A Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and Design
Sungjoo Yoo Gabriela Nicolescu Damien Lyonnard Amer Baghdadi Ahmed A. Jerraya

SLS Group, TIMA Laboratory
46 Avenue Elix Viallet, 38031 Grenoble, France
{Sungjoo.Yoo,Gabriela.Nicolescu,Damien.Lyonnard,Amer.Baghdadi,Ahmed.Je@ayag.fr

Abstract (remote procedural call) and cycle-accurate communication [8][9].
In [13] and [14], interfaces of mixed-level cosimulation are pre-

cols and abstraction levels, the system specification is described byS€nted between protocol-fixed communication and cycle-accurate
heterogeneous components in terms of communication protocolsCommunication [13] and protocol-neutral and protocol-fixed com-
and abstraction levels. To adapt each heterogeneous component tghunication [14]. In system synthesis, a bus wrapper, a processor
the other part of system, we present a generic wrapper architecturd€MPlate, or a protocol transducer is used to adapt a communica-
that can adapt different protocols or different abstraction levels, or 10N protocol of reused component to that of on-chip bus [4][6][7].
both. In this paper, we give a detailed explanation of applying the In [12], COSY communication IP’s use a set of specific wrappers
generic wrapper architecture to mixed-level cosimulation. As pre-

depending on the combinations of HW-SW mapping.
liminary experiments, we applied it to mixed-level cosimulation of Previous approaches to the usage of wrappers have limitations
an IS-95 CDMA cellular phone system.

In communication refinement with multiple communication proto-

in that their application is limited (1) to either of simulation (e.g.

BFM, BCASH, [13], and [14]) or synthesis (e.g. on-chip bus wrap-
1 Introduction per, [15], [16]), (2) to a specific pair of abstraction levels: e.g.
BFM (between functional and cycle-accurate) and BCASH (be-

In de5|gr'1|ng' embe_dded mu_Itl-processor .SOCS (sys'tems-on-chlp),tween RPC and cycle-accurate), or (3) to a set of specific wrappers
communication refinement is one of crucial tasks since the com- [12]

munication implementation can have significant impact on system
performance in terms of runtime, area, power consumption, etc.
[1][2][3]. Itis also a challenging task since complex functional and
communication requirements of current embedded SoCs require
application-specific processors (e.g. CPU’s, DSP’s, IP’s, etc.) and
high-performance/complex communication networks (e.g. giga byte
level communication bandwidth, multi-point master/slave commu-
nication, etc.).

To ease the complexity of communication refinement, most of t
current system design methods adopt design reuse and usage o?
multiple abstraction levels of communication [4][5][6][7][8][9]. In
such design methods, during communication refinement, the sys
tem specification consists bEterogeneous componentis terms
of communication protocols and abstraction levels. For instance, 2 Generic Wrapper Architecture
since reused components such as IP’s can have their own commu- .) .
nication protocols that have already been fixed, the system speci-ln our system design flow, we represent the system .W'th a hier-
fication, where IP’s are connected with each other via a common &rchical network omodules A module consists dbehaviorand =~
communication resource (e.g. on-chip bus), has multiple commu- port(s). Modules are connected with each other by connecting their
nication protocols. System refinement with multiple abstraction POrtS viacommunication channels(in short, channels). The be-
levels can give an intermediate system specification that consists thaworal part of the module calfsort functions to communicate
sub-systems or components at different abstraction levels. with other modules.

To integrate heterogeneous components within a system, wrap-3 1 Module and Wrapper
pers have been widely used for simulation and synthesis [4][8][9]) L
[10][11][22][13][14]. In simulation, for instance, BFM (bus func- We use 2 wrapper to separate behavior and communication. To
tional model) encapsulates a functional model with a cycle-accurate P& SPecific, we use a wrapper for a module when the module is

interface [10][11]. BCASH (bus-cycle accurate shell) adapts RPC connected with a channel that ha_s (1) a different abs;raction level
than that of module and/or (2) a different communication protocol

than that of module. The concept of using wrappers is similar to
the one used in VC (virtual component)-based design [6].

We abstract the wrapper using a concepinéérnal port and
external port. The wrapper is composed of (1) an interface made
of two sets of ports (internal ports and external ports) and (2) the
behavior of wrapper. Figure 1 exemplifies a module and its wrap-
per. In Figure 1 (a), the external port is connected to the external

Compared to them, our contribution is to presesir@le generic
wrapper architecture that is applicable (1) to both simulation and
synthesis and (2) to various combinations of abstraction levels/
communication protocols. In this paper, we present a generic wrap-
per architecture and explain the details of applying the architecture
fo mixed-abstraction-level (in short, mixed-level) cosimulation. Its
application to synthesis is presented in [17].

