
The TACO Protocol Processor Simulation Environment

Seppo Virtanen
Turku Centre for Computer Science (TUCS)

Lemminkaisenkatu 14 A, 20520 Turku, Finland

seppo.virtanen@utu.fi

Johan Lilius
Department of Computer Science and

Turku Centre for Computer Science (TUCS)
Abo Akademi University

Lemminkaisenkatu 14 A, 20520 Turku, Finland

johan.lilius@abo.fi

ABSTRACT
Network hardware design is becoming increasingly challeng-
ing because more and more demands are put on network
bandwidth and throughput requirements, and on the speed
with which new devices can be put on the market. Using
current standard techniques (general purpose microproces-
sors, ASIC’s) these goals are difficult to reach simultane-
ously. One solution to this problem that has recently at-
tracted interest is the design of programmable processors
with network-optimized hardware, that is, network or pro-
tocol processors. In this paper a simulation framework for a
family of TTA protocol processor architectures is proposed.
The protocol processors consist of a number of buses with
functional units that encapsulate protocol specific opera-
tions. The TACO protocol processor simulator is a C++
framework based on SystemC. Functional units are created
as C++ classes, which makes it easy to experiment with
different configurations of the processor to see its perfor-
mance.

Keywords
microprocessor, protocol, simulation, codesign

1. INTRODUCTION
Network hardware design is becoming increasingly challeng-
ing because more and more demands are put on network
bandwidth and throughput requirements, and on the speed
with which new devices can be put on the market. Using
current standard techniques (general purpose microproces-
sors, ASIC’s) these goals are difficult to reach simultane-
ously. General purpose microprocessors are no longer an
appealing alternative for networking hardware on account
of their lack of optimized execution units for network pro-
cessing. All the networking functionality must be imple-
mented in software, which in turn leads to such high CPU
clock frequency requirements that general purpose proces-
sors in the speed range are very expensive, or are simply
not available. Also, many general purpose processor fea-

tures, like FPU’s, can usually not be taken advantage of in
networking devices. For these reasons among others, ASIC’s
have been widely used for networking devices. ASIC’s can
provide more processing speed with lower clock frequency
than general purpose processors. However, ASIC design is
difficult and expensive and they tend to have a long time-
to-market. Also, ASIC’s are usually not programmable and
thus need to be redesigned for updated or new network pro-
tocols, making them inflexible in dynamic market segments.

One solution to this problem that has recently attracted
interest is the design of programmable processors with net-
work-optimized hardware, that is, network or protocol pro-
cessors. Such a processor is an attempt to harness the pro-
cessing speed of ASIC’s and the programmability of general
purpose processors for optimal protocol processing speed.
A recent article [4] presents four commercial protocol pro-
cessors. Some of these designs are already available on the
market or are made available in sample quantities.

The challenge in protocol processor design is finding an ar-
chitecture that is a good compromise between a general
purpose processor and a custom, protocol-specific processor
(ASIC): ideally the architecture should be optimized for a
family of protocols. Looking at the available documentation
of the commercial processors, we can see that most of them
try to leverage the knowledge about parallel processing by
essentially providing an interconnection fabric together with
a number of general purpose computing elements. However
this approach raises a number of questions for the designer:

1. How can the designer evaluate the performance of the
architecture for a given protocol? I.e. given a protocol,
which of the existing architectures should the designer
choose?

2. How should one program for the given architecture
to obtain optimal performance? I.e. given a proto-
col and given an architecture, what kind of software
(protocol implementation) architecture gives optimal
performance?

At the moment the designer has to resort to experience and
ad-hoc experiments when evaluating the architectures. Thus
it seems to us that more research is needed to understand the
exact needs of protocol processing in terms of both software
and hardware architecture.

