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ABSTRACT We consider mapping and scheduling for hard real-time

In this paper we present an approach to mappmg and schedu“n@mbedded SyStemS in the. context of a rgalistic Commqnication
of distributed embedded systems for hard real-time applicationsmodel. Because our focus is on hard real-time safety critical sys-
aiming at minimizing the system modification cost. We consider afems, communication is based on a time division multiple access
incremental design process that starts from an already existing sys-T DMA) protocol as recommended for applications in areas like,
tem running a set of applications. We are interested to implemenfor example, automotive electronics [7]. For the same reason we
new functionality so that the already running applications are dis- US€ a non-preemptive static task scheduling scheme.

turbed as little as possible and there is a good chance that, later, ~ Inthis paper, we have considered the design of distributed embed-
new functionality can easily be added to the resulted system. Th@ed systems in the context of an incremental design process as out-
mapping and scheduling problem are considered in the context of 4ned above. This implies that we perform mapping and scheduling of
realistic communication model based on a TDMA protocol. new functionality so that certain design constraints are satisfied and:
Keywords design space exploration, design reuse, distributed ~ @. already running applications are disturbed as little as possible;
real-time systems, process mapping and scheduling, methodology. b. there is a good chance that new functionality can, later, easily

be mapped on the resulted system.

[1): I!BIT%ODE%IISN ith multiol . | In [11] we have discussed an incremental design strategy
Istributed embedded systems with multiple processing elementg ;- excludes any modifications on already running applications.
are becoming common In various application areas [4]. In [12], forIn this paper we extend our approach in the sense that remapping
example, allocation of processing elements, as well as process magy scheduling of currently implemented applications are allowed,
ping and scheduling for distributed systems are formulated as g yhe are needed in order to accommodate the new functionality.

mixed integer linear programming (MILP) problem. A dlsadvantageIn

£ thi h is th lexity of Solvi he MILP bl this context, we propose a heuristic which finds the set of old
of this approach is the complexity of solving the MILP problem. o, jications which have to be remapped together with the new one
Therefore, alternative problem formulations and solutions based o

. o Buch that the disturbance on the running system (expressed as the
efficient heuristics have been proposed [1_' 2.8, .14]' ..._total cost implied by the modifications) is minimized. Once this set
Although much of the above work is dedicated to specific

L ) of applications has been determined, mapping and scheduling is
aspects of distributed systems, researchers have often ignored Bérformed according to the requirements stated above
very much simplified issues concerning the communication infra- Supporting such a design process is of critical importance for

structure. One notable exception is [13], in which system synthesig ot and future industrial practice, as the time interval between
is discussed in the context of a distributed architecture based o ccessive generations of a product is continuously decreasing

arblt_rated busses. Many efforts dedlcatt_ad to communication synypjje the complexity due to increased sophistication of new func-

thesis have concentrated on the synthesis support for the Comm“rﬂbnality is growing rapidly

cation infrastructure but without considering hard real-time " 1o hajer is divided into 6 sections. The next section presents

constraints and system !evel scheduling aspects [6, 1.0' 9 some preliminary discussion. Section 3 introduces the detailed prob-
Another characteristic of research efforts concerning the coder, 1, tormulation and the quality metrics we have defined. Our map-

sign of embedded systems is that authors concentrate on g, ang scheduling strategies are outlined in Section 4, and the

deS|gn, _from scratch, of a new system optimized for a par_tlcul_a experimental results are presented in Section 5. The last section pre-
application. For many application areas, however, such a situatioats our conclusions

is extremely uncommon and only rarely appears in design practice

Itis much more likely that one has to start from an already existingz- PRELlMlNARI_ES

system running a certain application and the design problem is t&.1 System Architecture

implement new functionality (including also upgrades to the exist-We consider architectures consisting of processing nodes connected

ing one) on this system. In such a context it is very important toby a broadcast communication channel. Communication between

make as few as possible modifications to the already running applinodes is based on a TDMA protocol such as the TTP [7] which inte-

cations. The main reason for this is to avoid unnecessarily larggrates a set of services necessary for fault-tolerant real-time systems.

design and testing times. Performing modifications on the (potenThe communication channel is a broadcast channel, so a message

tially large) existing applications increases design time and, evesent by a node is received by all the other nodes. Each Npdan

more, testing time (instead of only testing the newly implementedransmit only during a predetermined time interval, the so called

functionality, the old application, or at least a part of it, has also toTDMA slot § (Figure 1). In such a slot, a node can send several

be retested). However, this is not the only aspect to be consideredhessages packaged in a frame. A sequence of slots corresponding to

