Scheduling-based Code Size Reduction
in Processors with Indirect Addressing Mode

Sungtaek Lim

Dynalith Systems Co., Ltd.
Taejon 305-701, Korea
+82-42-862-6411

stlim@dynalith.com

ABSTRACT

DSPs are typicaly equipped with indirect addressing modes with
auto-increment and auto-decrement, which provide efficient
address arithmetic calculations. Such an addressing mode is
maximally utilized by careful placement of variables in storage,
thereby reducing the amount of address arithmetic instructions.
Finding proper placement of variables in storage is called storage
assignment problem and the result highly depends on the access
sequence of variables. This paper suggests statement scheduling as
a compiler optimization step to generate a better access sequence.
Experimental results show 3.6% improvement on the average over
naive storage assignment.

Keywords
Code generation, indirect addressing mode, storage assignment,
code size reduction

1. INTRODUCTION

In general, DSPs provide two main addressing modes: direct and
indirect. The direct addressing mode uses immediate field in the
instruction word to form memory addresses, while in the indirect
addressing mode, addresses are read from address registers. The
addressing mode with address register plus an offset of index is
not usually provided by DSPs because the address calculation can
increase the execution time significantly. Whereas the indirect
addressing mode equipped with auto-increment and
auto-decrement that are executed in paralel with main datapath
can improve both the size and performance of the code.

The placement of variables in memory has a significant impact on
the utilization of indirect addressing mode. Optimizing DSP
compilers (such as SPAM [2]) usualy defer storage allocation of
variablesdown to the code generation step where addressing
modes are selected, thereby increasing the opportunities of using
efficient auto-increment and auto-decrement operations. The
deferred storage allocation is formulated as the storage assignment
problem. Bartley [1] was the first to address the storage
assignment problem. Liao et a. [3] formulated it as simple offset
assignment (SOA), which is a simplified storage assignment with
asingle address register. They first built an access graph from the

Jihong Kim
School of EECS
Seoul National University
Seoul 151-742, Korea
+82-2-880-8792
jihong@davinci.snu.ac.kr

Kiyoung Choi
School of EECS
Seoul National University
Seoul 151-742, Korea
+82-2-880-6768
kchoi@azalea.snu.ac.kr

access sequence of variables in storage. Then they showed that the
SOA problem is equivalent to the maximum weighted path
covering (MWPC) problem on the access graph and proved that it
is NP-complete. They also showed that the SOA solution can be
used to solve general offset assignment (GOA) problem that
handles a fixed number of address registers and suggested
heuristics to solve the two problems. Leupers and Marwedel [4]
extended the work done by Liao et a. by proposing a tie-breaking
heuristic and a variable partitioning strategy to reduce the cost of
SOA and GOA solutions respectively.

The above approaches do not attempt to optimize the variable
access sequence itself, which can significantly affect the result of
storage assignment problem. Rao et al. [5] suggested modifying
the variable access sequence using expression tree transformations
and formulated it as the least cost access sequence (LCAS)
problem and developed heuristic algorithms to solve it. They used
algebraic transformations (such as commutativity) on the
expression tree to modify the order of operands of an instruction.

We can further optimize the access sequence by transforming not
only the expression tree of an instruction but also the schedule of
instructions. We formulate the problem as statement scheduling
and propose an agorithm that solves the problem.

2. SIMPLE OFFSET ASSIGNMENT

Address generation unit (AGU) of a processor that supports
indirect addressing mode can usually compute the address used by
the next instruction in paralel with the currently executing
instruction. AGU is comprised of a file of k address registers
(ARs), as well as afile of m modify registers (MRs). AR and MR
indices are provided by AR and MR pointers respectively, which
are the values of either special registers or part of instruction
words. According to the decoded instruction, AGU generates an
address based upon an AR, which is incremented or decremented
by a constant or by the value of an MR. The range of the constant
is represented by r. Thus k, m, and r determine the configuration
of the AGU.

