
A Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and Design

Sungjoo Yoo Gabriela Nicolescu Damien Lyonnard Amer Baghdadi Ahmed A. Jerraya

SLS Group, TIMA Laboratory
46 Avenue F�elix Viallet, 38031 Grenoble, France

fSungjoo.Yoo,Gabriela.Nicolescu,Damien.Lyonnard,Amer.Baghdadi,Ahmed.Jerrayag@imag.fr

Abstract

In communication refinement with multiple communication proto-
cols and abstraction levels, the system specification is described by
heterogeneous components in terms of communication protocols
and abstraction levels. To adapt each heterogeneous component to
the other part of system, we present a generic wrapper architecture
that can adapt different protocols or different abstraction levels, or
both. In this paper, we give a detailed explanation of applying the
generic wrapper architecture to mixed-level cosimulation. As pre-
liminary experiments, we applied it to mixed-level cosimulation of
an IS-95 CDMA cellular phone system.

1 Introduction

In designing embedded multi-processor SoCs (systems-on-chip),
communication refinement is one of crucial tasks since the com-
munication implementation can have significant impact on system
performance in terms of runtime, area, power consumption, etc.
[1][2][3]. It is also a challenging task since complex functional and
communication requirements of current embedded SoCs require
application-specific processors (e.g. CPU’s, DSP’s, IP’s, etc.) and
high-performance/complex communication networks (e.g. giga byte-
level communication bandwidth, multi-point master/slave commu-
nication, etc.).

To ease the complexity of communication refinement, most of
current system design methods adopt design reuse and usage of
multiple abstraction levels of communication [4][5][6][7][8][9]. In
such design methods, during communication refinement, the sys-
tem specification consists ofheterogeneous componentsin terms
of communication protocols and abstraction levels. For instance,
since reused components such as IP’s can have their own commu-
nication protocols that have already been fixed, the system speci-
fication, where IP’s are connected with each other via a common
communication resource (e.g. on-chip bus), has multiple commu-
nication protocols. System refinement with multiple abstraction
levels can give an intermediate system specification that consists of
sub-systems or components at different abstraction levels.

To integrate heterogeneous components within a system, wrap-
pers have been widely used for simulation and synthesis [4][8][9]
[10][11][12][13][14]. In simulation, for instance, BFM (bus func-
tional model) encapsulates a functional model with a cycle-accurate
interface [10][11]. BCASH (bus-cycle accurate shell) adapts RPC

(remote procedural call) and cycle-accurate communication [8][9].
In [13] and [14], interfaces of mixed-level cosimulation are pre-
sented between protocol-fixed communication and cycle-accurate
communication [13] and protocol-neutral and protocol-fixed com-
munication [14]. In system synthesis, a bus wrapper, a processor
template, or a protocol transducer is used to adapt a communica-
tion protocol of reused component to that of on-chip bus [4][6][7].
In [12], COSY communication IP’s use a set of specific wrappers
depending on the combinations of HW-SW mapping.

Previous approaches to the usage of wrappers have limitations
in that their application is limited (1) to either of simulation (e.g.
BFM, BCASH, [13], and [14]) or synthesis (e.g. on-chip bus wrap-
per, [15], [16]), (2) to a specific pair of abstraction levels: e.g.
BFM (between functional and cycle-accurate) and BCASH (be-
tween RPC and cycle-accurate), or (3) to a set of specific wrappers
[12].

Compared to them, our contribution is to present asingle generic
wrapper architecture that is applicable (1) to both simulation and
synthesis and (2) to various combinations of abstraction levels/
communication protocols. In this paper, we present a generic wrap-
per architecture and explain the details of applying the architecture
to mixed-abstraction-level (in short, mixed-level) cosimulation. Its
application to synthesis is presented in [17].

This paper is organized as follows. In Section 2, we introduce
the generic wrapper architecture. In Section 3, we present our de-
sign flow. We explain the application of generic wrapper architec-
ture to mixed-level cosimulation in Section 4. In Section 5, we give
experimental results. We conclude this paper in Section 6.

2 Generic Wrapper Architecture

In our system design flow, we represent the system with a hier-
archical network ofmodules. A module consists ofbehavior and
port(s). Modules are connected with each other by connecting their
ports viacommunication channels(in short, channels). The be-
havioral part of the module callsport functions to communicate
with other modules.

2.1 Module and Wrapper

We use a wrapper to separate behavior and communication. To
be specific, we use a wrapper for a module when the module is
connected with a channel that has (1) a different abstraction level
than that of module and/or (2) a different communication protocol
than that of module. The concept of using wrappers is similar to
the one used in VC (virtual component)-based design [6].