This paper is organized as follows. In Section 2, we introduce
e generic wrapper architecture. In Section 3, we present our de-
ign flow. We explain the application of generic wrapper architec-

ture to mixed-level cosimulation in Section 4. In Section 5, we give
“experimental results. We conclude this paper in Section 6.

Channels
{ o] 0 >0
M, 4
L] L +—Internal port @
a
gy :

LA — External L.
port —— —_ Communication
Q refinement

<—— Wrapper

(a) Module with a wrapper (b) Simplified representation il
Figure 1: Module with a wrapper. P
M3
Internal External (®) o 1
Ports Ports
«p| Shannel | Port | Physical C ication Network |
Port Adapter Pj/Lj) ysical Communication Networ
Module PyL, Module Internal Channel [port Figure 3: A simple view of commmunication refinement.
behavior Adapter (4> Comm. 4> aganter (RL, Channels
Port Media concept) required for the generation of mixed-level cosimulation
PiL) Channel [Port interfaces.
*® Adapter [(P/L)
3 Communication Refinement of Heterogeneous Multi-
Figure 2: Generic wrapper architecture. Processor SoCs

channel and the internal port is used by the behavioral part of mod- 3-1 Design Flow based on Separation between Behavior

ule to communicate with the external channel. We use two kinds of and Communication

notation to represent a module with a wrapper as shown in Figure 1 Figure 3 shows a simple view of communication refinement. In
(a) and (b). The simplified representation in Figure 1 (b) is used to our design flow, communication refinement means implementing
represent the correspondence relation between internal and exterwrappers and communication channels fromahstract architec-

nal ports. As shown in Figure 1 (b), when no wrapper functionality ture down to aphysical architecture. As shown in Figure 3 (a), in

is required between an internal port and the corresponding externalan abstract architecture, modules with wrappers are connected with

port, a single port is used in the simplified representation. each other via channels. After communication refinement, a phys-
. . ical architecture is implemented where wrappers in the abstract
2.2 Generic Wrapper Architecture architecture are implemented in the forms of hardware (commu-

Figure 2 shows the generic wrapper architecture. It consists of nication coprocessors (CC's)) and/or software (operating systems
internal and external ports on either side, module adapter (MA), (OS’s)) depending on whether the module is mapped on a proces-
channel adapter (CA), and an internal communication media (ICM). sor or on a HW component (e.g. HW IP). In the final architecture,
For each case of adapting different protocols or different ab- we apply the generic architecture to the hardware part of wrapper.
straction levels, an instance of the generic wrapper architecture is In our design flow, modules can be refined (in our termsg-
constructed. In the instance, ports can be given any protocols/ ab-ule refinementcan be performed) independently of their connected
straction levels (in the figure, different protocols/abstraction levels channels. Channels can also be refined (in our tectmannel re-
are exemplified witiP/L;, Pi/L;, P;/L;, Pi/Li andPi/Ly). finement can be performed) independently of module refinement.
Internal communication media (ICM) is used to transfer data The difference between (refined) module and (refined) channel,
between module adapter and channel adapter(s). Depending on thée. protocols and/or abstraction levels is adapted by the wrapper.
abstraction levels of module, the ICM can be (1) a function call re- Since we use hierarchical modules, the separation enables that sub-
lation (when the module is at system or architecture level) or (2) an Systems can also be refined independently of the other part of sys-
internal bus (when it is at RT level). Details of abstraction levels tem.

and ICM will be presented in Section 3.2 and Section 4, respec- In our design flow, we have an assumption on communication
tively. refinement as follows.
2.3 Our Contribution Assumption 3.1 When a module is refined, all the internal ports

Compared with related work, our contribution is as follows. Com- are refined. Thus, the abstraction levels of all the internal ports of
paring with optimization techniques in communication refinement & module are the same.