When a program accesses a series of variables in memory, if the
stride of the addresses is greater than the range, AR or MR should
be reloaded with an immediate value. This additional instruction
causes code size overhead of indirect addressing mode. Offset
assignment (OA) is the problem of finding proper memory layout
of variables to reduce the occurrence of strides larger than the

range supported by the AGU. The offset assignment problem is
classified according to the AGU parameters k, m, and r and
represented by (k, m, r)-OA [7].

(1, 0, 1)-OA is offset assignment on a processor with only one
address register, no modify register, and auto-increment and
auto-decrement range of 1. Figure 1 (a) shows an example of (1, O,
1)-OA, which results in nine instructions. By re-arranging the
variable in memory as shown in Figure 1 (b), we can reduce the
number of instructions down to seven.

Bartley [1] modeled the (1, O, 1)-OA problem as an undirected
edge-weighted access graph G(V,E,W), where V models the set of
variables and E models the set of transitions between variables.
For each edge e=(v1, v2) in E, the weight w(e) is the number of
transitions from v1 to v2 or vice versa in the access sequence.
Large weight of edge (v1, v2) means vl and v2 are frequently
accessed in sequence so the two variables should be placed into
neighboring memory locations because accessing vl after or
before v2 is supported by AGU's auto-increment or
auto-decrement. Each offset assignment corresponds to a

Idar &a
;' load | *(AR++)
b add *(AR++)
——- 2 store | *(AR)
cmasy; +) [idar | 3e
f=e+d; d
= load | *AR-)
T load | *(AR)
Idar &f
store | *(AR)
Application Variables in Assembly code for AR indicates ...
code memory accumulator
machine
(a\
R — Idar [&a [-]
= load | *(AR++) [&a]
* add [*(AR++) [&b|
. = store | *(AR++)
sal | mm) 0ad | (AR++) | | &e|
f=e+d; e
4 load | *(AR++) [&d]|
i store | *(AR++) |&f |
Application Variables in Assembly code for AR indicates ...
code memory accumulator

machine

(b)
Figure 1. Examplesof (1, 0, 1)-OA.

Hamiltonian path in G, i.e. a path that traverses al nodes just
once.

It is obvious that an optimum offset assignment corresponds to a
maximum weighted Hamiltonian path in G. This problem is called
maxi mum weighted path covering (MWPC). Liao et al. [3] showed
that the offset assignment problem is NP-complete even for the
simple case of (1, 0, 1)-OA and presented a heuristic based on the
access graph model to solve it. They generalized it to (k, 0, 1)-OA
by partitioning G into k subgraphs each of which is covered by an
AR.

3. STATEMENT SCHEDULING

First we assume an accumulator machine with one accumulator

register and load/store instructions and consider simple offset
assignment problem. Figure 2 (a) shows an application code, the
corresponding access sequence, the access graph, and the MWPC
solution. Edges that are not covered by the MWPC solution
represent transitions requiring additional instructions. The weight
of such an edge corresponds to the number of additional
instructions. Hence the cost of the MWPC solution is the sum of
the uncovered edges weights, and the cost of the solution in
Figure2 (a) is 3.

Observing that the two statements e = d + 2 and a = b have no
data/control dependency to each other, we can change their order
without affecting the functionality. Figure 2 (b) shows a modified
code and the corresponding access sequence, access graph, and
MWPC solution with cost of 1. This way, proper statement
scheduling can result in lower MWPC cost and this is the
motivation of our work.

We formulate the problem as follows. Given a basic block® of an
application code, schedule the statements in such a way that the
cost of the MWPC solution for the corresponding access graph is
minimized. We use the term statement to denote a schedulable
element of compiler's intermediate representation- medium level
intermediate representation (MIR) [6]-for a given application
code. One statement corresponds to one MIR instruction.

load |b
add |4
store |d |
d=b+4; load |a c
c=a+b; add | b b
b=b+3; | mmmp |Store|c a
e=d+2; load | b d
a=b; add |3 e
store | b
Applicati A y code for Access graph Variables in
code accumulator memory
machine
(@
load | b
add |4
store | d
d=b+4; load |a c
c=a+h; add |b b
b=b+3; | mmp |Store ¢ a
a=b; load |b d
e=d+2; add |3 e
store | b
Applicati A bly code for Access graph Variables in
code accumulator memory

machine

(b)

Figure 2. Statement scheduling.