We abstract the wrapper using a concept ofinternal port and
external port. The wrapper is composed of (1) an interface made
of two sets of ports (internal ports and external ports) and (2) the
behavior of wrapper. Figure 1 exemplifies a module and its wrap-
per. In Figure 1 (a), the external port is connected to the external



Module

Internal port

External port

Wrapper

(a) Module with a wrapper

Module

(b) Simplified representation

Figure 1: Module with a wrapper.

Port
(Ph/Li)

Port
(Pj/Lj)

Port
(Pk/Lk)

Port
(Pl/Ll)

Module
Adapter

Channel
Adapter

Module 
behavior Channels

Internal
Ports

External
Ports

Channel
Adapter

Channel
Adapter

Port
(Pi/Li)

Internal
Comm.
Media

Figure 2: Generic wrapper architecture.

channel and the internal port is used by the behavioral part of mod-
ule to communicate with the external channel. We use two kinds of
notation to represent a module with a wrapper as shown in Figure 1
(a) and (b). The simplified representation in Figure 1 (b) is used to
represent the correspondence relation between internal and exter-
nal ports. As shown in Figure 1 (b), when no wrapper functionality
is required between an internal port and the corresponding external
port, a single port is used in the simplified representation.

2.2 Generic Wrapper Architecture

Figure 2 shows the generic wrapper architecture. It consists of
internal and external ports on either side, module adapter (MA),
channel adapter (CA), and an internal communication media (ICM).

For each case of adapting different protocols or different ab-
straction levels, an instance of the generic wrapper architecture is
constructed. In the instance, ports can be given any protocols/ ab-
straction levels (in the figure, different protocols/abstraction levels
are exemplified withPh/Li, Pi/Li, Pj/Lj, Pk/Lk andPl/Ll).

Internal communication media (ICM) is used to transfer data
between module adapter and channel adapter(s). Depending on the
abstraction levels of module, the ICM can be (1) a function call re-
lation (when the module is at system or architecture level) or (2) an
internal bus (when it is at RT level). Details of abstraction levels
and ICM will be presented in Section 3.2 and Section 4, respec-
tively.

2.3 Our Contribution

Compared with related work, our contribution is as follows. Com-
paring with optimization techniques in communication refinement
[1][2][3], our work is complimentary to them since wrapper gen-
eration (for simulation and/or synthesis) is a part of architecture
generation that is performed after the communication architecture
and the parameters of communication (e.g. the architecture of on-
chip bus, the priority of bus access, etc.) have been determined by
the optimization techniques. Compared with mixed-level cosim-
ulation techniques [18][19][20], our wrapper architecture enables
many-to-many correspondence between internal and external ports
in the conversion of abstraction levels/communication protocols
while one-to-one correspondence is assumed in [18][19][20]. When
compared with several features (interface concept and BCASH) of
mixed-level cosimulation in SystemC v2.0, our work is to automat-
ically generate interfaces of mixed-level cosimulation based on the
generic architecture while SystemC gives primitives (e.g. interface

M1

M1 M3

OS

CC CC

M1

M3

µP

IP

Physical Communication Network

Channels

M2

(a)

(b)

Communication
refinement

Figure 3: A simple view of commmunication refinement.

concept) required for the generation of mixed-level cosimulation
interfaces.

3 Communication Re�nement of Heterogeneous Multi-
Processor SoCs

3.1 Design Flow based on Separation between Behavior
and Communication

Figure 3 shows a simple view of communication refinement. In
our design flow, communication refinement means implementing
wrappers and communication channels from anabstract architec-
ture down to aphysical architecture. As shown in Figure 3 (a), in
an abstract architecture, modules with wrappers are connected with
each other via channels. After communication refinement, a phys-
ical architecture is implemented where wrappers in the abstract
architecture are implemented in the forms of hardware (commu-
nication coprocessors (CC’s)) and/or software (operating systems
(OS’s)) depending on whether the module is mapped on a proces-
sor or on a HW component (e.g. HW IP). In the final architecture,
we apply the generic architecture to the hardware part of wrapper.

In our design flow, modules can be refined (in our terms,mod-
ule refinementcan be performed) independently of their connected
channels. Channels can also be refined (in our terms,channel re-
finement can be performed) independently of module refinement.
The difference between (refined) module and (refined) channel,
i.e. protocols and/or abstraction levels is adapted by the wrapper.
Since we use hierarchical modules, the separation enables that sub-
systems can also be refined independently of the other part of sys-
tem.