In our research project TACO (Tools for Application-specific
HW/SW Codesign) we are focused on developing a frame-
work for the design of programmable protocol processors.
We have taken a different approach compared to the com-
mercial protocol processor suppliers. Instead of designing
an ad-hoc parallel architecture, in the TACO development
work flow the protocol processor is developed guided by the
development of the protocol software. One of the key tasks
in the TACO work flow is the identification of frequently
occurring protocol processing operations that vary little be-
tween different protocols and that can be implemented in
hardware to increase execution speed and reduce code size.
Thus the design process should be such that it makes it easy
to identify these operations, while the processor architecture
should be such that it allows easy integration of the opera-
tions. We believe that object-oriented techniques [2] provide
a good basis for the software part of the design-flow, and
that the Transport Triggered Architecture (TTA) [1, 11] is
a good candidate for the hardware architecture. Objects en-
capsulate state and functionality, while classes describe the
common properties of a number of objects. Thus objects
and classes are the right abstractions for modelling proto-
col processing operations. Many object-oriented methods
contain techniques and notations for domain analysis, that
is identification of common data-structures and functional-
ity within a domain of interest. Thus the object-oriented
techniques help us find candidates for the protocol specific
operations. These operations are then integrated as func-
tional units (FU’s) on a TTA processor. A TTA processor
is formed of FU’s that communicate via an interconnection
network of data buses, controlled by an interconnection net-
work controller unit. TTA offers several advantages, in that
it is extensible, allowing it to be customized to different
protocols, and it is optimized for data transfer, which is the
main function of a telecommunication protocol.

In this paper we will concentrate on describing the archi-
tecture of the TACO protocol processor and its simulator.
We will also briefly sketch our development process and dis-
cuss some problems we encountered when implementing the
simulator in SystemC [9].

2. TACO PROCESSOR ARCHITECTURE
The main function of a telecom protocol is to reliably trans-
fer data from the sender to the receiver. Interleaved within
this data transfer task are different signaling tasks like con-
trol flow, connection setup or teardown etc. However, in a
well designed protocol these signaling activities should occur
seldom enough not to incur any extra penalty on the per-
formance of the data transfer. In selecting an architecture
for the TACO processors an important criteria was therefore
the ability to have efficient data transfers.

The TACO processor architecture is a slightly modified trans-
port triggered architecture (TTA) [1, 11]. In TTA processors
data transports are programmed and they trigger operations
- traditionally operations are programmed and they trigger
transports. A TTA processor is formed of functional units
(FU’s) that communicate via an interconnection network of
data buses, controlled by an interconnection network con-
troller unit, as seen in figure 1.

The connection between a functional unit and the intercon-

Network Controller
Interconnection

Pre−Processor

ATM bitstream input
of processor

MMU

 Matcher2

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

memory
Program

FIFO

Matcher1

Compare2

Counter2

HEC

Compare1

address

output socket
Input and

connections

Data
memory

Counter1

Generic Registers

Modified TTA

address

data

Figure 1: A TACO protocol processor for ATM [13].

Interconnection Network
 Controller

Functional
 Unit (FU)

Result bit
(optional)

Result

Opcode (2)

Is_ready (1)

FU_ready (1)

1..3

Data
bus
(32)

ID
bus
(16)
1..3

SQ
(1)
1..3

1..3

Data
bus
(32)

ID
bus
(16)
1..3

SQ
(1)
1..3

Output Socket
(32)

Input Socket (Trigger)

(32)

(1)

(32)

(32)
Operand1

Operand2

Trigger

Os_ready (1)

FU_ready (1)

GL
(1)

LL
(1)

GL
(1)

LL
(1)

Figure 2: Connectivity between FU’s, sockets and
the interconnection network. GL=global lock,
LL=local lock request, SQ=squash.

nection network is managed by input and output socket
units as shown in figure 2. Each functional unit has one
or more operand registers, trigger registers and result regis-
ters. An operation is triggered when data is transported to
a trigger register.

TTA’s are in essence one instruction processors, the only
instruction being move data. Thus, the instruction word
of a TTA processor consists mostly of source and destina-
tion addresses of sockets called socket ID’s. The socket ID’s
are transported on ID buses from the interconnection net-
work controller. There are as many ID buses as there are
data buses in the interconnection network. Upon finding its
socket ID on one of the ID buses, a socket opens the con-
nection between an FU and the corresponding bus on the
interconnection network. The maximum number of instruc-
tions (i.e. data transports) that can be carried out in one
clock cycle is equivalent to the number of data buses in the
interconnection network.

The benefit of TTA is its modularity and scalability. Func-
tional units can be added to the architecture or they can be
refined and changed as long as they provide the same inter-
face to the sockets connecting them to the interconnection
network. Our architecture is therefore more of a template
for protocol processors, instantiated for a specific protocol

by selecting an appropriate number of buses and the ap-
propriate functional units. In previous work [12] we have
analyzed a number of communications protocols and identi-
fied some typical protocol processing elements that are com-
mon to the protocols: bitstring matching, integer compar-
ison, checksum calculation (especially CRC) and indexing
(counters). Wireless and timing-critical protocols also need
capabilities for maintaining timers and generating random
values. All of these protocol processing tasks are distinct
enough to be considered for implementation as FU’s.