Such an incremental design process, in which a design is periodall the nodes in the architecture is called a TDMA round. A node can

cally upgraded with new features, is going through several iterahave only one slot in a TDMA round. Several TDMA rounds can be

tions. Therefore, after new functionality has been implemented, theombined together in a cycle that is repeated periodically.

resulting system has to be structured such that additional function- We have designed a software architecture which runs on the

ality, later to be mapped, can easily be accommodated. CPU in each node, and which has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the
information needed to take decisions on activation of processes and
transmission of messages, based on the current value of time [3].
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Figure 1. Buss Access Scheme
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2.2 The Process Graph 150 0T 0 T4 50

As an abstract model for system representation we use a directed, acy @ @

clic, polar graphG(V, E). Each nodé®, [V represents ongrocess. An 0 Q

edgee; LIE from P; to P, indicates that the output & is the input of ?
27

P.. A process can be activated after all its inputs have arrived and it
T h . . :
issues its outputs when it terminates. Once activated, a process exe 0 0 @

cutes until it completes. Each process gré&pls characterized by Figure 3. Characterizing the Set of Existing Applications

its period T and its deadlinddg < Tg. The functionality of an  Requirementa: constraints o ¢ ent are satisfied and minimal
application is described as a set of process graphs. modifications are performed to the applicationg.in

2.3 Application Mapping and Scheduling Requirementb: new applications ;e can be mapped on the
Considering a system architecture like the one presented in sectiofiesulting system.

2.1, the mapping of a process gra@(V, E) is given by a function If it is not possible to map and scheduilg,renWithout modi-

M: V- PE, wherePE={N;, N,, .., Ny,,4 is the set of nodes (processing ~ fying the already running applications, we have to change the
elements). For grocessP,0V, M(P)) is the node to whictP; is scheduling and mapping of some applicationgitiowever, even
assigned for execution. Each proc&san potentially be mapped ~ With serious modifications performed ap it is still possible that

on several nodes. L&tp;0PE be the set of nodes to whid® can certain constraints are not satisfied. In this case the hardware archi-
potentially be mapped. For eathCNp;, we know the worst case  tecture has to be changed by, for example, adding a new processor.
execution timeB" of proces$;, when executed oX;. In this paper we will not discuss this last case, but will concentrate

In order to Implement an application, represented as a set of On the situation where a possible mapping and scheduling which
process graphs, the designer has to map the processes to the systegatisfies requirement a) can be found, and this solution has to be
nodes and to derive a schedule such that all deadlines are satisfiedurther improved by considering requirement b).

However, finding a valid schedule is not always possible, either In order to achieve our goals we need certain information to be
because there are not enough available hardware resources, or th@vailable concerning the set of applicatignas well as the possible
resources are not intelligently allocated to the already running future applications g, e We consider thaf ¢en Can interact
applications. Thus, in order to produce a valid solution, the With the previously mapped applications by reading messages
resources have to be reallocated through rescheduling and remapgenerated on the bus by processas.iin this case, the reading pro-
ping of some of the already running applications or, in the worst cess has to be synchronized with the arrival of the message on the
case, the architecture has to be modified by adding new resourcesbus, which is easy to solve during scheduling Qfene

In Figure 2 we consider a single processor system with three 3.1 Characterizing Existing Applications
applications,A, B and C, each with a deadlin®,, Dg and D¢. To perform the mapping and schedulinglgf,ren, the minimum
ApplicationC is depicted in more detail, showing the two process- information needed on the existing applicatiapsonsists of the
esP; andP, it is composed of. Let us suppose that the already run- |ocal schedule tables for each node. Thus, we know the activation

ning applications aré andB, and we have to implemei@@ as a  time for each process on the respective node and its worst case
new application. IfA andB have been mapped and schedules like execution time. As for messages, their length as well as their place
in Figure 2a, we will not be able to map applicatiGr(in particu- in the particular TDMA frame are known. However, if the initial

lar, proces®,). With a mapping oA andB like in Figure 2band ¢, attempt to schedule and map,,en;does not succeed, we have to
we are able to map both processesCofout no schedule can be  modify the schedule and, possibly, the mapping of applications

produced which meets the deadlibg. If AandB are implement-  pelonging tap, in the hope to find a valid solution B rens
ed like in Figure 2d, applicatio@ can be successfully implement- Our goal in this paper is to find that minimal modification to the
ed. Two aspects can be highlighted based on this example: existing system that leads to a correct implementatidfygf e IN