In our design flow, we have an assumption on communication
refinement as follows.

Assumption 3.1 When a module is refined, all the internal ports
are refined. Thus, the abstraction levels of all the internal ports of
a module are the same.

This assumption restricts the generality of our wrapper. How-
ever, it makes it easier to automatically generate the wrappers. For
instance, when adaptation is required between a module and chan-
nel(s), it is easier to manage a single module adapter to adapt them
in the automatic wrapper generation than to distribute the adapta-
tion on several adapters (in a port-by-port manner).

3.2 Abstraction Levels of Communication

To represent system communication, we use three abstraction levels
of communication: system level (SL), architecture level (AL), and
register transfer level (RTL).



base
station

Tx

Rx

Enc

Dec
CaP user

i/f

(a) System level specification

base
station

Tx

Rx

Enc

Dec
CaP user

i/f

(b) Module refinement (SL to AL)

CaP

(c) Channel refinement (SL to AL) & module refinement (AL to RTL)

base
station

user
i/f

68000

68000

hs

fifo
ARM

ARM

68000

CC

Physical Communication Network

68000

CC

ARM7

CC

ARM7

CC

(d) Register transfer level architecture

Tx Rx Enc Dec

Figure 4: Module and channel refinement of IS-95 system.

At system level, modules communicate with each other ex-
changingmessagesover abstract interconnections, i.e. SL chan-
nels. There is no specific communication protocols for SL chan-
nels. Thus, SL channels provide generic functions,sendand re-
ceivefor the SL ports to access the SL channels. The message has
no specific data type, but it has ageneric data type.

At architecture level, each of AL channels is given its own com-
munication protocol (e.g. FIFO, message queue, handshake, etc.)
and the parameters (e.g. FIFO size). The data transferred via the
AL channel have fixed data types (e.g.int , float , etc.). The
AL channel provides channel functions specific to the given pro-
tocol (e.g. fifoavailable, fifowrite, etc.) for the ports to access
them. In terms of module, at architecture level, each module is
mapped on a processor. At RT level, processors are interconnected
via their communication coprocessors and physical communication
network. For more details on the abstraction levels of communica-
tion, refer to [21].

3.3 Module and Channel Re�nement

Figure 4 shows snapshots of module and communication refine-
ment in the case of an IS-95 CDMA cellular phone system design
[22][23]. Figure 4 (a) shows the system description at system level
that consists of seven modules (seven rectangles): two vocoder
modules (encoder, Enc and decoder, Dec), CDMA modem trans-
mitter (Tx) and receiver (Rx), call processor (CaP), and two mod-
ules for the base station and the user interface of cellular phone. In
the modules, small rectangles represent ports and arrows represent
channels. In the figure, since all the modules and channels are at
system level, no wrapper is required.

Figure 4 (b) shows an example of module refinement, where
module Enc, Dec, Tx, and Rx are refined to architecture level. In
this case, since the channels connected to the refined modules are
still at system level, each of the four modules requires a wrapper
to adapt internal AL ports and external SL channels. Figure 4 (c)
shows an example of channel and module refinement from the case
of Figure 4 (b). In the figure, all the channels are refined to ar-
chitecture level and the four modules are refined to RT level. In
this case, module base station and user i/f have wrappers to adapt
internal SL ports and external AL channels. The four modules at
RT level have wrappers to adapt internal RTL ports (i.e. physical
pins of processors) and external AL channels. In this case, module
CaP is assumed to be refined to architecture level. Thus, it does not
require a wrapper.

Figure 4 (d) shows a physical architecture at RT level for the
four processors. In the RTL architecture, processors have commu-

Communication Coprocessor

CA_out
(FIFO)

F1 F3F2

F4

FIFO

CA_out
(HSK)

F1 F3F2

F4

FIFO

CA_in
(HSK)

F1 F2

F3

Req
Ack
Data

Req
Ack
Data

Req
Ack
Data

Req
Ack
Data

CA_in
(FIFO)

F1 F2

F3

Data
signal

Processor
adapter

F1 F3F2

F4

F6

F7

F5

Address
Decoder

Interrupt
Controller

RESET_n

RW_N
BW_N

DOUT

M[4:0]
DATA

ADDRESS

Channel
Controller

WAIT_N
FIQ_N

ALEARM7
Core

0x7004

0x7008

0x700C

0x7000

Clk

enable

enable

enable

enable

ready

ready

Figure 5: Communication coprocessor of an ARM7 processor in
the IS-95 system.

nication coprocessors to adapt their own communication protocol
(e.g. AMBA of ARM processors [24]) to the protocols of chan-
nels at RT level. As previously mentioned, note that at RT level
we apply the generic wrapper architecture to the hardware part of
wrapper implementation, i.e. the implementation of communica-
tion coprocessors.

