analysis to opti-
mize the allocation of global data in on-chip RAM.

The terms “interprocedural” and “whole program” seem to
be closely related. I prefer to use the term “whole program”
because it does not suggest that optimization is restricted
to a reduction of procedure call overhead. Some of the tech-
niques that we have used and will present further are not
related to procedure calls but to data allocation.

To evaluate the potential for whole program optimization on
industrial quality software, we have taken the source code
for the embedded software controlling an ADSL modem (de-
scribed in section 2) and manually optimized it by rewriting
the source code, disregarding all modularity and reusabil-
ity issues. Our optimization target was memory footprint,
not performance. The techniques used can in principle be
automated and are described in section 3. We were able
to reduce the memory footprint of this software by nearly
60%); detailed results are given in section 4 and conclusions
in section 5.

2. THE ADSL DRIVER APPLICATION

To verify the feasibility and effectivity of whole program
compilation for industrial embedded software, we have man-
ually optimized the software for a commercial ADSL modem
(figure 1). The software runs on an ARM processor and con-
trols the hardware datapath that processes the high speed
data passing through the modem. Since the software does
not process high speed data, the execution time is far from
critical and we decided to optimize memory footprint (code
+ data).

The software is written in a mix of C and C++, with a
little bit of assembly code for startup and interrupt han-
dling. It is designed using the OCTOPUS[14] methodol-
ogy, compiled with the C and C++ compilers provided by
ARM (version 2.50) and runs on top of the Virtuoso[10]
RTOS. The source code of the complete program was avail-
able, except for the RTOS, which represents less than 2% of
the total footprint. The source code is about 130.000 lines

long and is distributed over 272 C/C++ files and the same
number of header files. The C++ code uses classes, mul-
tiple inheritance, virtual functions and dynamic allocation.
The code is multithreaded and uses Virtuoso queues for in-
terthread communication. Communication with hardware
is done through interrupts and memory mapped I/O using
a proprietary protocol.

The software can be configured for different configurations
of the ADSL modem (central office or customer premises
usage, different versions of the ADSL standard, etc) using
preprocessor macros. We have optimized for one specific
configuration. The code that is specific for other configura-
tions is of course removed by the preprocessor and does not
contribute to the footprint of the compiled software, but we
have found many instances of code shared by two or more
configurations that was more complex and had a larger foot-
print then necessary for our specific configuration.

3. OPTIMIZATION TECHNIQUES

The ADSL software is optimized by transforming the source
code; this implies that only techniques of which the result
can be expressed in C++ have been used. For example, reg-
ister allocation based on interprocedural dataflow analysis
cannot be expressed in C++ code and has therefore not been
used.

Since all optimizations can be done by rewriting the C++
code, they can also be done manually. Manual application
of these optimizations is however not desirable because it
breaks the modularity and reusability of the code. Our goal
is to allow software developers to write modular and reusable
code without worrying about implementation efficiency.

Most of the techniques used have only a small effect by
themselves; it is the combined effect of applying all these
techniques that produces a significant amount of optimiza-
tion. Very often, application of one technique (e.g. function
inlining) exposes opportunities for another technique (e.g.
constant propagation). As a result, it is impossible to mea-
sure the impact of each technique separately.

Only static (compile-time) techniques have been used; we
do not rely on dynamic techniques such as run-time opti-
mization (e.g. caching for dynamic dispatch of polymorphic
calls) or profiling.

The optimization techniques used can be classified in three
groups: traditional interprocedural optimization, OO-specific
optimization, and data allocation optimization.

3.1 Traditional interprocedural optimization
The following interprocedural optimization techniques have
been applied.

e agressive constant propagation and dead code elimina-
tion.
e Inlining of functions with a single call site.

e Inlining of very simple functions, e.g. returning a data
member. Note that functions must be very small to

save memory footprint when inlined; when optimizing
for speed, they can be larger.

e Removal of unused variables, including unused data
members of structs and classes. Note that traditional

interprocedural optimization does not change data struc-

tures such as structs and classes; we have been a bit
more aggressive here.

e Replacement of initialized variables that are never writ-
ten by a constant (which can then be propagated).

e Removal of variables that are never read.

The ADSL software contains a number of variables (actu-
ally, large arrays) that are never read by the software itself,
but instead are intended to be read by the debugger. These
variables are used as an alternative to printf, which is of-
ten unavailable in embedded software. Compilation of these
variables and the code writing to them did not depend on
a preprocessor macro. It is not clear whether this was in-
tentional (i.e. debugging functionality was intended to work
even in production code) or just not done because it is a lot
of work and makes the code less readable. We have therefor
separately recorded the optimizations resulting from remov-
ing debugging variables and code, and present figures with
and without debugging code in the results section.