Some protocols also benefit from protocol data unit (PDU)
pre-processing (the pre-processor in figure 1). The tasks per-
formed in pre-processing are protocol dependent and may
include synchronization to the incoming bitstream, data in-
tegrity verification (by means of performing a protocol de-
pendent error check on incoming data) and incoming PDU
storage into the processor s data memory (using DMA). The
memory addresses of first data words of PDU headers can
be stored into a FIFO to provide quick access to the data
that requires processing. The pre-processor unit in our ar-
chitecture is optional and protocol dependent.

TACO processors are programmed by specifying data moves
between functional units with 20 instruction bits for each
move (i.e. each bus). For example for a processor with three
data buses, the instruction word length of 64 bits is required:
it consists of three sets of 20 bus instruction bits followed
by four bits for managing immediate integer generation.

The 20 instruction bits are divided into a source socket ID
and a destination socket ID accompanied with four guard
bits (a guard ID) used for conditional execution. The long
instruction word (containing all the instruction bits for each
bus and the four immediate generation control bits) is de-
coded by the interconnection network controller, which also
distributes the socket ID’s onto the ID buses.

As presented in figure 2, some FU’s have a result bit con-
nected directly to the interconnection network controller.
With this structure it is possible to directly use the result
from an FU in guard bit evaluation. This feature is es-
pecially useful in matchers, compare units and error check
units. The interconnection network looks for a certain com-
bination of the result bits specified by the guard ID for each
bus. If the result bits from FU’s do not satisfy the condition
specified by the guard ID, the specified data move on the
bus is squashed, i.e. ignored.

3. THE TACO DEVELOPMENT PROCESS
The TACO processor design process consists of 2 parts:
identification of the functional units that are needed in the
TACO processors, and the design of the control structures
for the protocol at hand. The end result of this process is
a list of functional units and their quantities that the pro-
tocol processor must support, the number of buses in the
protocol processor, and the assembler code for the protocol
implementation.

Although any design method could probably be adapted
to our needs we have chosen to base ourselves on object-
oriented (OO) methods. One of the main advantages that
an object-oriented method gives us is that since it is focused

Receive

Send

IdentifyCell

F4 OAM

F5 OAM

Other

F5 AIS

Other

CellCount

ATM / AAL / F4 / F5 processing

Incoming cell

Mode CellType

AISNormal

Empty

Normal

AIS

outgoing cell

Figure 3: Use Case diagram for processing ATM F5
AIS cells from the network.

on identifying objects and implementing the functionality of
the system using objects, the method naturally adopts to the
identification of functional units.

As most modern OO methods, we start the description of
our protocol by drawing up a use case diagram. The use
case diagram shows the main functionality that needs to be
implemented. In our context use cases are essentially data
transports between service access points (SAPs) of different
protocol layers. Such a use case could be for example send-
ing a user protocol data unit (PDU), receiving one, or per-
haps receiving an operation and maintenance (OAM) type
PDU. As an example, figure 3 shows use cases for ATM F5
AIS cell processing [3] drawn using the UML [2] notation.
The use case diagram can be used to guide the development
process in an iterative way such that in each iteration the
implementation of one use case is added to the prototype
(c.f. the ROPES process of [2]).

From the use cases we can obtain our first object diagrams
of the system. We then continue to refine the object di-
agrams until we identify operations that can naturally be
implemented in hardware. This is the process of domain
analysis. Using these functional units we can now build a
simulator for our TACO processor, by instantiating suitable
modules within the simulator framework (c.f. below). At
this stage we have also obtained the instruction set of the
processor.

The next step is to implement the control structures using
the given functional units. This is done by building collab-
oration diagrams [2] showing the interactions between the
different functional units. Each interaction corresponds to
a move instruction and is indicated by an arrow. Figure 4
shows such a diagram.

The collaboration diagram in figure 4 shows a part of the
interactions needed for processing ATM cells with the kind

of TACO processor shown in figure 1 (a processor with three
data buses and dual functional units). The dotted arrows
indicate information generated by the interconnection net-
work controller (e.g. immediate integer generation and con-
ditional execution control), and the solid arrows indicate
transfers between functional units. Two arrows pointing to
a single FU indicate that both of the input registers of the
FU are loaded with data (see section 2 for more information
concerning architectural details). Dashed horizontal lines
indicate clock cycles.