3.4 Wrapper for Synthesis

In the RTL architecture, the communication coprocessor performs
protocol conversion between the protocol of processor and those
of communication channels connected with the processor. In this
case, it is an instance of the generic wrapper architecture for synthe-
sis, i.e. for the purpose of protocol conversion between processor
and communication network.

Figure 5 shows an example of communication coprocessor for
an ARM7 processor where module Enc is mapped in Figure 4 (d).
In instantiating the communication coprocessor from the generic
wrapper architecture in Figure 2, module adapter, in this case, pro-
cessor adapter performs (1) address decoding (to enable channel
adapters (CA’s)) and (2) interrupt management (with interrupt re-
quests coming from CA’s). The CA plays a role of protocol-specific
port (e.g. a port to access an on-chip bus at RT level) to commu-
nicate with an RTL channel in the physical communication net-
work. Note that, in the communication coprocessor, we use an
internal bus as the internal communication media (ICM) of the
generic wrapper architecture. For more details of architecture and
wrapper generation at RT level, refer to [17][25].

4 Wrapper for Mixed-Level Cosimulation

4.1 Functionality of Wrapper in Mixed-Level Cosimula-
tion

To apply the generic wrapper architecture to mixed-level cosimu-
lation, first, the functionality of wrapper should be defined. Then,
each part of the functionality should be mapped to module adapter
and channel adapter(s). In terms of functionality, the wrapper trans-
forms channel access(es) via internal port(s) to channel access(es)
via external port(s). To do that, from the internal port to the external
port, it has the following functional chain.

� Internal port – channel interface – channel resolution – pro-
tocol/data conversion – calling external port functions – ex-
ternal port

From the viewpoint of internal port, channel functions (e.g.
fifo available, fifowrite, etc.) are required for the internal port to



TxEnc

SL

AL, fifo, 11s

RTL, hs, 1 16b
RTL

1

Port1
(SL)

Port1
(RTL)

Port2
(AL)

MA

CA1

CA2

(11s, 1s)

(a)

(b)

Internal External
From
module
behavior
of Enc

AL channel 
(fifo, short)

RTL channel
(hs, 16b)

2
SL, (160s)

MA_SL::send

RTL_hs_wr

AL_fifo_wr

Figure 6: Case 1: Module at system level.
1   class MA_SL 
2   : public sc_module,
3     public SL_if     // send i/f is declared.
4  { public:
5     sc_port<SL_RTL_hs_if> CA1;
6     sc_port<SL_AL_fifo_if> CA2;
7
8     // Implementation of send i/f
9     void send(struct msg) {
10       d1 = msg.rate; 
11       memcpy(d2, msg.voice, 11*sizeof(int));
12
13       CA1->RTL_hs_wr(d1); // write to CA1
14       for(int i=0; i<11 ;i++) // write to CA2
15             CA2->AL_fifo_write(d2[i]);
16   }
17   ...

1   class CA_SL_RTL_HS // CA1
2   : public sc_module,
3     public SL_RTL_hs_if  // RTL_hs_wr i/f
4  { public:
5     void RTL_hs_wr(int data) {
6         rtl_data = (sc_bv<16>) data;
7
8         // write w/ handshake protocol at RTL
9         Port1.data = rtl_data; Port1.req = 1;
10       wait_until(Port1.ack.delayed() == 1); 
11       Port1.req = 0;
12   }
13 … // in class CA_SL_AL_FIFO
14   void AL_fifo_wr(int data) {
15       al_data = (short) data;
16       // call an AL port function
17       Port2.fifo_write(al_data);
18   }

(a) Module adapter code (b) Channel adapter code

Figure 7: Examples of module adapter and channel adapter.

exchange data. Channel interface provides the internal port with
them. Channel resolution is to map the correspondence between
internal and external ports. For instance, in the case that an SL
channel is refined into two AL channels (e.g. fifo and handshake
channels), one access (e.g. send function call) to the SL channel is
mapped to two accesses (e.g. fifowrite and hswrite function calls)
to the two AL channels. Protocol conversion is required when inter-
nal and external ports require different protocols. Data conversion
is also required when two different abstraction levels use different
data types to represent the same data. For instance, a data item
of int type at architecture level can be represented by a data type,
logic vector at RT level. To exchange data via external port(s),
port functions of external ports should be called by the wrapper.

