High-level architectural co-simulation using Esterel and C

Andre Chatelain, Yves Mathys,

Giovanni Placido
Motorola Inc.

{Andre.Chatelain,Yves.Mathys}@motorola.com

Giovanni.Placido@motorola.com

ABSTRACT

This paper introduces an architectural simulation environment,
aimed at defining the best SOC architecture for complex system-
level applications. The application is modeled using an abstract
Timing Modeling Language, that describes the requests (e.g.,
memory accesses, 1/Os, etc.) that the application makes to
the architecture. The abstract architecture is modeled at the
cycle-accurate level using a mixture of Esterel (a synchronous
language) and C. We discuss the results of the application of
this tool to a GSM/GPRS application, including a dramatic
speed-up of the architectural exploration phase.

1. INTRODUCTION

Today systems on chip (SoC) integrated circuits are very com-
plex systems made of hundreds of millions of transistors. Appli-
cation software running on such hardware architecture is com-
posed of thousands of functions allocated to processing units
and orchestrating the data movement and the chronology of the
system. The increasing system complexity, driven by the semi-
conductor technology roadmap (Moore’s law), is exacerbating
the problems of validating the complete system and optimizing
the system by playing architectural trade-offs.

One approach to solve the system validation problem is to intro-
duce co-design tools [7, 1, 2] where the software and hardware
are simulated together at the cycle accurate level.

In practice these techniques have several limitations (e.g., they
need a complete hardware and software design), that restrict
their impact on the optimization of the system.

One of the main limitation is that the capture of the entire sys-
tem at the cycle accurate level is a very time consuming task,
imposing very long debugging times, since neither the software
nor the hardware are stable during the development phase.
Another limitation of the co-simulation approach is the long
simulation time, which is exploding with the growing system
complexity. Simulation performance of cycle-accurate HDL or
ISS models is at most a few thousand instructions (clock cycles)
per second on an engineering workstation.

System optimization must occur very early in the design cycle
since late changes are quickly getting too expensive. The key
requirements for architectural trade-off are:

Alberto La Rosa,
Luciano Lavagno
Politecnico di Torino

{larosa,lavagno}@polito.it

quick capture of the key system components, HW and SW;

fast system simulation;

flexible simulation platform for easy re-mapping of HW /SW
functions;

e performance validation.

The approach that we propose in this paper focuses on the
optimization of hardware architectures by early performance
analysis through high level simulation of the complete system.
We are presenting an architectural simulator, called ArchAn for
Architecture Analyser, which allows one to define and validate
efficient platforms for a class of applications.

ArchAn consists of a mix of cycle accurate models of the hard-
ware architectural components (as described in section 3) and
of highly abstract performance models of the software applica-
tion.

The application is defined as a set of tasks allocated to archi-
tectural components (such as processing units, hardware ac-
celerators), and scheduled by events (such as interrupts, DMA
requests, RTOS calls). The tasks running on processing units
are profiled on an ISS or manually estimated to capture their
dynamic behavior.

We take particular care to accurately model the scheduling of
the events on the overall platform.

The benefits of this approach are multi folds:

e systems are quickly captured and validated through sim-
ulation;

e performance analysis allows one to play architectural trade-
offs early in the design cycle;

o the overall tasks synchronization and event management
policies (priority level, preemption, tasks partitioning) are
validated.

We present results obtained by applying our technique to a base-
band IC for mobile phone applications (GSM/EFR/GPRS).
The architecture performance is analyzed by simulating multi-
ple TDMA frames. Dynamic observables are selected to monitor
the architecture performance and identify bottle necks. Results
give clear directions to improve the overall system performance,
leading to cost effective solutions.

Moreover, the complete capture of the systems and the architec-
tural analysis took less than two months compared to a previous
twelve months effort with a coverification environment.

In section 2 we compare our approach with the state of art of
co-design tools; in section 3 the ArchAn simulator is presented;
in section 4 and 5 we discuss on the main characteristics of the
TML language and of our implementation and finally, in section
6, results are reported for the GSM/GPRS application running
on a multiprocessor platform. Some future work proposals are
shown in section 7.

2. RELATED WORK

Architectural design starts with an exploration phase where re-
sources (processors, buses, memories, dedicated hardware, I/0O
peripherals, RTOSs) are selected and system functionality is
partitioned to hardware and software elements. System perfor-
mance simulation then evaluates different implementation op-
tions. For real exploration, fast simulation is needed, and the
architecture model must abstract behavior, communication and
timing models. A separate specification of architecture and be-
havior will also provide reusable architectural models.