The functional units in TACO processors are designed to
produce their result in one clock cycle. This is possible by
specifying the internal functionality of each FU so that it is
concise and simple enough to be completed in one cycle. We
have made this decision to keep the process simple at this
stage. The TACO architecture allows FU’s that need more
than one cycle for completing their operations, and we plan
to include such more complex FU’s in the design process in
the future.

From the collaboration diagram it is possible to draw es-
timates on the bus utilization and clock cycle requirement
for a certain algorithm implemented on a certain processor
architecture: e.g. the interactions shown in figure 4 (a part
of ATM AIS cell processing) require 8 clock cycles and use
21 out of 24 possible data transfers.

4. THE PROCESSOR SIMULATOR
At the moment the simulation environment consists of a li-
brary of components implemented in SystemC [5, 9] on an
x86 Linux system using GNU compilation utilities. SystemC
is a C++ [10] application framework for simulating hard-
ware. It provides a set of classes for describing common
entities in hardware design, e.g. signals, clocks etc. Sys-
temC is distributed under an open license and is supported
by several of the major EDA companies.

The TACO component library contains implementations of
functional units, interconnection buses, and the program
dispatch logic. Using this library it is possible to build a
cycle-level accurate simulator of a TACO processor.

To test the fundamental assumptions of the TACO frame-
work we have prototyped a processor for processing ATM
AIS cells. This instance of the TACO architecture features
three 32-bit buses in the interconnection network. This
makes it possible to have three parallel data transports in
one machine cycle.

The purpose of the TACO class library is to provide an en-
vironment for simulating and evaluating protocol processor
designs. The goal is to be able to quickly simulate differ-
ent instances of our protocol processor architecture and by
means of these simulations and their results to find an opti-
mal configuration of functional units and buses for a certain
application to be performed on a protocol processor.

We have used inheritance and object oriented (OO) concepts
extensively in the simulator. The class hierarchy of the sim-
ulator is given in figure 5. The classes that are used for sim-
ulating hardware are derived from the class sc module pro-
vided by SystemC. This class provides among other things

FIFO : FunctionalUnit

MMU : FunctionalUnitRegister1 : FunctionalUnit

Register2 : FunctionalUnit

Compare2 : FunctionalUnit

Matcher2 : FunctionalUnit Compare1 : FunctionalUnit Matcher1 : FunctionalUnit

Compare1 : FunctionalUnitMMU : FunctionalUnit

Compare2 : FunctionalUnit

Register2 : FunctionalUnit

Counter1 : FunctionalUnitPCounter : FunctionalUnit

PCounter : FunctionalUnit Counter1 : FunctionalUnit

immediate immediate

immediate

immediate

 : External SendCell

: External HeaderAddress

guard signals to network controller

guarded immediate

guarded immediate

guard signal

guarded immediate

guarded immediate

Figure 4: Operations per cycle in AIS processing for
a TACO processor with dual FU’s and three data
buses. Arrows represent data transfers. Immediate
value generation and control signals are managed by
the interconnection network controller (not shown).

macros for simulating signals and ports. The SocketManager
class is not a hardware simulation module: it is used by ob-
jects from the functional unit classes during simulator ini-
tialization for generating, connecting and maintaining sock-
ets, socket ID’s and signals dynamically. During simulations
SocketManager is used for providing pointers to dynamically
created subclasses of sc module.

There are three different types of sockets needed in TACO
processors (see section 2 for architectural details). InSock-
ets are used for writing data into operand registers of FU’s,
OutSockets for reading data from result registers, and trig-
ger sockets for writing data into trigger registers and si-
multaneously triggering FU operations. In the simulator all
sockets are derived from the base class Socket that provides
most of the socket interfacing and a state machine for each
socket. The subclasses add their own internal functionality
and interface requirements to the base class description.

The three level hierarchy for functional units was needed
to overcome certain SystemC limitations discussed in more
detail later in this paper. The base class FunctionalUnit

provides most of the interfacing and a state machine for
each FU. The TACO class library contains, but is not lim-
ited to the FU classes shown in figure 5. The functional

unit subclasses generally feature one operand register, one
trigger register and one result register, but some, e.g. the
Matcher class, require a second operand register. The inter-
nal functionality in each functional unit class is programmed
to provide the result of a triggered FU operation by the be-
ginning of the next simulation clock cycle. The functionality
of the FU’s is discussed in more detail in e.g. [12] and [13].

The interconnection network controller (class NetControl)
does not have any subclasses, since there is always only one
such module in a TACO processor. The controller man-
ages breaking the long TACO instruction words into bus
instructions (see section 2), immediate value generation and
conditional execution management along with monitoring
and issuing control signals. The interconnection network
controller functionality is implemented as a state machine.