4.2 Cases of Wrapper Instantiation

In this subsection, we present how to apply the generic wrapper
architecture to all the possible combinations of abstraction levels
in mixed-level cosimulation. In the case of three abstraction levels
(system level, architecture level, and RT level), the following three
cases include all the possible combinations of abstraction levels:
(Case 1) module at system level, (Case 2) module at architecture
level, and (Case 3) module at RT level.

4.2.1 Case 1: Module at System Level

Figure 6 shows an example of wrapper when a module is at system
level and external ports at possibly different abstraction levels (with
communication protocols). In Figure 6 (a), Enc module in the IS-95
system is at system level and Tx module is at RT level. There are
two channels between the two modules: one (a fifo channel with
11 data items ofshort type) at architecture level and the other (a
handshake channel with one data item of 16-bitlogic vector )

2
TxEnc

1

AL

SL, (11s, 1s)

SL

1

Port1
(SL)

Port1
(AL)

Port2
(AL) MA

CA1 (11s, 1s)
fifo, short

hs, short

(a)

(b)

ExternalInternal

32

Port3
(AL)fifo, short

Port2
(SL)CA2 (160s)

SL, (160s)

send

receive

Figure 8: Case 2: Module at architecture level.

at RT level.1 Figure 6 (b) shows the wrapper instance in this case.
Enc module sends a message, via internal portPort1 at system
level, to the module adapter in the wrapper. Note that, in this case,
the internal communication media (ICM) in the wrapper architec-
ture becomes a function call relation (the MA calls two functions,
hs RTL wr and fifo AL wr) since the abstraction level of module
EnC is system level. In this example, internal portPort2 at system
level does not require the wrapper since internal and external ports
are at the same abstraction level.

Figure 7 (a) shows the behavior of module adapter (written in
SystemC [8]) in this case.2 First, to receive the message from the
internal port at system level, it provides internal portPort1 with an
SL channel function calledMASL::send as shown in the figure
(line 9-16). The module Enc calls the function viaPort1 to send
a message to the module adapter. When the function is called, the
module adapter performs channel resolution by splitting the mes-
sage into oneshort -type data item calledd1 and 11short -type
data calledd2 (line 10-11 in Figure 7 (a)). It sends the split data to
two channel adapters (line 13-15). In general, depending on the
correspondence between internal and external ports, the module
adapter performs data splitting/merging. In this case, since one
output internal port corresponds to two external ports, the module
adapter performs data splitting.

The channel adapter receives the data (when itschannel adapter
function is called) and performs protocol/data conversion. Then, it
writes/sends the data/message to the channel via the external port.
In the case ofCA1 in Figure 6 (b), when its channel adapter func-
tion (RTL hs wr) is called by the module adapter (line 13 in Fig-
ure 7 (a)), the data type of received data is converted into 16-bit
sc bv<16> (line 6 in Figure 7 (b)), and writes it to the RTL chan-
nel according to the handshake protocol of RTL port,Port1 (line 9-
11 in Figure 7 (b)). Channel adapter function ofCA2 (AL fifo wr)
converts the data type intoshort (line 15 in Figure 7 (b)), and
writes the data to the AL channel via AL port function,Port2.
fifo write (line 17 in Figure 7 (b)).

4.2.2 Case 2: Module at Architecture Level

Figure 8 (a) shows a case where Enc (Tx) module is at architecture
level (system level). There is an SL channel between Enc and Tx
modules. Figure 8 (b) shows the wrapper instance. In this case,
note that the internal communication media (ICM) is a function

1 In the IS-95 system, Enc performs QCELP voice coding that takes as input 160
short-type data and outputs 172 bit data and one short-type data (calledrate). In our
implementation, we packed 172 bit data into 11 short-type data (calledvoice).

2Note that we use interface concept supported in SystemC v2.0 to explain channel
functions (of module adapter) and channel adapter functions.



Tx Enc
CaP

user
i/f

RTL
RTL AL

SL
RTLRTL

Processor proc.
adapter Port3

(SL)

Port4
(AL)

CA3

CA4

fifo, 16b

hs, 16b

(160s)

hs, short

(a)

(b)

AL

SL

Internal Bus (ICM)
Port1

(RTL)

Port2
(RTL)

CA1

CA2

Figure 9: Case 3: Module at RT level.

call relation since the abstraction level of module Enc is architec-
ture level. In the figure, the module adapter provides three internal
ports (at architecture level) with AL channel functions for fifo and
handshake protocols. Channel adapter,CA1 receives data from the
module adapter, constructs messages (structures of 11short -type
data and ashort -type data) and sends them to the SL channel
via external portPort1 (at system level). In this case, the mes-
sage construction corresponds to data conversion (to the data type
of SL channel, i.e. the generic type of message). Since one exter-
nal port (Port1 at system level) corresponds to two internal output
ports (Port1 andPort2 at architecture level), the module adapter
performs data merging with the data received from the two internal
ports.