Some codesign tools (CoWare [7], Seamless [1] and Eagle [2]),
provide a performance simulation capabilities only from a de-
tailed description of the complete system implementation (hard-
ware and software). This makes architectural exploration very
difficult, as the models are too low-level to be re-used in a differ-
ent architecture. Moreover, the simulation speed is slow, due to
the use of an ISS for software timing, and to the cycle-accurate
model for hardware timing.

Only high-level architectural modeling, verification and opti-
mization at an early stage of system design can help solving
system performance problems before implementation.

This is also the approach used in VCC [9], where architecture
and behavior are separately described. Architecture specifica-
tion is based on a diagram of components to which hardware
and software behaviors are mapped; the behavior is described at
the functional level and an annotated model of the application
is required for system performance evaluation. Architectural
components are pieces of C/C+-+ code that communicate via
method calls and an event queue, thus a Discrete Event and not
a cycle-based simulator is used (cycle-approximate level).
Performance simulation brings together behavior execution and
delay model evaluation on the underlying architecture. Even
if an event-driven approach provides a faster simulation, com-
plex functional models with heavy interaction can slow down
simulation speed even if simple architectures are considered.

For an early performance analysis of the hardware architecture,
detailed functional verification of the application may not be
required, since the main goal is to verify if the architecture is
well suited to application. Only a delay model, representing
requirements imposed by the application on the architecture
(e.g., memory and bus accesses), is needed. This model is also
faster to re-write and re-verify than a fully functional model of
the system.

In our approach we directly describe requirements imposed by
the software on the hardware by using the TML language (see
Section 4), that is much more abstract than a functional model
of the application. Moreover, TML eases software/hardware
partitioning, since the actual behavior mapping on hardware
and software elements depends on the TML description. Archi-
tecture is captured through cycle-accurate models written using
a mix of the Esterel [4] and C languages.

In comparison to C/C++, Esterel [5] provides constructs for
parallelism, synchronous signals and exception handling, that
simplify the description of reactive modules, thus shortening

development time of architecture models.

These constructs are also more powerful than those found in
hardware-oriented C+-+ simulation libraries (such as SystemC,
CynLib and Ocapi).

The overall hardware architecture is modeled as an Esterel mod-
ule, thus providing a cycle-accurate simulator based on the
highly optimized FSM implementation obtained by the Esterel
compiler.

Simulation speed is not directly related to the complexity of
system behavior (modeled in TML), and is affected only by the
complexity of the considered architecture.

3. THE SIMULATOR

The architectural simulator, ArchAn, allows one to map an
application to a target architecture, in order to perform soft-
ware/hardware trade-offs and validate the overall system on
chip. We define the application as a set of SW tasks assigned
to processing units, triggered by HW/SW events.

In order to model the application, we defined a high level lan-
guage Task Modeling Language (TML) which is interpreted by
the processing unit (PU) delay models at run time (see the next
section for more details). The TML can be generated either by
profiling existing application code or by manually estimating
new software tasks.

The abstract TML model has thus the following advantages over
a detailed software model:

1. customer IP protection;
2. easy capture of application performance;

3. rapid trade-off analysis.

We model the architecture as a set of components such as pro-
cessing units, interrupt controllers, busses, peripherals. All the
architectural modules are described in Esterel and C, and are
highly parametrized. A variety of architectural configurations
can be built and explored, by taking advantage of the modular-
ity of each component.

The interfaces of the modules are designed in such as way that
one can build complex multi-processors, multi-bussing system
by instantiating and connecting the different basic components.
As components support a variety of parameters, they are then
configured to tune their behavior within the architecture.

For example, the PU model can be set up as a DMA sharing
a peripheral bus, or a DSP connected to memory and acceler-
ators busses. The parameters are not only used for modifying
the module behavior, but also to define its timing. Cascadable
busses directly model their timing for read and write accesses.

Event management is modeled by the EMA (Event Manage-
ment Architecture) component. Each PU is associated with an
EMA for scheduling tasks over time. The EMA was designed
for flexibility and supports a variety of scheduling schemes. It is
worth noting that preemption in the EMA itself is easily mod-
eled using the Esterel constructs (e.g. suspend).