[1][2][3], our work is complimentary to them since wrapper gen-)) . .

eration (for simulation and/or synthesis) is a part of architecture 1 1iS assumption restricts the generality of our wrapper. How-
generation that is performed after the communication architecture €Ver: 1t makes it easier to automatically generate the wrappers. For
and the parameters of communication (e.g. the architecture of on-inStance, when adaptation is required between a module and chan-
chip bus, the priority of bus access, etc.) have been determined byn€!(S), it is easier to manage a single module adapter to adapt them
the optimization techniques. Compared with mixed-level cosim- N the automatic wrapper generation than to distribute the adapta-
ulation techniques [18][19][20], our wrapper architecture enables iOn on several adapters (in a port-by-port manner).

many-to-many correspondence between internal and external POrS3 5 Abstraction Levels of Communication

in the conversion of abstraction levels/communication protocols ~ T .

while one-to-one correspondence is assumed in [18][19][20]. When To represent system communication, we use three abstraction levels
compared with several features (interface concept and BCASH) of Of communication: system level (SL), architecture level (AL), and
mixed-level cosimulation in SystemC v2.0, our work is to automat- register transfer level (RTL).

ically generate interfaces of mixed-level cosimulation based on the

generic architecture while SystemC gives primitives (e.g. interface

Communication Coprocessor
r s B
Processor 0x700 CA_in
adapter enable(FIFO) L ge,
> Ack
ready@@ @ [*r—Data
mESET @@ >® ox7004[CA_in
FIQ N & [endble HSK T Res
WAIT_N [#—Data
ARM7 W Q 'eady®@ B ff-o-
Core ?A\?z:gf ox7o008| CA_out
DAL [enbie ™7
e o] | e = @ABlR)
A
o {FFO 1 Data
(c) Channel refinement (SL to AL) & module refinement (AL to RTL) Controller CA_out
Data | %925 (HsK)
Tx RXx Enc Dec ok signal enable
\ 68000 \ \ 68000 \ \ ARM7 \ \ ARM7 \ — @@R)
11711 11711 EEE [TT] [Rea
(CiC; (ciC: cc cC $ {FFO 1 Data
Physical Communication Network
(d) Register transfer level architecture Figure 5. Communication coprocessor of an ARM7 processor in

Figure 4: Module and channel refinement of 1S-95 system the 1S-95 system.

At system level, modules communicate with each other nication coprocessors to adapt their own communication protocol
changingmessage®ver abstract interconnections, i.e. SL ch (e.g. AMBA of ARM processors [24]) to the protocols of chan-
nels. There is no specific communication protocols for SL ¢ nels at RT level. As previously mentioned, note that at RT level
nels. Thus, SL channels provide generic functicsendandre- we apply the generic wrapper architecture to the hardware part of
ceivefor the SL ports to access the SL channels. The messa(wrapper implementation, i.e. the implementation of communica-
no specific data type, but it hagianeric data type tion coprocessors.

At architecture level, each of AL channels is given its own com- .
munication protocol (e.g. FIFO, message queue, handshake, etc.3-4 Wrapper for Synthesis
and the parameters (e.g. FIFO size). The data transferred via thein the RTL architecture, the communication coprocessor performs
AL channel have fixed data types (e.ot , float , etc.). The protocol conversion between the protocol of processor and those
AL channel provides channel functions specific to the given pro- of communication channels connected with the processor. In this
tocol (e.g. fifaavailable, fifawrite, etc.) for the ports to access case, itis an instance of the generic wrapper architecture for synthe-
them. In terms of module, at architecture level, each module is sis, i.e. for the purpose of protocol conversion between processor
mapped on a processor. At RT level, processors are interconnectecand communication network.
via their communication coprocessors and physical communication Figure 5 shows an example of communication coprocessor for
network. For more details on the abstraction levels of communica- an ARM7 processor where module Enc is mapped in Figure 4 (d).
tion, refer to [21]. In instantiating the communication coprocessor from the generic
. wrapper architecture in Figure 2, module adapter, in this case, pro-
3.3 Module and Channel Refinement cessor adapter performs (1) address decoding (to enable channel
Figure 4 shows snapshots of module and communication refine-adapters (CA's)) and (2) interrupt management (with interrupt re-
ment in the case of an 1IS-95 CDMA cellular phone system design quests coming from CA’s). The CA plays a role of protocol-specific
[22][23]. Figure 4 (a) shows the system description at system level port (e.g. a port to access an on-chip bus at RT level) to commu-
that consists of seven modules (seven rectangles): two vocodernicate with an RTL channel in the physical communication net-
modules (encoder, Enc and decoder, Dec), CDMA modem trans- work. Note that, in the communication coprocessor, we use an
mitter (Tx) and receiver (Rx), call processor (CaP), and two mod- internal bus as the internal communication media (ICM) of the
ules for the base station and the user interface of cellular phone. Ingeneric wrapper architecture. For more details of architecture and
the modules, small rectangles represent ports and arrows represenrapper generation at RT level, refer to [17][25].
channels. In the figure, since all the modules and channels are at
system level, no wrapper is required. 4 Wrapper for Mixed-Level Cosimulation