1. If applicationsA andB are implemented like in Figure 2a (orlike  our context, such a minimal modification means remapping and
in 3b or 3c), it is possible to correctly implement applicaton  rescheduling a subset of old applicatidds’] ¢ so that the total
only with modifying the implementation of applicatiBn cost of reimplementing is minimized. We represent a set of

2. If during implementation of applicatid®we would have taken applications as a directed acyclic gra@tV, E), where each node
into consideration that sometimes in the future an application [; 0V represents an application. An edge O E from [ to [
like C will have to be implemented, we could have produced a indicates that any modification g would trigger the need to also
schedule like the one in Figure 2d. In this case, applicalon  remap and schedulg. Such a relation can be imposed by certain
could be implemented without any modification of an existing interactions between applicatidnsn Figure 3 we present the

application. graph corresponding to a set of ten applications. Applicatigys
3. PROBLEM FORMULATION g Mg andrl 1, depicted in black, are frozen: no modifications are
We model an applicatiom ¢ ent @S a set of process graphs possible to_ them. The_ rest of the applications ha_ve the remapping
G0N currene €8Ch With a periodg; and a deadlin®g< Tg;. For costR; depicted on their left’; can be remapped with a cost of 20.
each procesB, in a process graph we know the dgt; of potential If ', is to be reimplemented, this also requires the modification of

nodes on which it could be mapped and its worst case executionl 7, with a total cost of 90. In the case o, although not frozen, no
time on each of these nodes. The underlying architecture is as prefeémapping is possible as it would trigger the need to reifgp
sented in section 2.1. We consider a non-preemptive static cyclic which is frozen. Given a subset of applicatidns! , the total cost

scheduling policy for both processes and message passing. of modifying the applications if? is R(Q) = rgﬂ
Our goal is to map and schedule an applicafigqyrent On a To each applicatiofr; 0 V the designer has associated a cost
system that already implements a geof applications, consider- R of reimplementing™;. Such a cost can typically be expressed in
ing the following requirements: hours needed to perform retestingfgfand other tasks connected
Dc Da=Ds to the remapping and rescheduling of the application. Remapping
Al I [ 1 AmE|C of I'; and the associated rescheduling can only be performed if the
b) I
0 B Hm | Ph==
SlackC—] | P, L If a set of applications have a circular dependence, such that the modifi-
d) cation of any one implies the remapping of all the others in that set, the

Figure 2. Example for the First Design Criterion set will be represented as a single node in the graph.



process graphs that capture the applications and their deadlines argroup of processes with peridgdwhich are part of 4 in order
available. However, this is not always the case, and in such situa-to implement them, a certain amount of slack is needed which is
tions the application is considered frozen. available periodically, with a perio®, on the nodes implementing

3.2 Characterizing Future Applications the respective processes. During implementatidi.gfenwe aim

What do we suppose to know about the faniilyy, e of applica- for a slack distribution such that the future application with the
tions which do not exist yet? Given a certain limited application Smallest expected periofly, and with the expected necessary
area (e.g. automotive electronics), it is not unreasonable to assumd'0Cessor timé,eeq and bandwidti,eeq can be accommodated.
that, based on the designers’ previous experience, the nature of ex- We have defined two metric§;; andCy, which quantify the
pected futurdunctions to be implemented, profiling of previous ap- degree to which the first and second criterion, respectively, are
plications, avaible uncomplete designs for future versions of the Met. A detailed discussion about these metrics is given in [11].
product, etc., it is possible to characterize the family of applica- 3.4 Cost Function and Exact Problem Formulation

tions which could possibly be added to the current implementation. In order to capture how well a certain design alternative meets the
This is an assumption which is basic for the concept of incremental requirement b) stated in section 3, the metrics discussed before are
design. Thus, we consider that, concerning the future applications,combined in an objective function, as follows:

we know the se§={tmin---t,-. tmax Of POSSible worst case execu- = WPV ™ ™2 P Py rm

tion times for prﬁocesses, and the St {bminy---1,-. bnag Of pos- (,:3 Wl(cl,;), W3 (Cy) HWoMaXO e C2) Fz MO, ?”eed—cg])

sible message sizes. We also assume that over these sets we knofgl andCz are those components of the two metrics that capture
the distributions of probabilitys(t) for t0S, andfgyb) for bg, e slack properties on processors, wiGi' andC;" are calcu-