Peripherals are mainly modeled as bus and interrupt traffic gen-
erators. The behavior of the peripherals is controlled via a TML
instruction (NOTIFY) which is broadcast from a PU to all the
components via a “virtual bus”. Each NOTIFY instruction con-
tains the symbolic name of the peripheral to which it is directed.
Thus by adding or removing such instructions, and replacing

Dynamically Loaded Input Parameters |

}

TESTBENCH
clock event PREEMPTIVE @ o
generator (true / false) ~ arbitration_mode
CONFIG
ISR rq.
Sy EMAL le—>»{ CPUL >
PTM1 <
o NOTIFY | (%]
0 >
a
<
pivz | E PREEMPTIVE @ =
a (true / false) ~ T
e o
L =
3 z
ﬂ [
ISR rq.
PIM3 | 3 | EMA2 [¢—»| CPU2 >
a
o
s
s NOTIFY |
pTM4| &
[N
© PREEMPTIVE @
g (true / false) ~
=
PTM5 | &)
3 ISR rq)
o “» EMA3 l«—»| CPU3 @
5 2
PTM6 @
NOTIFY [o
o
o

Figure 1: Structure of ArchAn for some architecture.

them with calls to other software tasks in TML, one can modify
the architecture (some peripherals are no longer activated) and
easily change the hardware/software partition without recom-
piling the architectural model.

The role of the bus model is to collect traffic statistic. As shown
in figure 1, the bus model is not connected directly to peripher-
als but via signals. The data transfer latencies are computed by
summing the delays associated along the paths between sources
and destinations (considering busses and bridges).

In summary, the main architectural components are (figure 1):

1. PU module: a generic processing unit which interprets the
associated TML file. The TML file contains the execu-
tion profiling of the software tasks. Software activities are
modeled by the main five instructions: RD, WR, EX, NO-
TIFY and RQ, which are characterized by different delay
values (clock cycles) when executed by the PU. Other pa-
rameters model the RTOS timing, such as context switch
latency.

2. EMA module: PUs are associated with an EMA (Event
Management Architecture) module that handles the dif-
ferent task requests based on priorities. Requests may be
generated either by peripherals or by software task. The
EMA module hence serves as a model for both the inter-
rupt controller and the OS task scheduler.

3. PTM module: the Peripheral Timing Models generate
events to PUs which activate ISR routines modeled as
TML on the appropriate PU. These are high level func-
tional models of architectural components, and mainly

‘4‘ simcenter | - ‘J‘

ArchAn Simulation Center

Module MWame: testbench

INPUT SIGNALS
Dsp_tm]_filename |"tml/dsp.tml"
Mcu_tml_filename [tml/meu.tml ™ 5000
stats_filename ["data/results/stats.
x1s_stats_filename ["data/results/x1s_st
appl_filename |"data/input_paranete
Sim_Clk_Freqg_NHz sz
Dsp_Clk_Ratio
Mcu_CTk_Ratio
sim_prescaler
Pmb_clock_ratio
Fmb_rd_atomic_bus_access_time
Pmb_wr_atomic_bus_access_time
Mob clock ratio

OUTPUT SIGNALS
-l Dsp_event_up
I Dsp_grant

Host CPU sec |- DSb_request
I Mcu_event_up
- Mcu_grant

I Mcu_request

: Cycles

7

‘ | Run Wiew output Tasks timeline |

Top Level Source file: [src/strl_src/testbench.strl Browse
Simulator: |bin/testbench Erowse W Strl
Log file: [sim Tog clk count
Simulation clocks: 5000
Config: default. config save Toad m

Figure 2: GUI for simulator configuration.

model the interrupt traffic generated by the I/O periph-
eral. The PTM behavior can be changed by the NOTIFY
TML instruction.

4. BUS module: bus model includes multi-master arbitra-
tion schemes and bus cascading features. Currently the
simulator supports two arbitration schemes.

(a) The fixed hardware priority arbitration scheme grants
peripheral bus access to the current highest-priority
master request. The arbitration priorities (H = high,
M = middle, L = low) are defined before the starting
of simulation.

(b) The round robin priority scheme grants peripheral
bus access in a circular fashion to master requests.

A bus cascading mechanism allows us to model complex
architectures containing bridges and multiple busses.

The tool provides a graphical interface, shown in figure 2, to
assist the user during the simulation setup phase. The user can
set several input parameters before running the simulation.

A first class of parameters regards PUs: parameters can be set
for defining tasks and ISRs context switch timing. These pa-
rameters represent the basic latency due to the saving/restoring
of the context registers. A simulation pre-scaler allows the user
to simulate with larger granularity, in order to speed up simu-
lation while loosing accuracy.