4.2.3 Case 3: Module at RT Level

We apply the generic wrapper architecture to both simulation and
synthesis. The application to both is possible since wrappers in
simulation and synthesis perform a similar function: adapting the
module to the external world by protocol conversion or by trans-
forming channel accesses from (an) abstraction level(s) to (an)other
abstraction level(s). Thus, when both applications of the generic
wrapper architecture meet each other, to be more specific, when a
module requires a wrapper for both protocol conversion and mixed-
level cosimulation, we can have a wrapper where high-level simu-
lation models and simulation models of synthesizable components
are involved. Case 3 described in this section is the case. The
advantage of using such a wrapper is to obtain as accurate timing
accuracy as possible in mixed-level cosimulation using simulation
models of synthesizable components.

Figure 9 (a) shows a case where Enc and Tx modules are at
RT level, CaP module at architecture level, and user i/f module at
system level. Enc module is connected with four channels (two
at RT level, one at architecture level, and one at system level).
At RT level, Enc module is substituted by a processor where it
is mapped. Figure 9 (b) shows the processor and the wrapper in-
stance. In the figure, the wrapper consists of processor adapter and
channel adapters (with three different abstraction levels). Such a
composition is possible since we apply the generic wrapper archi-
tecture both to the wrapper for synthesis, i.e. the implementation of
the communication coprocessor and to the wrapper for mixed-level
cosimulation. In terms of functionality, the processor adapter of the
communication coprocessor (exemplified in Figure 5) is equivalent
to the module adapter of the wrapper for mixed-level cosimulation
since they perform channel resolution (the address decoding in the
processor adapter is to select channels). As previously mentioned
in Section 2.2, in this case, since the abstraction level of module

Enc is RT level, we use an internal bus exemplified in Figure 5 as
the internal communication media (ICM) of the wrapper architec-
ture.

In Case 3, the processor adapter performs the functionality of
channel interface for the processor. As explained in Section 3.4,
for instance, if the processor is an ARM7 processor, the processor
adapter is connected with the processor with AMBA protocol [24].
It can also perform interrupt management depending on whether
the processor uses interrupt or not. For the functionality of chan-
nel resolution, the processor adapter performs address decoding of
memory accesses from the processor to enable channel adapters.
In the case of Figure 9 (b), for the two RTL output ports,Port1

andPort2, the processor adapter receives data (located at a mem-
ory area) from the processor and sends them to the corresponding
channel adapters (CA1 and/orCA2). The channel adapters write
them to RTL channels.CA3 receives messages from the SL chan-
nel viaPort3 at system level and sends them (structures of 160
short -type data located a memory area) to the processor adapter.
FromPort4 at architecture level (viaCA4), the processor adapter
receivesshort -type data. When data arrive at external port(s)
(e.g. when ashort -type data item arrives atPort4), the processor
adapter can trigger an interrupt to the processor to notify the data
arrival after receivingready signal(s) from the channel adapter(s)
corresponding to the external port(s) [17].

4.3 Flow of Generating Cosimulation Models

We are developing an automatic tool (calledwrapper generator)
to generate wrappers for both mixed-level cosimulation and synthe-
sis. To construct the wrapper automatically, we use a library called
wrapper library which consists of two sets of components: one
for module adapters and the other for channel adapters. Each mod-
ule has at least one module adapter at each of the abstraction levels.
Depending on the possibility of module refinement (e.g. possibility
of channel splitting or merging), it can have more than one module
adapter at an abstraction level. In the case that the wrapper func-
tionality is not required between internal and external ports (e.g.
Port2 of module Enc shown in the case of Figure 6), correspond-
ing internal ports are ignored in the interconnection with the mod-
ule adapter. Each communication protocol has also one channel
adapter for each pair of the abstraction level of module and that of
its external port. Note again that the internal communication me-
dia (ICM) in the wrapper architecture can be (1) a function call
relation or (2) an internal bus depending on the abstraction level of
module. This scheme allows to build any wrappers starting from
only a few number of basic components, i.e. module adapters and
channel adapters.