For example, we might have worst case execution tige¢50, lated for the slacks on the bus. Our mapping and scheduling strat-
100, 200, 300, 500 ms}. Ifhere is a higher probability of having €9y Will try to minimize this function. _
processes of 100 ms, and a very Iprobability of having processes The first two terms measure how well the resulted slack sizes

of 300 ms and 500 ms, then our distribution functiagt) could fit to a future application (first criterion), while the second two
look like this: f51(5(5):0.20 fs{100)=0.50, f<(200)=0.20 terms reflect the distribution of slacks (second criterion). We call a

f5{300)=0.05, ands{500)=0.05 valid solutionthat mapping and scheduling which satisfies all the
Another information is related to the period of process graphs 4€sign constraints (in our case the deadlines) and meets the second

which could be part of future applications. In particular, the small- C”tz“o?].(d; 2 tneedandC.Z 2 Bpeed ¢ lati bl

est expected perio@,;, is assumed to be given, together with the . tthis point we can give an exact formulation to our problem.

expected necessary processor timgy and bus bandwidthyeeg Given an existing set of app|I.CatI.0Il'lBWhICh are.already mapped

inside such a period,,; As will be shown later, this information ~ nd scheduled, and an applicafiDgen; to be implemented on

is used in order to provide a fair distribution of slacks. top ofy, we are interested to find the subset] y of old applica- .
The execution times i as well ast,..qare considered rela- tions to be remapped and rescheduled such that we produce a valid

nee

tive to the slowest node in the system. All the other nodes are char-S0!ution forf ¢ ren;J Q and the total cost of modificatioR(Q) is
acterized by a speedup factor relative to this slowest node. minimized. Once such &R is found, we arénterested to minimize

3.3 Quality Metrics the objective functiol€ for the sef” ,;rentd Q, considering a fam-

- y o ily of future applications characterized by the s§tandS,, the
A dteS|gnfer will tbe able Ito ma?. rfligd sgrlledule an Fp}fﬂt'ﬁdf'@!ﬁre functionsfg;andfsyas well as the parameteFs,n, theed @Ndbpeed
on top of a system implementing and I ¢ ens ONly if there are
sufficient resources available. In our case, the resources are proces4' MAPPING AND SCHEDULING STRATEGY

sor time and the bandwidth on the bus. In the context of a non-pre- AS shown in Figure 4, our mapping and scheduling strategy (MS)

emptive static scheduling policy, having free resources translateshas two steps. In the first step we try to obtain a valid solution for

into having free time slots on the processors and having space left! currentl) Q SO thatR(Q) is minimized.Starting from such a solu-

for messages in the bus slots. We call these free slots of availablet!on; & second step iteratively improves on the design in order to

time on the processor or on the bsfack It is the size and distri- ~ Minimize the objective functioB. _

bution of the slacks that characterizes the quality of a certain 4.1 The Initial Mapping and Scheduling

design alternative from the point of view of its potential to accom- The first step of MS consists of an iteration that tries sunQeisy

modate future applications. In this section we introduce two crite- with the intention to find that subs&=Q,,,;,which produces a valid

ria in order to reflect the degree to which one design alternative solution forl ¢ entd Q such thaR(Q) is minimized. Given a sub-

meets the requirement b) presented at the beginning of section 3. set Q, the InitialMappingScheduling function (IMS) constructs a
Thefirst criterion reflects how well the resulted slack sizes fit  mapping and schedule for en: 0 Q that meets the deadlines,

to a future application. The slack sizes resulted after implementa- without worrying about the two criteria in section 3.3. For IMS we

tion of I o rrent ON top ofy should be such that they best accommo- used as a starting point the Heterogeneous Critical Path (HCP) algo-

date a given family of application,;,re Characterized by the sets
S & and the probability distributionés; and fsp, as outlined

rithm, introduced in [5]. HCP is based on a list scheduling algo-
rithm. We have modified the HCP algorithm to consider, during

before. Let us consider the example in Figure 2, where we have amapping and scheduling, a set of previous applications that have