We perform scheduling? based on the MIR, which comprises MIR
instructions as well as the dependencies between the instructions.
Dependence DAG is a neat way to show an MIR and we will use it

* Currently, we do not allow branches and perform the optimization within
abasic block.

2 We assume all local variables reside not in registers but in memory.
Hence instruction scheduling considering register spill is not of our
concern.

hereafter. Each node means a statement (or MIR instruction) and
each directed edge means dependency between two statements.
Figure 3 illustrates the application code in Figure 2 using the
dependence DAG.

(1)d=b +4;
(2)c=a+b;
(3)b=b+3; [3
(4)e=d+2;
(5)a=b;

Application code Dependence DAG

Figure 3. Dependence DAG.

4, ALGORITHMS

We need to find a statement schedule that gives the minimum cost.
However, to compute the cost for a given schedule, we need to
solve the MWPC problem which itself is NP-complete. We device
a heuristics based on the observation that the access graph of
Figure 2 (b) has fewer edges than that of Figure 2 (a). When an
access graph becomes sparser, maximum weighted path covering
tends to result in less cost because the number of edges to be
covered are reduced and the edge weights tend to be concentrated
on some small set of edges. So our algorithm aims to generate the
sparsest access graph.

4.1 List Scheduling

The proposed list scheduling algorithm constructs an access graph
by selecting a statement to be scheduled from the dependence
DAG and updating the access graph with the new transitions. The
update may add new edges, add new vertices and/or increase edge
weights. It implements a greedy heuristic that selects a statement
that adds least new edges at that schedule step.

Figure 4 (a) shows a statement schedule of the examplein Figure 3.

Let's assume that statement (1), (2), and (3) are already scheduled
and (4) and (5) are not scheduled yet. If we schedule statement (4)
first, two new edges will be added to the access graph as shown in
Figure 4 (b). Then statement (5) is scheduled and the cost is 3 as
shown in Figure 2 (a). If we schedule statement (5) first, one new
edge will be added to the access graph as shown in Figure 4 (c).
Then statement (4) is scheduled and the cost is 1 as shown in
Figure 2 (b). This is the case where list scheduling leads to an
optimum solution.

4.2 Exhaustive Sear ch

Exhaustive search method examines al possible statement
schedules and finds an optimal schedule, which generates sparsest
access graph. Branch pruning can be used to accelerate the
exhaustive search. At each schedule step, it selects a statement for
the next schedule, updates the edge count, and compares it to the
optimal cost found up to that time.

4.3 Hybrid Algorithm

List scheduling executes fast but asis usual for a greedy agorithm,
can lead to alocal optimum. And it is not easy to set good criteria
for tie break. On the contrary, exhaustive search guarantees an

—~ e
/ 7
(

~ g (a
o |
® -
ot
\\A
™ g // ‘/\ (o

Access graph

Dependence DAG
@)
RN \
% (a) (e)
‘ni N 1
S 2 1 h
o)) —)

(b)

Dependence DAG Access graph

(©
Figure4. List scheduling.

optimal solution but runs in time exponentia to the size of the
problem. Even the pruning method does not guarantee to improve
the execution time. More aggressive pruning is needed to improve
the execution time. The hybrid algorithm confines the exhaustive
search to the successors of the statement that is scheduled most
recently. Other statements are excluded because they tend to
generate new edges in the access graph. For example, consider the
dependence DAGs shown in Figure 5. Figure 5 (a) illustrates that
the list scheduling method selects one statement from the
candidates for the next schedule. Figure 5 (b) illustrates that the
exhaustive search considers all candidate statements for the next
schedule. However, the hybrid algorithm confines the search to the
reduced number of candidates as shown in Figure 5 (c).

5. EXPERIMENTAL RESULTS
We implemented the three algorithms on SPAM compiler middle-
and back-end targeting Texas Instruments' TMS320C25 DSP. The

scheduled

scheduled

selected for next schedule

(@)

scheduled

consider for

scheduled next schedule

2

scheduled

consider for next schedule
(b)

scheduled

consider for next schedule

(©

Figure 5. Pruning the sear ch space for statement
scheduling.