Figure 10 shows the flow of our cosimulation tool to gener-
ate (mixed-level) cosimulation models along with communication
refinement from the initial abstract architecture, intermediate ar-
chitecture, to the physical architecture. In the flow, we use two
simulation libraries: one (calledcosimulation library ) for high-
level simulation models of modules and channels (at system level
and architecture level) and the other (calledsynthesizable code li-
brary ) for simulation models of synthesizable components (at RT
level). Our cosimulation tool selects, for each module/channel in
abstract/intermediate/physical architectures, an appropriate simula-
tion model from the libraries according to the abstraction level of
module/channel. Then, it generates cosimulation codes with the se-
lected simulation models in possibly different languages (e.g. Sys-
temC, SDL, VHDL, etc.).

With the initial abstract architecture, high-level simulation mod-
els are used in cosimulation. During incremental communication
refinement, we obtain intermediate architectures where synthesiz-
able components and high-level simulation models coexist, simu-
lation models of both libraries are used in mixed-level cosimula-
tion. In Figure 10, shaded regions represent simulation models of



M1 M3

M2 M4

M1

OS
CC CC

M1
M4

µP
IP

Physical Comm. Network
CC

M3

DSP

Abstract
Architecture

Intermediate
Architecture

Physical
Architecture

Communication
& module
refinement

High-level
simulation
models

CC

M1

OS

M1

µP

Physical Comm.
Network

CC

M3

DSP

sim. models of
synthesizable
components

M4

proc adp.

CA CACA

Cosimulation
library

Synthesizable
code library

Generated
by wrapper
generator!

Figure 10: Flow of generating cosimulation models.

synthesizable components. To generate wrappers for mixed-level
cosimulation, we use a wrapper generator for a module that re-
quires a wrapper as exemplified in Figure 10. Note that we also use
the wrapper generator to generate the communication coprocessors
(explained in Section 3.4) in the part of physical architecture (in the
intermediate architecture). After communication refinement, only
simulation models of synthesizable components are used to simu-
late the physical architecture at RT level.

5 Experiments

As preliminary implementations, we have implemented wrappers
for two cases of mixed-level cosimulation (SL-AL cosimulation
and AL-RTL cosimulation) and applied them to the mixed-level
cosimulation of the IS-95 system. In cosimulation between sys-
tem level and architecture level, we implemented SL models in
SDL [26] since SDL provides the functionality of SL channel: infi-
nite fifo channels and send/receive functions. We implemented AL
models in SystemC [8] with its channel models that provide finite
fifo channels. In this case, we implemented wrappers for Case 1
and 2 since modules are at either system level or architecture level.

In cosimulation between architecture level and RT level, we
use SystemC channels for both AL channels and AL modules, and
instruction set simulators (ISS’s) of processors as RTL simulation
models. In this case, we implemented wrappers for Case 3 since
all the channels are at architecture level while modules can be at
RT level or architecture level. In the case of mixed-level cosimu-
lation including RTL models, simulation speed varies significantly
depending on how many RTL modules are simulated. Thus, the
designer can have trade-off between simulation runtime and sim-
ulation accuracy in mixed-level cosimulation. In our RTL imple-
mentations of the IS-95 system, we mapped four modules, Tx, Rx,
Enc, and Dec on four processors, two 68000’s and two ARM7’s,
respectively. By changing the abstraction levels of four modules
between architecture level (SystemC model) and RT level (ISS of
68000 or ARM7), we have obtained the variation of simulation
speed from 380KHz (all SystemC simulation at architecture level),
�1KHz (single ISS and all the other models at architecture level),
�0.5KHz (two ISS’s), to�0.25KHz (four ISS’s). Further details
of the experiments are given in [13]

6 Conclusion

To adapt heterogeneous components to the other part of system,
we present a generic wrapper architecture that can adapt different

communication protocols or different abstraction levels, or both.
In this paper, we explained the application of the generic wrapper
architecture to mixed-level cosimulation with three abstraction lev-
els of communication: system level, architecture level, and register
transfer level. We reported also on its application to mixed-level
cosimulation of an IS-95 CDMA cellular phone system.

References

[1] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Communica-
tion Architecture Tuners: A Methodology for the Design of High-Performance
Communication Architectures for System-on-Chips”,Proc. Design Automation
Conf., pp. 513–518, June 2000.

[2] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient Exploration of the SoC Com-
munication Architecture Design Space”,Proc. Int’l Conf. on Computer Aided
Design, pp. 424 – 430, Nov. 2000.

[3] M. Drinic, D. Kirovski, S. Meguerdichian, and M. Potkonjak, “Latency-Guided
On-Chip Bus Network Design”,Proc. Int’l Conf. on Computer Aided Design,
pp. 420 – 423, Nov. 2000.