single processor with the applicatioAsandB implemented and a

already occupied parts of the schedule table, and to schedule the

future applicationC which consists of the two processéy, and messages according to the TDMA protocol. Furthermore, for the
P,. It can be observed that the best configuration, taking in consid- selection of processes we have used, instead of the CP (critical path)
eration only slack sizes, is to have a contiguous slack. Such a slack priority function, the (modified partial critical path) MPCP priority
as depicted in Figure 2c and d, will best accommodate any future function introduced by us in [3]. MPCP takes into consideration the
application. However, in reality, it is almost impossible to map and particularities of the communication protocol for calculation of
schedule the current application such that a contiguous slack iscommunication delays. These delays are not estimated based only
obtained. Not only is it impossible, but it is also undesirable from on the message length, but also on the time when slots assigned to
the point of view of the second design criterion, discussed below. the particular node which generates the message, will be available.
The secondcriterion expresses how well the slack is distrib- However, before using the IMS algorithm, two aspects have to
uted in time. LetP; be a process with periofl, that belongs to a
future application, andVi(P;) the node on whichP; will be
mapped. The worst case execution tim@ois t}'™) . In order to
schedule®; we need a slack of sizd'®) that is available period-
ically, within a periodTp;, on processoM(P;). If we consider a

1 This definition of a valid solution can be relaxed by imposing only the sat-
isfaction of deadlines. In this case, the algorithm in Figure 4 will look af-
ter a solution which satisfies the deadlines an@R¢ minimized; the two
additional criteria are only considered optionally.



be addressed. First, the process graphdl ¢ ,;rent 0 Q are merged

into a single grapl,reny DY unrolling of process graphs and inser-
tion of dummy nodes [11]. In addition, we have to consider during
scheduling the mismatch between the periods of the already exist-
ing system and those of the current application. The schedule table
into which we would like to schedul@enhas a length oo
which is theglobal period of the systemy after extraction of the ap-
plications inQ. However, the period ¢ rent Of Geyrrent @8N be dif-
ferent fromT,o. Thus, before schedulinGqrentinto the existing
schedule table, the schedule table is expanded to the least common
multiplier of the two periods. A similar procedure is followed in the
caselgyrent > TqJ\Q-

4.2 The Basic Strategy
If IMS succeeds in finding a mapping and schedule which meet the
deadlines, this is not yet a valid solution. In order to produce a valid
solution we iteratively try to satisfy the second design criterion. In
terms of our metrics, that means a mapping and scheduling such that
CY > tpeeqandC" = byeeq Potential moves can be the shifting of
processes inside theih\EAP, ALAPinterval in order to improve the
periodic slack. The move can be performed on the same node or to
other nodes. Similar moves are considered for messages.
SelectMoveC, evaluates these moves with regard to the second
design criterion and selects the best one to be performed. Any viola-
tion of the data dependency constraints is rectified by moving pro-
cesses or messages concerned in an appropriate way.

If Step 1 has succeeded, a mapping and scheduling of

MappingSchedulingStrategy

Q=0
-- Step 1 try to find a valid schedule fér,on that minimizeR(Q)
repeat
gucceededzlnitialMappingScheduIing(Lu \QL T currenidQ)
-- compute ASAP-ALAP intervals
ASAP(I current] Q); ALAP(T cuprendQ)
if succeeded then
repeat -- try to satisfy the second design criterion
-- find moves with highest potential to maximiZg
move_set=PotentialMoveCy(I" ¢/renl] Q)
-- select and perform move which improves ni@st
move = SelectMoveC,(move_set); Perform(move)
succeeded = C5 2ty00gand CB 2bp0eq
until succeeded or limit reached
end if
if succeeded and R(Q) smallest so far then
valig™=C2; SOItON,zic=SOIUtONCyrrent
end if
-- try another subset
Q=NextSubset(Q)
until termination condition
if not succeeded then modify architecture; go to step 1; end if
-- Step 2 try to improve the cost function C
Solutioncyrren=S0IUtioN i, QminCyalig
repeat
-- find moves with highest potential to minimi@e
move_set=PotentialMoveC(I" .;yrendd Qmin)
-- select move which improves
-- and does not invalidate the second design criterion
move = SelectMoveC(move_set); Perform(move)

[ eunrent) Q has been produced which corresponds to a valid solu- ~_ Until C; has not changed or limit reached

tion. In addition,Q is such that the total modification cost is as small end Mf.;\ppmgScheduImgStrategy ] ]
as possible. Starting from this valid solution, the second step of the Figure 4. MS Strategy to Support Iterative Design

MS strategy, presented in Figure 4, tries to improve on the design in 7})=90 (the inclusion of , triggers the inclusion of 7), R{T >,
order to minimize the objective functid@. In a similar way as dur- M3})=120,R{ 3, 4, [7})=140,R{1})=150, and so on. The total
ing Step 1, we iteratively improve the design by successive moves. number of possible subsets according to the ggaighl6.