A second class of parameters allows the user to configure the
bus by setting its frequency and the number of clocks cycles
required for each read/write access.

Finally, parameters for the arbitration scheme are available.
These parameters allow one to choose the arbitration scheme
and the number of transfers granted from the bus for a single
request of the PU.

All system activities during the simulation are recorded and
elaborated to generate graphical and textual reports for:

e task timing statistics including processor load, task exe-
cution time, task latency, and

e peripheral bus statistics including bus load, arbitration
latency, accesses statistics.

An example is presented on the figure 3, showing the graph of
the task time line. You can see scheduled tasks with different
priorities in different states (executed, pending, preempted).
The figure shows also the time spent by the PU in idle and the
task queue length during the simulation (number of tasks that
are running or pending).

In effect, the complete tasks dynamic is displayed to support
debugging and tasks scheduling policies (tasks priority, inter-
rupt/RTOS scheduling schemes).

4. TASK MODEL LANGUAGE

The TML (Task Model Language) language was designed for
capturing the execution profile of tasks interpreted as a delay
model by the PU model. The complete application, tasks and
functions, are captured in TML and associated to a PU. The ex-
ecution profile includes some explicit timing delay and implicit
delay due to interruption with the architectural components.

The TML routines can be extracted from existing software by
analyzing the worst case execution time on the target PU. If the
software has not been written yet or is not accessible, estimation
on the execution time can be done by hand or automatically [8,
3].

TML instructions are divided in five classes: READ, WRITE,
EXECUTE, NOTIFY and REQUEST.

The delays associated to each READ and WRITE instruction
represent the read and write delay when accessing system re-
sources (i.e. peripherals, memories) through the busses. The
bus loading statistics are computed by analyzing this class of
instructions.

The EXECUTE delay represents the cycle count to execute the
task of the function on a target PU. The NOTIFY instruction
models the communication between PU and peripherals. It is
used for dynamic control of the hardware modules. The delay
associated to this instruction is equal to zero, and it has only
behavioral effects.

Finally the REQUEST instruction allows to capture task to
task communication on a single PU or across multiple PUs.

Besides the architectural set of TML instructions, the language
also provides some control flow instructions for conditional ex-
ecution (IF.. THEN...ELSE) and loops (REPEAT).

Fend_MCU i

MCL_Idle ‘ ‘

MCU_TASK_TWO_3_5 .

MCU_TASK_THREE_1_3 [N S S

MCU_TASK_ONE_2_3 ,._

MEU_MAIN_1_0 i
00 17 34 51 B8 85 102 113

100
136 163 17.0 187 204 221 2368 255 272 263 306 G223 340

- task executed = task pending M - task preempted M- DU in idle

Figure 3: Graphical output of the simulation.

TML example
variable -
task label
YAR SAMPLE_CNT = 0

routine
keyword ROUT CODEC_SERVICE_ISR 3 1300 {
f/f read rx codec to DSP reg
e
10 access

f/J write DSP reg to DSP RAN
EX 1

f/f read DSP RAM to DSP reg
EX 1

JJF write DSP reg to tx codec
WR 1 CODEC

}J reset codec timesout
NHOTIFY WR_DATA CODEC

notity

instruction
SAMPLE, CNT s= SAMPLE CHT + 1
EX 1
IF SAMPLE CNT = 2z THEN

trigger a
task on
master

CspP

EX 1
RQ DSP UP01_HOISE_ SUP
EX 4
//} special process. at the znd
EX 930
ELSIF SAMPLE CHT = 150 THEN
EX 2
}/ special proc. at the 150th
EX 1100
ELSIF SAMPLE CHTR = 160 THEN
EX 2
SAMPLE _CHTR 1= 0O
EX 1
// Hormal processing time
EX 550
ELSE
/J NHormal processing time
EX 550
END IF
3

algorithm
_ EXecution
time in cycle:

Figure 4: Example of TML code.

The figure 4 shows an example of ISR written in TML.

The routine serves an interrupt request by the CODEC (audio
data transfers to the digital processor unit) module. After read-
ing/writing to the CODEC and resetting the time-out value, the
execution flow depends on the counter value.

Routines are characterized by PRIORITY and DEADLINE val-
ues. The RTOS scheduling algorithm permits preemption be-
tween tasks having different priorities. The DEADLINE pa-
rameter represents the number of PU clock cycles by which the
routine must be completely executed. In case where the tasks
misses its deadline, a flag is triggered during simulation which
probably indicates that the application failed.