Figure 4 (b) shows an example of module refinement, where
module Enc, Dec, Tx, and Rx are refined to architecture level. In
this case, since the channels connected to the refined modules are
still at system level, each of the four modules requires a wrapper To apply the generic wrapper architecture to mixed-level cosimu-
to adapt internal AL ports and external SL channels. Figure 4 (c) lation, first, the functionality of wrapper should be defined. Then,
shows an example of channel and module refinement from the caseeach part of the functionality should be mapped to module adapter
of Figure 4 (b). In the figure, all the channels are refined to ar- and channel adapter(s). Interms of functionality, the wrapper trans-
chitecture level and the four modules are refined to RT level. In forms channel access(es) via internal port(s) to channel access(es)
this case, module base station and user i/f have wrappers to adapvia external port(s). To do that, from the internal port to the external
internal SL ports and external AL channels. The four modules at port, it has the following functional chain.
RT level have wrappers to adapt internal RTL ports (i.e. physical . .
pins of processors) and external AL channels. In this case, module ~ ® Intérnal port — channel interface — channel resolution — pro-
CaP is assumed to be refined to architecture level. Thus, it does not tocol/data conversion — calling external port functions — ex-
require a wrapper. ternal port

Figure 4 (d) shows a physical architecture at RT level for the
four processors. In the RTL architecture, processors have commu-e

4.1 Functionality of Wrapper in Mixed-Level Cosimula-
tion

From the viewpoint of internal port, channel functions (e.g.
_available, fifawrite, etc.) are required for the internal port to

RTL AL SL

SL
SL. (160 FAg_RTL, hs, 1 16} Bt
. (160s) ! SL, (11s, 1s)
Enc | AL fifo, 115 Tx %. Tx
=t !
— e 1
@ e i @
From - e "
module Nternal Extema! Internal External
behavio i, RTL channel _ i |Port
of Enc RTL_h (hs, 16b) fifo, short | |(AL) ca |Por| send
Por 1 |(SL
11s, 1s (S'-% _MA (11s, 1s)
(11s, 18] MA_SL::send AL channel | [Port, MA
AL_fifo) i (fifo, short) hs, short! |(AL))
; Po receive
CA i
b Port, RGO TS
) (b) fifo, short | |(AL) (160s)
Figure 6: Case 1: Module at system level.
1 class MA_SL 1 class CA_SL_RTL_HS // CA1 . (b) .
2 : public sc_module, 2 : public sc_module, Figure 8: Case 2: Module at architecture level.
3 publicSL_if //sendiffis declared. 3 public SL_RTL_hs_if // RTL_hs_wr i/f
4 { public: 4 { public:
2 S”’"’Eit—fiILﬁhS*fci’Zl; 2 voifl F;Tk_hs_wr(ém dfga)é . at RT level! Figure 6 (b) shows the wrapper instance in this case.
N = < > : . .
5 SeporssR AR : 6 midam= (e byel6y) data Enc module sends a message, via internal Port; at system
8 // Implementation of send i/f 8 /I write w/ handshake protocol at RTL level, to the module adapter in the wrapper. Note that, in this case,
io Voglsfnd(struct msg) { 9 Portl.data=rtl_data; Portl.req =1; the internal communication media (ICM) in the wrapper architec-
11 momemtis. msgyoice, 11sizeof(nitl Parireqor o0 ==L ture becomes a function call relation (the MA calls two functions,
12 12 3 ’ hs RTL_wr and fifa. AL _wr) since the abstraction level of module
ii fCA(_1->_F<E L__hlsl_v_vr(d)ll)I; 1 write tgACZAlls ol c:n c'afsfs CA_(SL_dAL_)F{IFO EnC is system level. In this example, internal goott» at system
or(int i=0; i<11 ;i++) // write to 14 void AL_fifo_wr(int data, H H H
15 CA2->AL_fifo, write(d2[i): 15 al data= (shomata level does not require th_e wrapper since internal and external ports
16 } 16/l call an AL port function are at the same abstraction level.
17 . 17 Port2.fifo_write(al_data); Figure 7 (a) shows the behavior of module adapter (written in
18} SystemC [8]) in this casg.First, to receive the message from the
() Module adapter code (b) Channel adapter code internal port at system level, it provides internal pBetrt; with an