We have carefully avoided optimizing variables marked volatile,

as these may be written or read by interrupt handlers or used
for memory-mapped I/0.

3.2 OO-specific optimization

From the literature on interprocedural optimization for object-

oriented languages, we selected some techniques that can po-
tentially reduce footprint as well as execution time. Many
other techniques are not appropriate for us because they
only reduce execution time at the expense of memory foot-
print.

e Removal of virtual keyword from functions that are
never called polymorphically (i.e. via a pointer to a
baseclass).

e Replacement of polymorphic calls by a runtime type
test followed by a statically bound call. To make this
possible, an enum data member identifying the type
has to be added to the classes involved. We found
that this technique only reduces memory footprint for
very small functions, or when inlining and other opti-
mizations are enabled by this transformation.

3.3 Data allocation optimization

Whether data is allocated statically, dynamically (new/delete)

or automatically (on the stack) can have an important im-
pact on memory footprint. We have applied four techniques
to reduce the memory footprint of the ADSL software by
changing the way data is allocated. To our knowledge, these
techniques have not previously been published in the con-
text of compiler optimization, so we give a more detailed
explanation than for the previous types of optimizations.

1. Data inlining. If some data B is always dynamically

allocated when an object of class A is created, and
deleted when the object is destroyed, then B can be
implemented as a data member of A. For example:

class A {
B* b;
A { b = new B(0); }
A(int i) { b = new B(i); }
“A(Q) { delete b; }

}

can be replaced by

class A {
B b;
AQ: b(0) { }
A(int i): b(i) { }
“AQ) {}

};

This situation typically occurs when, for reasons of
reusability, class A is written such that it can work
with any derived class of B. The transformation is only
possible when, in a given configuration of the software,
only one concrete class B is used. The transformation
eliminates dynamic allocation and a pointer indirec-
tion when accessing B, so it optimizes both execution
time and memory footprint.

. New on entry, delete on ezit. If some data B is dynam-

ically allocated on entry to a function f and deleted
on exit, then B can be implemented as an automatic
variable in f. For example:

void £() {
float* myarray = new float[100];
process(myarray) ;
delete myarray;

}
can be replaced by

void £() {
float myarray[100];
process(myarray) ;

}

In the ADSL code, this situation commonly occurs for
arrays. For reasons of reusability, the array size is
an argument of the function in which it occurs. Since
C++ does not provide automatic (on-stack) allocation
of variable sized arrays, these arrays were allocated
dynamically. In our specific configuration of the ADSL
software, the array size is the same and constant for
all calls, so automatic allocation can be used.

The transformation eliminates dynamic allocation and
a pointer indirection when accessing B, and places the
data on the stack where it may automatically reuse
memory already reserved for other branches of the call
tree.

. New on startup, no delete. If some data B is allo-

cated at the beginning of the main function and never
deleted, it can be implemented as a static variable.
The transformation eliminates dynamic allocation and
a pointer indirection when accessing B.

4. Static reinitialized on entry. If a static variable B is
reinitialized on every entry to a function f, it can be
implemented as an automatic variable in f. This al-
lows branches of the call tree on which £ does not occur
to reuse the memory occupied by B.

To succesfully apply these techniques, the compiler must
understand how the RTOS configures stack sizes and dy-
namic allocation pools, and be able to retune them after
these transformations. A compiler able to do this would
be very useful for embedded software development; manual
derivation of stack and pool sizes is very tedious, and a soft-
ware designer under time pressure (are there any others?)
will often prefer to use a large safety margin, which can
significantly increase memory footprint.

4. RESULTS

The memory footprint reduction (tables 1 and 2) achieved by
whole program optimization techniques is much larger than
the footprint reduction achieved by the local optimization
techniques implemented in the ARM C++ compiler (6% on
the ADSL software).

Code Data Code

(bytes) (bytes) +Data
Unoptimized footprint 248552 402080 650632
Compiler optimization -36652 0 -36652
Remove debug code -17160 -225676 -242836
Interprocedural optim. -34252 -28000 -62252
OO-specific optim. -3408 0 -3408
Data allocation optim. -448 -55428 -55876
Optimized footprint 156632 92076 249608

Table 1: Memory footprint reductions achieved by
different optimization techniques on the ADSL soft-
ware.

With Without

debug debug

code code

Original footprint (bytes) 613980 371144
Remove debug code 40% 0%
Interprocedural optim. 10% 17%
OO-specific optim. 0% 1%
Data allocation optim. 9% 15%
Total footprint reduction 59% 33%

Table 2: Percentage footprint reduction achieved by
different whole program optimization techniques. All
percentages are relative to the footprint of the orig-
tnal code with mazimum compiler optimization (-02
-Ospace).