In [11] we introduced a heuristic with the goal of guiding the This approach, while finding the optimal sub§gtrequires a
moves discussed above. Its intelligence lies in how the moves are setarge amount of computation time and can be used only with a
lected. For each iteration a set of potential moves is selected Pgthe  small number of applications.
tentialMove function. SelectMove then evaluates these moves with 4.3.2 Ad-hoc Solution (AH)

regard to the respective metrics and selects the best one to perform. If the number of applications is larger, a possible ad-hoc solution

4.3 Minimizing the M0d|f|cat'0n Cost . could be based on a greedy strategy which, starting féw,

The first step of our mapping strategy described in Figure 4 iterates progressively enlarges the subset until a valid solution is produced.

on subset$) searching for a valid solution which also minimizes  The algorithm looks at all the non-frozen applications and picks

the total modification cosR(Q). As a first attempt, the algorithm  that one which, together with its dependencies, has the smallest

searches for a valid implementation I6frren; Without disturbing  modification cost. If the new subset does not produce a valid solu-

the existing application&=0). If no valid solution is found succes-  tjon, it is enlarged by including, in the same fashion, the next

sive subset@ produced by the functioNextSubset are considered,  application with its dependencies. This greedy expansion of the

until a terminating condition is met. The performance of the algo- subset is continued until the set is large enough to lead to a valid

rithm, in terms of runtime and quality of the solutions produced, is solution or no application is left. For the example in Figure 3 the

strongly influenced by the implementation of the functiegxtSub- call to NextSubset(D) will produceR({ I'7})=20, and will be succes-

set and the termination condition. They determine how the design sively enlarged t&R({I'7, '3})=70,R{T'7, '3, ['5})=140 (4 could

space is explored while testing different sub&etsf applications. have been picked as well in this step because it has the same modi-

4.3.1 Exhaustive Search (ES) fication cost of 70 a$, and its dependendg; is already in the

In order to findQ, the simplest solution is to try successively all  subset)R{ 7, '3, 'y, I'4})=210, and so on.

the possible subse@ O Y. These subsets are generated in the While this approach finds very quickly a valid solution, if one

ascending order of the total modification cost, starting ffonthe exists, it is possible that the total modification cost is much higher

termination condition is fulfilled when the first valid solution is than the optimal one.

generated. Since the subsets are generated in ascending orde4.3.3 Subset Selection Heuristic (SH)

according to their cost, the subsethat first produces a valid solu-  An intelligent selection heuristic should be able to identify the reasons

tion is also the subset with the minimum modification cost. due to which a valid solution has not been found. Such a failure can
The generation of subsets is performed according to the graphhave two possible causes: an initial mapping which meets the dead-

G that characterizes the existing applications (see section 3.1).lines has not been produced, or the second criterion is not satisfied.

Finding the next subseQ, starting from the current one, is Let us investigate the first reason. If an applicafigis to meet its

achieved by a branch and bound algorithm that in the worst casedeadlineD;, all its processeBjI'; have to be scheduled inside their

grows exponentially in time with the number of applications. For [ASAP ALAM intervals. InitialMappingScheduling (IMS) fails to

the example in Figure 3, the call textSubset(0) will generate schedule a process inside i8JAP ALAF interval if there is not

{I7} which has the smallest nonzero modification cost. The next enough slack available on any processor, due to other processes

generated subsets, in order, together with their corresponding totalscheduled in the same interval. In this situation we say that there is a
modification cost are:R{I3})=50, R{I3, 7})=70, R{T,4