Figure 7: Examples of module adapter and channel adapter. ~ SL channel function calleMASL::send as shown in the figure
(line 9-16). The module Enc calls the function \Rart; to send

exchange data. Channel interface provides the internal port with a message to the module adapter. When the function is called, the
them. Channel resolution is to map the correspondence betweenmodule adapter performs channel resolution by splitting the mes-
internal and external ports. For instance, in the case that an SL sage into onshort -type data item called1 and 11short -type
channel is refined into two AL channels (e.g. fifo and handshake data calledi2 (line 10-11 in Figure 7 (a)). It sends the split data to
channels), one access (e.g. send function call) to the SL channel istwo channel adapters (line 13-15). In general, depending on the
mapped to two accesses (e.g. Moite and hswrite function calls) correspondence between internal and external ports, the module
to the two AL channels. Protocol conversion is required when inter- adapter performs data splitting/merging. In this case, since one
nal and external ports require different protocols. Data conversion gutput internal port corresponds to two external ports, the module
is also required when two different abstraction levels use different adapter performs data splitting.
data types to represent the same data. For instance, a data item The channel adapter receives the data (wheshigmnel adapter
ofint type at architecture level can be represented by a data type,function is called) and performs protocol/data conversion. Then, it
logic _vector atRT level. To exchange data via external port(s), writes/sends the data/message to the channel via the external port.
port functions of external ports should be called by the wrapper. |n the case oA in Figure 6 (b), when its channel adapter func-
tion (RTL_hswr) is called by the module adapter (line 13 in Fig-
ure 7 (a)), the data type of received data is converted into 16-bit
In this subsection, we present how to apply the generic wrapper sc _bv<16> (line 6 in Figure 7 (b)), and writes it to the RTL chan-
architecture to all the possible combinations of abstraction levels nel according to the handshake protocol of RTL pBrst; (line 9-
in mixed-level cosimulation. In the case of three abstraction levels 11 in Figure 7 (b)). Channel adapter function@h. (AL _fifo_wr)
(system level, architecture level, and RT level), the following three converts the data type inhort (line 15 in Figure 7 (b)), and
cases include all the possible combinations of abstraction levels: writes the data to the AL channel via AL port functidPort2.
(Case 1) module at system level, (Case 2) module at architecturefifo _write (line 17 in Figure 7 (b)).
level, and (Case 3) module at RT level.

4.2 Cases of Wrapper Instantiation

4.2.2 Case 2: Module at Architecture Level

4.2.1 Case 1: Module at System Level Figure 8 (a) shows a case where Enc (Tx) module is at architecture
Figure 6 shows an example of wrapper when a module is at systemlevel (system level). There is an SL channel between Enc and Tx
level and external ports at possibly different abstraction levels (with modules. Figure 8 (b) shows the wrapper instance. In this case,
communication protocols). In Figure 6 (a), Enc module inthe IS-95 note that the internal communication media (ICM) is a function
system is at system level and Tx module is at RT level. There are
two channels between the two modules: one (a fifo channel with Sh;r't”tthz '(’ji;fa%sfﬂ’u'fg‘Clg’ze’;ﬁr?;;?;%fngosiﬁiﬁdilgdtgf‘; E;ll;g;d?r? i)”upr“t 160
11 data items ohort type) at architecture level and the other (a impler’r):gntation, we pac?(ed 172 bit data into 11 short—typipdata (cadied).

handshake channel with one data item of 16kmic _vector) 2Note that we use interface concept supported in SystemC v2.0 to explain channel
functions (of module adapter) and channel adapter functions.

Enc is RT level, we use an internal bus exemplified in Figure 5 as
the internal communication media (ICM) of the wrapper architec-
ture.