OO techniques ensure that similar objects have compatible
external interfaces (e.g. FU’s have compatible registers).
They also make easy addition of new objects of the same
kind into the system possible (e.g. two matchers). Func-
tional units that are not needed for a certain protocol pro-
cessing application can be left out of the simulation to speed
up simulator compilation and the simulation itself.

As the algorithms needed for internal FU functionality are
well known and hardware (gate level or schematic level)
specifications with excellent performance characteristics ex-
ist for them, the emphasis in the simulator is to define the
processor control structure, internal signaling and the num-
ber of FU’s in a way that ensures maximal protocol process-
ing throughput for a certain application.

The simulator is initialized by instantiating each bus in the
interconnection network and then instantiating all the re-
quired functional units. The functional units are connected
to the interconnection network by calling connect routines
in bus objects. The creation of sockets and the signals re-
quired by them is done automatically and dynamically from
within each functional unit as they are connected to buses
as shown in the code excerpt below (line numbers have been
added to the code in this excerpt for commenting purposes).

0: NetControl* nc = new NetControl("NC");

1: Bus* bus1 = new Bus("Bus1");

2: Bus* bus2 = new Bus("Bus2");

3: Matcher* m1 = new Matcher("M1",clk);

4: bus1.insertOperand(m1);

5: bus1.insertData(m1);

6: bus2.insertData(m1);

Line 0: Create the interconnection network controller “nc”.
Lines 1 and 2: Create two new buses in the interconnection
network and connect the buses to the network controller.
Line 3: Create a matcher functional unit “m1”.
Line 4: Create an insocket for the operand register of m1,
create signals for connecting the socket to m1, and connect
the socket to m1 and the interconnection network controller.
Line 5: Create an insocket for the data register of m1, cre-
ate signals for connecting this socket with m1, and connect
the socket to m1 and the interconnection network controller.
Line 6: The data insocket already exists, so just connect
this socket to the interconnection network.

FunctionalUnitMatcher

Compare

Counter

Timer

GenReg

 . . .

CRC

FIFO

RandomGen

MMU

HEC

FuBaseSC_MODULESocket

OutSocket

TriggerSocket

InSocket

SocketManager

NetControl

Figure 5: Class hierarchy of the TACO SystemC
simulator framework.

As we wanted our simulator to be easily expandable, we
early on decided to use inheritance as a structuring mecha-
nism. The simulator (as seen in figure 5) has parent classes
that encompass all the mutual features of the subclasses,
and thus the subclasses are made reasonably simple by uti-
lizing inheritance. Essentially the leaf classes only contain
the implementation of the functionality, and all functional-
ity dealing with the socket interface is implemented in the
base class FunctionalUnit.

However, early on we noticed that this kind of implementa-
tion technique seems to be actively discouraged in SystemC
version 1.0.1. A simple use of inheritance caused a core
dump. After much debugging we were finally able to isolate
the cause of the problem into the constructors of our func-
tional unit classes. The constructor for an object of class
module is declared as SC CTOR(module) in SystemC. This is
expanded to

typedef module SC CURRENT USER MODULE;

module(sc module name);

The first line defines a type name alias, that we will re-
turn to below. The second line is interesting. It declares a
constructor for objects of class module that takes an anony-
mous sc module name object as a parameter. The life-time
of the object is the scope of the constructor and it is used to
push the current module onto the simulation context stack.
This makes sure that all ports declared in the class are at-
tached to the correct instance of class module in the sim-
ulator. So when building the inheritance hierarchy with
sc module as the base class, we must make sure that all
the parent classes are instantiated within the scope of the
correct sc module name object. This can be achieved by ad-
hering to the following convention: Each non-leaf class must
have a default constructor (a constructor with empty argu-
ment list). However a second problem still remains. This
has to do with the first line with the typedef, which declares
the type SC CURRENT MODULE to be an alias for the name of
the current module. This type is needed in macros that are
used to connect the execution of a method to the correct
simulation context. However since non-leaf classes are cre-
ated with the default constructor the constructor will not
define SC CURRENT MODULE and thus the program will fail to
compile. We have resorted to C++ templates to overcome
this particular problem.

We thus implemented a multi-level class hierarchy, with
the concrete functional unit implementation classes as leaf-
classes and two intermediate levels before the SystemC level
(the sc module class). The top-level class (FuBase in figure
5) is an abstract class1 that defines the interface to the func-
tional unit classes. The second-level class FunctionalUnit

is a template class that contains the common functionality of
the functional units. It is also used to set SC CURRENT MODULE

to the correct type. Conceptually the template class Func-
tionalUnit together with the class FuBase forms the interface
that all Functional units support.