HW /SW partitioning are facilitated as modifications of the TML
code do not require re-compilation of the source code and gives
a short analysis cycle.

5. IMPLEMENTATION

The main goals of our implementation were

ease of development of reusable architecture models;

rapid architecture configuration in order to consider dif-
ferent architecture options;

a simple language to describe hardware and software be-
havior and timing;

o fast simulation speed.

The first objective was achieved using the Esterel language: it
provides a hierarchical description of the system by using mod-
ules that can be independently configured and instantiated mul-
tiple times.

Starting from this capability, after defining a clear interface to
interconnect architectural modules (see figure 1), we started the
development of a library of reusable models (PU, RTOS, BUS,
peripherals).

Architecture reconfiguration requires only to writing an Esterel
module where architecture module are configured, instantiated
and properly interconnected (netlist).

The development of architecture models was simplified by Es-
terel’s capability to interconnect modules using synchronous sig-
nals and to call C function within module’s body.

As afirst example, the bus arbitration scheme is based on check-
ing for the presence of the REQUEST signal from any master
on the bus. According to the arbitration scheme used, the ar-
biter will grant the bus to the winning master by sending the
GRANT signal. As communication is synchronous, both check
and grant happen in the same simulation cycle.

As a second example, we modeled the fact that tasks activation
on an RTOS could be triggered by several sources (interrupts
from peripherals or requests from other software tasks). We
thus used a C function to insert the task in the specified EMA’s
scheduler queue. For each simulation cycle, the EMA module
uses its scheduling policy (implemented as a C function) and
signals to the underlying PU which task has to be executed.

When the simulator starts, each PU parses its associated TML
file and creates a tree representation of each defined routine.
The PU module is able to scan the current task instruction tree,
and will modify its timing behavior as specified by each architec-
tural TML instruction (EX, RD/WR, NOTIFY, REQUEST).
Context switch is modeled by PU cycles elapsed before (context
load) and after (context save) task’s TML code is executed.
Bus access is modeled by an amount of simulation cycles elapsed
by the granted PU that access the bus.

In order to consider bus cascading, we decompose bus transac-
tion into a sequence of un-cascaded transactions. A user-defined
routing table lists all possible communication path allowed in
the architecture. Each path is characterized by read and write
access delay to be added to the bus cycle duration.

As the TML file is interpreted at run time, it is possible to
modify software behavior without recompiling the simulator,
thus speeding up the design cycle.

By exploiting Esterel’s parallelism and exception handling it is
possible to easily specify abstract model of complex hardware.
Hardware behavior could be modified by the interaction with
PU elements or with other hardware modules. For example,
considering a timer peripheral, we may need to start or stop
the interrupt generation or modify its frequency.

While interaction with specific hardware is application depen-
dent, we defined a protocol of communication between PU and
peripherals that allows one to easily add or remove peripherals
from a given bus. When a PU broadcasts a NOTIFY com-
mand each peripheral will check if it has to react to the issued
command.

As the architecture simulator is a netlist of Esterel modules, the
Esterel compiler implements it by flattening all the modules and
translating them to a single FSM representation. The compiler
will also check that a deterministic behavior is obtained, and
will produce an optimized C code implementation of the FSM,

as a fast cycle-based simulator.

The output of the simulation consists of traces with task ac-
tivation, beginning of execution, preemption, resumption and
end of execution. Bus transaction are monitored in the same
way. All the simulation data are summarized in a statistics
file, where PU and bus loads are reported together with mini-
mum/mean/maximum execution time of each task and of bus
transactions.

The graphical interface was implemented in Tcl/Tk.

6. RESULTS

The ArchAn simulator has been successfully used for two main
projects.

We first completed a project aimed at defining the architec-
ture of a next generation engine management micro-controller.
Simulation of a full engine management application [6] helped
Motorola to determine the best arbitration scheme used by 3
masters to access a single peripheral bus. For this study, up
to seven arbitration schemes were compared. The main metrics
were the bus access latencies and the bus loading.

The simulator was then used to assess and validate a baseband
IC architecture for mobile phones running GSM/GPRS appli-
cations. The complex multi-master, multi-bus architecture was
been modeled by instantiating existing components. The Es-
terel high level models of all peripherals, that generates inter-
rupt requests to the PUs, were included in the main architec-
ture.

Architectural performance was analyzed by simulating several
TDMA frames, in order to monitor the architecture perfor-
mance and identify bottlenecks.