In Case 3, the processor adapter performs the functionality of
channel interface for the processor. As explained in Section 3.4,
for instance, if the processor is an ARM7 processor, the processor

Internal Bus (ICM) adapter is connected with the processor with AMBA protocol [24].
0 CA, : It can also perform _interrupt management depen_ding on whether
fifo, 16b the processor uses interrupt or not. For the functionality of chan-
Por nel resolution, the processor adapter performs address decoding of
1 CA, (RTC “hs, 16b memory accesses from the processor to enable channel adapters.
Processar proci— In the case of Figure 9 (b), for the two RTL output pofert;
dapter Ll CA PO'% I andPort», the processor adapter receives data (located at a mem-
3 |SLIT (1608) ory area) from the processor and sends them to the corresponding
Port channel adaptersCA; and/orCAz). The channel adapters write
« CA, (Al Ths, short them to RTL channelsCA 3 receives messages from the SL chan-

nel via Ports at system level and sends them (structures of 160
(b) short -type data located a memory area) to the processor adapter.

Figure 9: Case 3: Module at RT level. FromPort, at architecture level (vi&€A4), the processor adapter

receivesshort -type data. When data arrive at external port(s)

call relation since the abstraction level of module Enc is architec- (€.9. when ahort -type data item arrives &tort,), the processor

ture level. In the figure, the module adapter provides three internal adapter can trigger an interrupt to the processor to notify the data

ports (at architecture level) with AL channel functions for fifo and arrival after receivingeady signal(s) from the channel adapter(s)

handshake protocols. Channel adapfek, receives data fromthe ~ corresponding to the external port(s) [17].

module adapter, constructs messages (structuressifdrl -type

data and ashort -type data) and sends them to the SL channel 4.3 Flow of Generating Cosimulation Models

via external portPort; (at system level). In this case, the mes- We are developing an automatic tool (callsthpper generator)

sage construction corresponds to data conversion (to the data typeo generate wrappers for both mixed-level cosimulation and synthe-

of SL channel, i.e. the generic type of message). Since one exter-sis. To construct the wrapper automatically, we use a library called

nal port Port, at system level) corresponds to two internal output wrapper library which consists of two sets of components: one

ports Port; andPort, at architecture level), the module adapter for module adapters and the other for channel adapters. Each mod-

performs data merging with the data received from the two internal ule has at least one module adapter at each of the abstraction levels.

ports. Depending on the possibility of module refinement (e.g. possibility
of channel splitting or merging), it can have more than one module
4.2.3 Case 3: Module at RT Level adapter at an abstraction level. In the case that the wrapper func-

We apply the generic wrapper architecture to both simulation and tionality is not required between internal and external ports (e.g.
synthesis. The application to both is possible since wrappers in Port2 of module Enc shown in the case of Figure 6), correspond-
simulation and synthesis perform a similar function: adapting the ing internal ports are ignored in the interconnection with the mod-
module to the external world by protocol conversion or by trans- ule adapter. Each communication protocol has also one channel
forming channel accesses from (an) abstraction level(s) to (an)otheradapter for each pair of the abstraction level of module and that of
abstraction level(s). Thus, when both applications of the generic its external port. Note again that the internal communication me-
wrapper architecture meet each other, to be more specific, when adia (ICM) in the wrapper architecture can be (1) a function call
module requires a wrapper for both protocol conversion and mixed- relation or (2) an internal bus depending on the abstraction level of
level cosimulation, we can have a wrapper where high-level simu- module. This scheme allows to build any wrappers starting from
lation models and simulation models of synthesizable components only a few number of basic components, i.e. module adapters and
are involved. Case 3 described in this section is the case. Thechannel adapters.
advantage of using such a wrapper is to obtain as accurate timing ~ Figure 10 shows the flow of our cosimulation tool to gener-
accuracy as possible in mixed-level cosimulation using simulation ate (mixed-level) cosimulation models along with communication
models of synthesizable components. ref_lnement from the |n|_t|al abstr_act architecture, intermediate ar-
Figure 9 (a) shows a case where Enc and Tx modules are atchitecture, to the physical architecture. In the flow, we use two
RT level, CaP module at architecture level, and user i/f module at Simulation libraries: one (calledosimulation library) for high-
system level. Enc module is connected with four channels (two level simulation models of modules and channels (at system level
at RT level, one at architecture level, and one at system level). and architecture level) and the other (caltstithesizable code i-
At RT level, Enc module is substituted by a processor where it brary) for simulation models of synthesizable components (at RT
is mapped. Figure 9 (b) shows the processor and the wrapper in-level). Our c05|m_ulat|0n to_oI select_s, for each module/c_hann_el in
stance. In the figure, the wrapper consists of processor adapter andbstract/intermediate/physical architectures, an appropriate simula-
channel adapters (with three different abstraction levels). Such ation model from the libraries according to the abstraction level of
Composition is possib|e since we app|y the generic wrapper archi- mOdU'e/.Chann.el. Then, it genera;es CQSImulatlon codes with the se-
tecture both to the wrapper for synthesis, i.e. the implementation of lected simulation models in possibly different languages (e.g. Sys-
the communication coprocessor and to the wrapper for mixed-level ttmC, SDL, VHDL, etc.). _ _ _ .
cosimulation. In terms of functionality, the processor adapter ofthe ~ With the initial abstract architecture, high-level simulation mod-
communication coprocessor (exemplified in Figure 5) is equivalent €ls are used in cosimulation. During incremental communication
to the module adapter of the wrapper for mixed-level cosimulation refinement, we obtain intermediate architectures where synthesiz-
since they perform channel resolution (the address decoding in the@ble components and high-level simulation models coexist, simu-
processor adapter is to select channels). As previously mentionedlation models of both libraries are used in mixed-level cosimula-
in Section 2.2, in this case, since the abstraction level of module tion. In Figure 10, shaded regions represent simulation models of