The following are the class declarations of the three-level
class hierarchy (see figure 5):

class FuBase: public sc module
{...};

template <class CB> class FunctionalUnit:
public FuBase{

typedef CB SC CURRENT USER MODULE; ...};

class Matcher: public FunctionalUnit<Matcher>
{...};

5. CONCLUSIONS
In this paper we have proposed a C++ simulation framework
for TTA protocol processor architectures based on SystemC.
As mentioned in the introduction most of the commercial
protocol processor architecture offerings are multiprocessors
with general purpose processors as the computing elements.
Our approach has more in common with application specific
processors (ASIP) in that we try to provide hardware im-
plementations of frequently occurring operations. However,
in contrast to ASIP, our hardware operations encapsulate
much more functionality than the 2-3 assembler instructions
typically found in ASIP operations.

Two proposals from academia should be mentioned. In [7] a
protocol processor architecture optimized for internet proto-
cols is proposed. The emphasis in the optimization is on the
handling of the state table. The processor contains a special
unit to handle jumps efficiently. In contrast the TACO pro-
cessor is more like a pipelined processor. The programmer
has to schedule the jumps. In [6] another programmable
protocol processor architecture is proposed. Here the idea
is that each layer of the protocol is processed in a separate
stage. The data flow is thus organized according to lay-
ers. In our approach something similar could be achieved
by having one bus for each layer in the protocol stack.

Our next goal is to further improve our development method,
sketched in section 3. This includes both making the design
steps more precise and including estimates of physical pa-
rameters into the process. First steps for estimating physical
parameters and maximum clock speed for the architecture
from the system level have been discussed in [8].

6. ACKNOWLEDGMENTS
Financial support for this work from the Nokia foundation
and the HPY research foundation is gratefully acknowledged
by the first author.
1A class that cannot be instantiated.

7. REFERENCES
[1] H. Corporaal. Microprocessor Architectures - from

VLIW to TTA. John Wiley and Sons Ltd., Chichester,
West Sussex, England, 1998.

[2] B. P. Douglass. Real-Time UML: Developing Efficient
Objects for Embedded Systems. Addison-Wesley, 2000.

[3] International Telecommunication Union,
Telecommunication Standardization Sector. ITU-T
Recommendation I.610: B-ISDN Operation and
Maintenance Principles and Functions, 1993.

[4] M. Kohler. NP complete. Embedded Systems
Programming, 13(12):45–60, November 2000.

[5] S. Y. Liao. Towards a new standard for system-level
design. In Proceedings of the Eighth International
Workshop on Hardware/Software Codesign, San
Diego, CA, USA, May 2000.

[6] D. Liu, U. Nordqvist, and C. Svensson. Configuration
based architecture for high speed and general purpose
protocol processing. In Proceedings of the IEEE
Workshop on Signal Processing Systems (SiPS’99),
Taiper, Taiwan, October 1999.

[7] Y. Ma, A. Jantsch, and H. Tenhunen. A
programmable protocol processor architecture for high
speed internet protocol processing. In Proceedings of
the 18th IEEE NORCHIP Conference, pages 212–216,
Turku, Finland, November 2000.

[8] T. Nurmi, S. Virtanen, J. Isoaho, and H. Tenhunen.
Physical modeling and system level performance
characterization of a protocol processor architecture.
In Proceedings of the 18th IEEE NORCHIP
Conference, pages 294–301, Turku, Finland, November
2000.

[9] Open SystemC Initiative. http://www.systemc.org.

[10] B. Stroustrup. The C++ Programming Language.
Addison-Wesley Publishing Company, Reading,
Massachusetts, USA, 3rd edition, 1997.

[11] D. Tabak and G. J. Lipovski. MOVE architecture in
digital controllers. IEEE Transactions on Computers,
29(2):180–190, February 1980.

[12] S. Virtanen. On communications protocols and their
characteristics relevant to designing protocol
processing hardware. Technical Report 305, Turku
Centre for Computer Science, Turku, Finland,
September 1999.

[13] S. Virtanen, J. Lilius, and T. Westerlund. A processor
architecture for the TACO protocol processor
development framework. In Proceedings of the 18th
IEEE NORCHIP Conference, pages 204–211, Turku,
Finland, November 2000.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