From the statistic file generated by the simulation, we identified
several key metrics that allowed us to compare the original ar-
chitecture with several alternative solutions. The metrics used
were:

e Average PU loading: corresponds to the average percent-
age of computing power during the simulation time;

e Minimum computation power available: for each PU task
it corresponds to the minimum percentage of computing
power between two activations of the task that is not used
by another task at the same priority level. This dynamic
measurement gives the amount of margin for each task;

e Maximum hold time: for each PU task it corresponds to
the maximum percentage spent in hold state, i.e. context
switch, preemption and pending state;

e Maximum number of preemption: corresponds to the max-
imum number of time each PU task has been preempted
when active;

e Total number of preemption: corresponds to the total
number of preemption during the simulation time;

o Peripheral bus loading: corresponds to the number of ac-
cess per second to a peripheral bus performed by each
PU.

Among the six metrics used it is important to note that all,
except the first one, are dynamic information that can only
be extracted using such performance simulation. The second

b .Y
channel "“I
dingf -
\‘.‘/, er
il - } H Rl 1]
- voice
nco
i % uan

P

e T

Figure 5: Graphical simulation of the

GSM/GPRS application.

output

metric showing the execution margins, allowed us to quickly
identify architectural bottlenecks. Then, we performed several
hardware/software trade-offs, e.g. by removing hardware ac-
celerators and performing the same functions in software. The
figure 4 gives an example of a TML code replacing the DMA
handling the CODEC.

Several other alternative scenarios were obtained and this al-
lowed us to optimize and leverage the performance/cost ratio
of the baseband IC to its GSM/GPRS application.

Figure 5 shows the task time line results of the GSM/GPRS
application. Twelve TDMA frames were simulated, the black
circles put in evidence the uplink and downlink tasks execution.

7. FUTURE WORK

In order to explore complex memory architectures including
caches, bridges and shared memories, we will consider bus trans-
actions refined with memory addresses.

The model of the RTOS is currently limited to the scheduler.
Other RTOS functions may be considered: tasks polling, IPC
and semaphores will better model RTOS activity on the archi-
tecture and will simplify the models of complex software behav-
ior.

Finally, architecture reconfiguration will be eased by a graphi-
cal tool, where the user interconnects library components and
configures their parameters.

8. CONCLUSIONS

We have discussed a simulation environment that allows one to
quickly play architectural trade-offs, based on an abstract but
realistic model of the application. The architecture is modeled
as a synchronous cycle-accurate high-level model (bit vectors
are not needed at this level of abstraction). The application
is modeled as a set of tasks interacting with each other and
with the Processing Units and peripherals. By using this envi-
ronment we were able to successfully model not less than five
different variants of the same archictecture, by changing the
hardware/software partition and using different DMA parame-
ters, in less than two months. Modeling of the same architec-
ture using a traditional co-verification environment took over
one year, and did not allow any substantial exploration.

0.
[1]

2]

(3]

4]

[5]

[6]

[7]

(8]

[9]

REFERENCES
Mentor Graphics Seamless CVE Home Page.
http://www.mentorg.com/seamless/.

Synopsys’ Eagle Home Page.
http://www.synopsys.com.tw/products/hwsw/eagle _ds.html.

D. Sciuto M. Vincenzi A. Balboni, W. Fornaciari. The use
of a virtual instruction set for the software synthesis of
hw/sw embedded systems. In 9th International Symposium
on System Synthesis.

G. Berry, P. Couronné, and G. Gonthier. The synchronous
approach to reactive and real-time systems. IEEE
Proceedings, 79, Sept. 1991.

G. Berry and G. Gonthier. The esterel synchronous
programming language: design, semantics, implementation.
Science of Computer Programming, 19, Sept. 1992.

Y. Mathys and A. Chatelain. Using hw/sw modeling to
optimize embedded control systems. FDL, 1999.

K.V. Rompaey, D. Verkest, I. Bolsens, and H.D. Man.
CoWare - A design environment for heterogeneous
hardware/software systems. In Proc. European Design
Automation Conf., Sep. 1996.

K. Suzuki and A. Sangiovanni-Vincentelli. Efficient
software performance estimation methods for
hardware/software codesign. In Proc. Design Automation
Conf., pages 605-610, Jun. 1996.

Cadence Design System. Cadence ships Cierto VCC
environment for HW/SW co-design and reports customer
success. Press Release, Jan. 10,2000.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