Commun
& modul

High-level

simulation

Abstract
Architecture

Cosimulation
library

ication

refineme|
Intermediate [1]
Generated
by wrapper
generator!
[2]
Synthesizable [3]
code library
[4]

[5]

Figure 10: Flow of generating cosimulation models. [6]
synthesizable components. To generate wrappers for mixed-level
cosimulation, we use a wrapper generator for a module that re- 7
quires a wrapper as exemplified in Figure 10. Note that we also use
the wrapper generator to generate the communication coprocessorsis]
(explained in Section 3.4) in the part of physical architecture (inthe [9]
intermediate architecture). After communication refinement, only [10]
simulation models of synthesizable components are used to simu-
late the physical architecture at RT level.

5 Experiments [12]
As preliminary implementations, we have implemented wrappers
for two cases of mixed-level cosimulation (SL-AL cosimulation
and AL-RTL cosimulation) and applied them to the mixed-level
cosimulation of the 1S-95 system. In cosimulation between sys- [14]
tem level and architecture level, we implemented SL models in
SDL [26] since SDL provides the functionality of SL channel: infi-

nite fifo channels and send/receive functions. We implemented AL [15]
models in SystemC [8] with its channel models that provide finite

fifo channels. In this case, we implemented wrappers for Case 1[1¢]
and 2 since modules are at either system level or architecture level.

In cosimulation between architecture level and RT level, we [17]
use SystemC channels for both AL channels and AL modules, and
instruction set simulators (ISS’s) of processors as RTL simulation (18]
models. In this case, we implemented wrappers for Case 3 since
all the channels are at architecture level while modules can be at
RT level or architecture level. In the case of mixed-level cosimu-
lation including RTL models, simulation speed varies significantly
depending on how many RTL modules are simulated. Thus, the
designer can have trade-off between simulation runtime and sim-
ulation accuracy in mixed-level cosimulation. In our RTL imple-
mentations of the 1S-95 system, we mapped four modules, Tx, Rx, [21]
Enc, and Dec on four processors, two 68000's and two ARM7’s,
respectively. By changing the abstraction levels of four modules
between architecture level (SystemC model) and RT level (ISS of
68000 or ARM7), we have obtained the variation of simulation
speed from 380KHz (all SystemC simulation at architecture level),
~1KHz (single ISS and all the other models at architecture level),
~0.5KHz (two ISS’s), to~0.25KHz (four ISS's). Further details 24
of the experiments are given in [13] (25]

[13]

[29]

[20]

[22]

(23]

6 Conclusion

To adapt heterogeneous components to the other part of system[zs]
we present a generic wrapper architecture that can adapt different

] L. Séméria and A. Ghosh,

communication protocols or different abstraction levels, or both.

In this paper, we explained the application of the generic wrapper
architecture to mixed-level cosimulation with three abstraction lev-

els of communication: system level, architecture level, and register
transfer level. We reported also on its application to mixed-level

cosimulation of an 1S-95 CDMA cellular phone system.

References

K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Communica-
tion Architecture Tuners: A Methodology for the Design of High-Performance
Communication Architectures for System-on-ChipBtpc. Design Automation
Conf, pp. 513-518, June 2000.

K. Lahiri, A. Raghunathan, and S. Dey, “Efficient Exploration of the SoC Com-
munication Architecture Design SpaceProc. Int'l Conf. on Computer Aided
Design pp. 424 — 430, Nov. 2000.