SUIF front-end

Machine-independent
optimizations

Data flo

Statement schedule

w analysis

MWPC
Code generation

Assembly code

Figure 6. Overall flow of the optimizing compiler.

overal flow of the optimizing compiler is shown in Figure 6.

Table 1 shows the code size reduction in number of words. SOA
means the size of code obtained by MWPC but without statement
scheduling. The gain of SS gives the code size reduction obtained
by the hybrid method with respect to the original code size. It
shows the average gain of 3.6%. We could not obtain the result of
the exhaustive search on biquad_N_sections due to the enormous
amount of running time but the hybrid method found a solution.
Execution times of the proposed three algorithms are shown in
table 2.

To compare the effect of statement scheduling with that of
expression tree transformation, we quoted the gain from [5].
Sometimes expression tree transformation shows better result. But
the two approaches are not totally exclusive. We expect additional
gan by extending our approach from MIR- to LIR-based
scheduling to subsume the effect of expression tree transformation
and we set aside it for future work.

Table 1: Code Size Reduction

SOA | list [exhaus|hybrid|% gain|% gain
schedu| tive of SS |of ETT
le

complex_ 34 32 32 32| 5.882 23
multiply

convolution 92 20 86 87| 5.435| 5.81
dot_product 75 71 71 71| 5.333 0

fir 138 134 129 132 4.348| 7.03
biquad N_ 222 218| N/A 214 3.604[N/A
sections

matrix2 287 278 275 277| 3.484| 0.74
matrix1x3 71 69 69 69| 2.817| N/A
fir2dim 365 361 361 361| 1.096 24

biquad_one_| 75 75 75 75 0 174
section

average 3.6 2.9

SS: statement scheduling with hybrid method
ETT : expression tree transformation [5]

Table 2: Execution Time (seconds)

list scheduled | exhaustive hybrid

complex_ 0 0.74 0.67
multiply

convolution 0 0.61 0.61
dot_product 0 0.85 0.85
fir 0 28.91 8.71
biquad_N_ 0.01 N/A 1711
sections

matrix2 0 6.66 0.83
matrix1x3 0 0.86 0.82
fir2dim 0.01 3.06 2.74
biquad_one_| 0 0.01 0.01
section

We calculated the effect of code size reduction on the performance
for the case of complex_multiply and dot_product, which resulted
in 5.88% and 4.94% improvement in cycle count respectively.

6. CONCLUSION

We showed that statement scheduling can further improve the
result of simple offset assignment. Among the three scheduling
algorithms proposed in this paper, the hybrid method resultsin the
cost generally lower than the list scheduling method and runs
faster than the exhaustive search.

Generalization of statement scheduling to solve GOA does not
seem to be difficult. Using variable partitioning method, we can
also partition dependence DAG into many subgraphs and execute
the proposed scheduling agorithm assuming one address register
for each subgraph.

The proposed scheduling is done at medium-level intermediate
representation (MIR) in SPAM compiler. But if we target
low-level intermediate representation, we may be able to obtain
further improvement.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]
[7]

D.H. Bartley, “Optimizing stack frame accesses for
processors with restricted addressing modes,” Software
Practice and Experience, vol. 22 (2), 1992

SPAM Compiler Users Manual, SPAM Research group,
Princeton University, 1997

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang,
“ Storage assignment to decrease code size,” ACM SSGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 1995

R. Leupers and P. Marwedel, “Algorithms for address
assignment in DSP code generation,” Int. Conference on
Computer-Aided Design (ICCAD), 1996

A. Rao and S. Pande, “ Storage assignment using expression
tree transformations to generate compact and efficient DSP
code,” ACM 9GPLAN Conference on Programming
Language Design and Implementation (PLDI), 1999

Steven S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers, 1997

R. Leupers, Code Optimization Techniques for Embedded
Processors, Kluwer Academic Publishers, 2000

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