About 40% of the original footprint is due to debug func-
tionality. Manually removing the debug functionality took
about one man-week. One could argue that this debug func-
tionality should be retained even in a production release un-
der some circumstances; our results are therefore presented
both with and without debug functionality.

Manual application of the whole program optimization tech-
niques took about three man-months, excluding learning
time. For most applications, this means that manual op-
timization is not worthwhile. To make these techniques
widely applicable, it is essential that they are automated
in the context of a whole program compiler.

The impact of OO-specific optimizations is negligible. This
is probably due to the fact that in C++, only functions
that are explicitly declared virtual use dynamic binding; in
other words, the designer already optimizes a lot by making
most functions non-virtual. The problem with this approach
is that it makes classes less reusable. In Java, all functions
use dynamic binding by default. Another fact explaining the
small impact of OO-specific optimizations is that the tra-
ditional technique of replacing polymorphic calls by an if-
tree often only improves performance, and increases memory
footprint. A footprint reduction is only achievable in a few
special cases described in the previous section.

5. CONCLUSION

By applying whole program optimization techniques to the
ADSL software, we have achieved a memory footprint re-
duction of at least 33%; if it is acceptable to remove debug
functionality, 59% is achievable. This compares to a 6%
memory footprint reduction by local compiler optimizations
for the same code.

We have used three kinds of techniques: traditional inter-
procedural optimization techniques, OO-specific techniques
and data allocation techniques. The first two kinds are well-
known and published, but rarely used in compilers for em-
bedded systems, and usually target performance optimiza-
tion rather then memory footprint reduction. The data al-
location techniques have not been used in any compilers or
published to our knowledge.

All proposed optimizations can be done by rewriting the
C++ source, but doing this manually ruins modularity and
reusability. To be useful, these optimizations must be im-
plemented in a compiler. The data allocation techniques
require the compiler to understand how the RTOS imple-
ments dynamic allocation and stacks. The implementation
of a whole program compiler automating these optimizations
is not a trivial job, but the potential gains are also large.

We believe therefore that implementation of a whole system
compiler for embedded software is both feasible and worth-
while. We also believe that the main benefit of a whole
program compiler for embedded software would not be a
reduced memory footprint, but the fact that it will allow
designers to write more modular and reusable code without
worrying about the associated implementation overhead.

Acknowledgement

This research was partly supported by the flemish IWT in
the context of project number 980314. Their support is
gratefully acknowledged.

6. REFERENCES

[1] http://www.loria.fr/projets/SmallEiffel/

[2] S. Collin et al. “Type Inference for Late Binding. The
SmallEiffel Compiler”, JMLC’97, pages 67-81.

[3] O. Zendra et al. “Efficient Dynamic Dispatch without
Virtual Function Tables. The SmallEiffel Compiler.”
OOPSLA’97, Volume 32, Issue 10 - Atlanta, GA,
USA, October 1997, pages 125-141.

[4] D. Colnet et al. “Optimizations of Eiffel programs:
SmallEiffel, The GNU Eiffel Compiler.” TOOLS
Europe’99, IEEE Computer Society, Nancy, France,
June 7-10, 1999, pages 341-350.

[5] G. Aigner and U. Hoelzle. “Eliminating Virtual
Function Calls in C++ Programs” ECOOP’96,
SpringerVerlag LNCS 1098, pp. 142-166.

[6] U. Hoelzle et al. “Optimizing Dynamically-Typed
Object-Oriented Languages with Polymorphic Inline
Caches”. ECOOP’91, p. 21-38, Geneva, July 1991.
Springer-Verlag LNCS 512.

[7] Dave Grove. Effective Interprocedural Optimization of
Object-Oriented Languages. Ph.D. Thesis, University
of Washington, 1998.

[8] TowerJ Java compiler.
http://www.towerj.com

[9] OSUIF project at UCSB.
http://www.cs.ucsb.edu/"osuif

[10] Virtuoso RTOS from Eonic Systems.

http://www.eonics.com

[11] MOVE project.
http://ce-serv.et.tudelft.nl/MOVE/tasks.html

[12] J. Sjdin et al. “Static Allocation of Global Data
Objects in On-Chip RAM.” CASES’98, December
1998.

(13]
http://www.oonumerics.org/oon/oon-list/archive/0328.html

[14] M. Awad et al. Object-Oriented Technology for Real
Time Systems: A Practical Approach Using OMT and
Fusion, Prentice Hall, 1996. ISBN 0132279436.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