M. Drinic, D. Kirovski, S. Meguerdichian, and M. Potkonjak, “Latency-Guided
On-Chip Bus Network Design”Proc. Int'l Conf. on Computer Aided Design
pp. 420 — 423, Nov. 2000.

S. Vercauteren, B. Lin, and H. De Man, “Constructing Application-Specific
Heterogeneous Embedded Architectures from Custom HW/SW Applications”,
Proc. Design Automation Conflune 1996.

J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based Designdc.
Design Automation Confpp. 178 — 183, 1997.

C. K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P. Hardee, “Stan-
dards for System-Level Design: Practical Reality or Solution in Search of a
Question?”, Proc. Design Automation and Test in Europg. 576-585, Mar.
2000.

D. D. Gajski, J. Zhu, R. Bmer, A. Gerstlauer, and S. Zha®pecC: Specification
Language and Methodolog¥luwer Academic Publishers., 2000.

Synopsys, Inc., “SystemC, Version 2.0, available at http://www.systemc.org/.
Coware, Inc., “N2C”, available at http://www.coware.com/cowareN2C.html.

J. A. Rawson, “Hardware/Software Co-Simulatior’roc. Design Automation
Conf, pp. 439-440, 1994.

“Methodology for Hardware/Software Co-
verification in C/C++”",Proc. Asia South Pacific Design Automation Conference
Jan. 2000.

J-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Petrot, and L. Pasquier, “COSY
Communication IP’s” Proc. Design Automation Conpp. 406—-409, June 2000.

P. Gerin, S. Yoo, G. Nicolescu, and A. A. Jerraya, “Scalable and Flexible Cosim-
ulation of SoC Designs with Heterogeneous Multi-Processor Target Architec-
tures”, Proc. Asia South Pacific Design Automation Confere2661.

G. Nicolescu, S. Yoo, and A. A. Jerraya, “Mixed-Level Cosimulation for Fine
Gradual Refinement of Communication in SoC DesigPioc. Design Automa-
tion and Test in Europe2001.

R. Lysecky, F. Vahid, and T. Givargis, “Techniques for Reducing Read Latency
of Core Bus Wrappers”Proc. Design Automation and Test in Europg. 84 —

91, Mar. 2000.

Sonics, Inc., “Silicon Backplane pNetwork”,
http://www.sonicsinc.com/Pages/Networks.html.

D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic Generation of
Application-Specific Architectures for Heterogeneous Multiprocessor System-
on-Chip”, to appear in Proc. Design Automation Cgnfune 2001.

K. Hines and G. Borriello, “Optimizing Communication in Embedded Sys-
tem Co-simulation”Proc. Int'l Workshop on Hardware-Software Codesigp.
121-125, Mar. 1997.

K. Hines and G. Borriello, “Dynamic Communication Models in Embedded
System Co-Simulation”, Proc. Design Automation Confpp. 395-400, June
1997.

K. Hines and G. Borriello, “A Geographically Distributed Framework for Em-
bedded System Design and ValidationRroc. Design Automation Confpp.
140-145, June 1998.

W. O. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu, and A. A. Jerraya, “An
XML-based Meta-model for the Design of Multiprocessor Embedded Systems”,
VHDL International User’s Forum (VIUF) Fall Worksho@ct. 2000.
TIAJEIA-95A, “Mobile Station-Base Station Compatibility Standard for Dual-
Mode Wideband Spread Spectrum Cellular Systems”, 1995.

S. Yoo, J. Lee, J. Jung, K. Rha, Y. Cho, and K. Choi, “Fast Prototyping of an
IS-95 CDMA Cellular Phone: a Case StudyProc. the 6th Conference of Asia
Pacific Chip Design Languagepp. 61-66, Oct. 1999.

ARM Ltd., “ARM7 Data Sheet”,available at http://www.arm.com/
Documentation/UserMans/PDF/ARM7vC.pdf

A. Baghdadi, D. Lyonnard, N-E. Zergainoh, and A. A. Jerraya, “An Efficient Ar-
chitecture Model for Systematic Design of Application-Specific Multiprocessor
SoC”, Proc. Design Automation and Test in Européar. 2001.

F. Belina, D. Hogrefe, and A. Sarme§DL with APPLICATIONS from PRO-
TOCOL SPECIFICATION Carl Hanser Verlag and Prentice Hall International
(UK) Ltd., 1991.

available at

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