[4] S. Vercauteren, B. Lin, and H. De Man, “Constructing Application-Specific
Heterogeneous Embedded Architectures from Custom HW/SW Applications”,
Proc. Design Automation Conf., June 1996.

[5] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based Design”,Proc.
Design Automation Conf., pp. 178 – 183, 1997.

[6] C. K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P. Hardee, “Stan-
dards for System-Level Design: Practical Reality or Solution in Search of a
Question?”, Proc. Design Automation and Test in Europe, pp. 576–585, Mar.
2000.

[7] D. D. Gajski, J. Zhu, R. D�omer, A. Gerstlauer, and S. Zhao,SpecC: Specification
Language and Methodology, Kluwer Academic Publishers., 2000.

[8] Synopsys, Inc., “SystemC, Version 2.0”, available at http://www.systemc.org/.
[9] Coware, Inc., “N2C”, available at http://www.coware.com/cowareN2C.html.

[10] J. A. Rawson, “Hardware/Software Co-Simulation”,Proc. Design Automation
Conf., pp. 439–440, 1994.

[11] L. S�em�eria and A. Ghosh, “Methodology for Hardware/Software Co-
verification in C/C++”,Proc. Asia South Pacific Design Automation Conference,
Jan. 2000.

[12] J-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Petrot, and L. Pasquier, “COSY
Communication IP’s”,Proc. Design Automation Conf., pp. 406–409, June 2000.

[13] P. Gerin, S. Yoo, G. Nicolescu, and A. A. Jerraya, “Scalable and Flexible Cosim-
ulation of SoC Designs with Heterogeneous Multi-Processor Target Architec-
tures”, Proc. Asia South Pacific Design Automation Conference, 2001.

[14] G. Nicolescu, S. Yoo, and A. A. Jerraya, “Mixed-Level Cosimulation for Fine
Gradual Refinement of Communication in SoC Design”,Proc. Design Automa-
tion and Test in Europe, 2001.

[15] R. Lysecky, F. Vahid, and T. Givargis, “Techniques for Reducing Read Latency
of Core Bus Wrappers”,Proc. Design Automation and Test in Europe, pp. 84 –
91, Mar. 2000.

[16] Sonics, Inc., “Silicon Backplane�Network”, available at
http://www.sonicsinc.com/Pages/Networks.html.

[17] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic Generation of
Application-Specific Architectures for Heterogeneous Multiprocessor System-
on-Chip”, to appear in Proc. Design Automation Conf., June 2001.

[18] K. Hines and G. Borriello, “Optimizing Communication in Embedded Sys-
tem Co-simulation”,Proc. Int’l Workshop on Hardware-Software Codesign, pp.
121–125, Mar. 1997.

[19] K. Hines and G. Borriello, “Dynamic Communication Models in Embedded
System Co-Simulation”,Proc. Design Automation Conf., pp. 395–400, June
1997.

[20] K. Hines and G. Borriello, “A Geographically Distributed Framework for Em-
bedded System Design and Validation”,Proc. Design Automation Conf., pp.
140–145, June 1998.

[21] W. O. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu, and A. A. Jerraya, “An
XML-based Meta-model for the Design of Multiprocessor Embedded Systems”,
VHDL International User’s Forum (VIUF) Fall Workshop, Oct. 2000.

[22] TIA/EIA-95A, “Mobile Station-Base Station Compatibility Standard for Dual-
Mode Wideband Spread Spectrum Cellular Systems”, 1995.

[23] S. Yoo, J. Lee, J. Jung, K. Rha, Y. Cho, and K. Choi, “Fast Prototyping of an
IS-95 CDMA Cellular Phone: a Case Study”,Proc. the 6th Conference of Asia
Pacific Chip Design Languages, pp. 61–66, Oct. 1999.

[24] ARM Ltd., “ARM7 Data Sheet”,available at http://www.arm.com/
Documentation/UserMans/PDF/ARM7vC.pdf.

[25] A. Baghdadi, D. Lyonnard, N-E. Zergainoh, and A. A. Jerraya, “An Efficient Ar-
chitecture Model for Systematic Design of Application-Specific Multiprocessor
SoC”, Proc. Design Automation and Test in Europe, Mar. 2001.

[26] F. Belina, D. Hogrefe, and A. Sarma,SDL with APPLICATIONS from PRO-
TOCOL SPECIFICATION, Carl Hanser Verlag and Prentice Hall International
(UK) Ltd., 1991.


	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index