conflictwith processes belonging to other applications. We are in- 5. EXPERIMENTAL RESULTS
terested to find out which applications are responsible for conflicts For evaluation of the proposed strategies we first used process graphs
encountered by OUF¢yreny and not only that, but also which ones  of 80, 160, 240, 320 and 400 processes, representing the application
areflexibleenough to move away in order to avoid these conflicts. _ . generated for experimental purpose. 30 graphs were gener-
~ IMS determines a metrify; that characterizes the degree of con-  ated for each graph dimension, resulting in a total of 150 graphs. We
flict and the flexibility of appllcatlon' in relation tor cyrenty A Set considered an architecture consisting of 10 nodes. For the communi-
of applicationsQ will be characterized, in relation tOreny bY cation channel we considered a transmission speed of 256 kbps and a
AQ) = FZQ . The metricA(Q) will be used by our subset selec-  |ength below 20 meters. The maximum length of the data field in a
tion heuristic if IMS has failed to produce a solution which satisfies bus slot was 8 bytes. Experiments were run on a SUN Ultra 10.
the deadlines. An application with a larggris more likely to lead The first results concern the quality of the solution obtained with
to a valid schedule if included if. In Figure 5 we illustrate how our mapping strategy MS using the search heuristic SH compared to
this metric is calculated. Applicatioss B andC are scheduled on  the case when the ad-hoc approach AH and the exhaustive search ES
three processorB;, P, andP5, and our goal is to implement the ~ are used. For each of the five graph dimensions {gfen;we have
current applicatiom. At a certain moment IMS comes to the point  considered a set of existing applicatiapsconsisting of 320, 400,
to place proces®; 0 D. However, it is not able to plad®; inside 480, 560 and 640 processes, respectively. The sets contained 6, 8,
its [ASARALAF] interval |, because there is not enough free slack 10, 12 and 14 applications, each application with an associated
available insidd on any of the processors. We are interested to modification cost assigned manually in the range 10 to 100. The
determine which of the applicatioss B andC are more likely to available slack is of about 50% of the total schedule size. The
lend free slack foD, if remapped. Therefore, we calculate the dependencies between applications were such that the total number
slack resulted after we move away processes from the interval of possible subse® resulted for each setwere 32, 128, 256, 1024
For example, the resulted slack available after remapping applica-and 4096. We have considered that the future applicafigpg.e
tion C (moving processC;IC either to the left or to the rlght consist of a process graph of 80 processes, randomly generated
|n3|de its own ASAR ALAP interval) is of size|l| - m|nFS|c according to the following specification§={20, 50, 100, 150, 200
ICR]) . Thus, we incremenc with 8 = |I| - min(|CYl, |CY]) - ms}, f(S)={10, 25, 45, 15, 5%},5,={2, 4, 6, 8 bytes}fi,(S,)={20,
D 1] . The increment$g andd, to be added tég andA, respec- 50, 20, 10%},T1i=250 Msf,eed100 ms andh,eed20 ms.
tively, are also presented in Figure 5. IMS continues with the other ~ MS has been used to produce a valid solution for each of the 150
processes of application D (after assuming that probeses been process graphs representingo; 0N the target system using the
scheduled at the beginning of interMdl As result of the failed ES, AH and SH approaches to subset selection. Figure 6a compares
attempt to majD, IMS will produce the metricAa, Ag, andAc. the three approaches based on the total modification cost needed in
If the initial mapping was successful, the first step of MS could order to obtain a valid solution. The exhaustive approach ES is able
fail during the attempt to satisfy the second criterion. In this case, to obtain valid solutions with an optimal (smallest) modification
the metricd; is computed in a different way. It will capture the po-  cost, while the ad-hoc approach AH produces in average 3.12 times
tential of an applicatior; to improve the metricc, if remapped more costly modifications in order to obtain valid solutions. Howev-
together with . ,;rene Thus, for the improvement &, we consid- er, in order to find the optimal solution ES needs large computation
er a totalnumber of moves from all the non-frozen applications (de- times, as shown in Figure 6b. For example, it can take more than 2
termined usingPotential-MoveC,(y)). For each move that has as hours in average to find the smallest cost subset to be remapped that

subjectP;0r;, we increment the metrig; with the predicted im- leads to a valid solution in the case of 14 applications (640 process-

provement orc,. es). We can see that the proposed heuristic SH performs well, pro-
MS starts by trying an implementation B yen With Q=0. If ducing close to optimal results with a good scaling for large

this attempt fails, because of one of the two reasons mentionedapplication sets. For the results in Figure 6 we have eliminated those

above, the corresponding metrias are computed for all”;dy. situations in which no valid solution could be produced by MS.

Our heuristic SH will then start by finding the ad-hoc solutfy, Another important aspect to be proven by experiments is the

produced by the AH algorithm (this will succeed if there exists any extent to which the mapping strategy proposed in the paper really
solion) with a corresponding cost AR=R(Qay) and a facilitates the implementation diuture applications. For these
Dap=A(Qan)- SH now continues by trying to find a solution with a  experiments we have considered that no modifications are allowed
more favorable (a smaller total cost R). Therefore, the thresholds to the applications inp. We have used an existing set of applica-
Rmax=Ran and Apii=Aan/n (for our experiments we considered tionsy consisting of 400 processes, with a schedule table of 6s on
n=2) are set. For generating new subsetshe functionNextSub- each processor, and a slack of about 50% of the total schedule size.
set now follows a similar approach like ES but in a reverse direc- Then, we have mapped graphs of 40, 80, 160 and 240 nodes repre-
tion, towards smallesubsets, and it will consider only subsets witha  senting the ¢, enr@pplication on top od.

smaller total cost then R, and a largetd then A, (a smallA After mapping and scheduling each of these graphs we have
means a reduced potential to eliminate the cause of the initial fail- tried to add a new applicatioR, . to the resulted system (for
ure). Each time a valid solution is found, the current values of TfreWe used the same experimental set as presented before). The
Rmax and Ani, are updated in order to further restrict the search experiments have been performed two times, using first K&
space. The heuristic stops when no subset can be found withcall MS™ the version of MS in which no modification of
A>Ain, OF @ certain imposed limit has been reached (e.g. on the to- applications iny is allowed), and then arad-hoc mapping

tal number of attempts to find new sets). approach (AM), for mapping ¢ rent N both cases we were
interested if it is possible to find a valid implementation F@, e
p _ASAPC) [Ar] [ | | ALAP(Cy on top of Meyrene USING the initial mapping algorithm IMS. The
P, & [ o ] ilers AM approach is a simple, straight-forward solution to produce
designs which, to a certain degree, support an incremental process.
Py | [ A2 ] [ As | . Starting from the initial valid schedule of lengBobtained by IMS
ASAP(D;) 5 ] ALAP(D,) for the graphG with N processes, AH uses a simple scheme to
Il = ALAP(D) - ASAP(D) redistribute the processes inside thel)),interval, whereD is the
B = max(l| - [B] - min(|ALl, |AR)), 1] -min(A5], [A51) - min(|A5], [ASD) - 1Dy | deadline of the process gragh AH starts by considering the first
3 = |I] - 1Ay - min(IEx], BRI) - D4 process in topological order, let it 8. It introduces afteP; a slack
8 = I - min(&], [CR) - Dy of size min(smallest process size[gf,e (D-S)/N) thus shifting

Figure 5. Metric for the Subset Selection Heuristic all P;’s descendants to the right. The insertion of slacks is repeated
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Figure 6. Average Modification Cost (a) and Execution Time (b) for MS with the AH, SH and ES Approaches to Subset Selection
for the next process, with the current larger valu§ais long as the satisfies two main requirements when adding new functionality: al-

resulted schedule has 8& D. ready running applications are disturbed as little as possiblehanel
Figure 7 shows the number of successful implementations in is a good chance that, later, new functionality can easily be
the two cases. In the cabgrenthas been mapped with MShis mapped on the resulted system. Our approach assumes a non-pre-

means using the design criteria and metrics proposed in the paperemptive static cyclic scheduling policy and a realistic communica-
we were able to find a valid solution for 65% of the total process tion model based on a TDMA scheme.

graphs considered. However, using AM to nigp,renshas led to a We have introduced two design criteria with their correspond-
situation where IMS is able to find schedules which satisfy the ing metrics that drive our mapping strategy to solutions supporting
deadlines for only 27.5% cases. Wheg,rent grows to 160 pro- an incremental design process. Three algorithms have been pro-

cesses, only MSis able to find a mapping df cyrrent that supports posed to produce a minimal subset of applications which have to
an incremental design process, accommodating more that 60% ofbe remapped and scheduled in order to implement the new func-
the future applications. If the remaining slack is very small, after tionality. ES is based on a, potentially slow, branch and bound
we map d ¢ rrent OF 240, it becomes practically impossible to map  strategy which finds an optimal solution. AH is very fast but pro-
new applications without modifying the current system. duces solutions that could be of too high cost, while SHbie to

If the mapping heuristic is allowed to modify the existing system, quickly produce good quality results. Tlaproach has been vali-
as discussed in this paper, then we are able to increase the toétal nurdated through several experiments.
ber of successfully mapped applicatidrgy,e from 65% with M
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