
Optimal Acyclic Fine-Grain Scheduling with Cache Effects
for Embedded and Real Time Systems

Sid-Ahmed-Ali Touati
INRIA. Domaine de Voluceau, BP 105

78153 Le Chesnay cedex, France

Sid-Ahmed-Ali.Touati@inria.fr

ABSTRACT
To sustain the increases in processor performance, embed-
ded and real-time systems need to �nd the best total sched-
ule time when compiling their application. The optimal
acyclic scheduling problem is a classical challenge which
has been formulated using integer programming in lot of
works. In this paper, we give a new formulation of acyclic
instruction scheduling problem under registers and resources
constraints in multiple instructions issuing processors with
cache e�ects. Given a direct acyclic graph G = (V;E),
the complexity of our integer linear programming model is
bounded by O(jV j2) variables and O(jEj+jV j2) constraints.
This complexity is better than the complexity of the exist-
ing techniques which includes a worst total schedule time
factor.

Keywords
optimal acyclic schedule, registers constraints, resources con-
straints, cache e�ects, integer programming

1. INTRODUCTION
Current compilers try to take bene�t from the instruc-

tion level parallelism (ILP) present in nowadays processors.
Multiple operations are issued in the same clock cycle to in-
crease the throughput of the executed operations. Complet-
ing a computation in the shortest time is a scheduling prob-
lem constrained by many factors. The most important ones
are the data dependencies, the availability of the hardware
features and the memory hierarchy constraints. This latter
include the registers constraints and the cache e�ects. While
the registers constraints impose the fact that the number of
values simultaneously alive must not exceed the number of
available registers, the cache e�ects are di�erent : in fact,
the caches misses are only a source of performance bottle-
necks because a miss penalty may stall the processor. Fur-
thermore, the cache behavior is di�cult to predict statically,
making the veri�cation and optimization of real time appli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

cation harder. In our formulation, we give a �rst approach
to handle compulsory (cold start) cache misses where a the
memory access operations exhibit some spatial or temporal
locality [10].
The theoretical studies on scheduling reveal that integrat-

ing the resources constraints [2] or the registers constraints
[4] are two NP-complete problems. Combining scheduling
under both the registers and resources constraints become a
complex task where the general compilers use some heuris-
tics to get an optimized schedule in polynomial time com-
plexity. However, the embedded and real time systems can
require the optimal (best) schedule. We have to write a
\good" formulation of the problem in order to reduce the
resolution time. Many works have been done using integer
linear programming (intLP) models [15, 7, 8, 9, 4, 1, 5, 3]. In
our work, we present a new formulation of acyclic schedul-
ing such that the complexity of the model generated is lower
than these existing techniques while we include some cache
optimizations, like we will explain in the end of this paper.
Our formulation must reduce the resolution time since we
considerably reduce the number of variables and constraints
in the generated intLP model.
This paper is organized as following. We �rst present the

model of the targeted processors in Sect. 2 and the direct
acyclic graph (DAG) to be scheduled in Sect. 3 : in our
study, we assume heterogeneous FUs, more than one regis-
ter type, and delayed latencies of writing into and reading
from registers. The problem of acyclic scheduling is briey
recalled in Sect. 4. After, we de�ne some intLP modeling
techniques in Sect. 5. We use these techniques to write our
intLP formulation in Sect. 6. We present some achieved
work in this �eld in Sect. 7 and conclude by our remarks
and perspectives in Sect. 8.

2. PROCESSOR DESCRIPTION
An ILP processor [12] takes bene�t from the inherent par-

allelism in the instructions ow and issues multiple opera-
tions per clock cycle thanks to the pipelined execution and
the presence of multiple functional units (FUs). An opera-
tion can be executed on one (or more) functional units (FU).
We model the complex behavior of the execution of the op-
erations on the FUs by the reservation tables. We attach
to each instruction a reservation table (RT) to describe at
which clock cycle a FU is busy due to the execution of this
instruction on it. A RT consists of a two-dimensional table,
where the number of lines is the latency of the operation,
and the columns consists of the set of FUs. Given a RT of
an instruction u, RT u(c; q) = 1 means that u executes on

the FU q during the clock cycle c after its issuing.
The target processor P is described by T the set of its

registers types (oat, int, etc.), its hardware resources, and
the set of instructions which execute on these resources. The
hardware ressources are the set of the FUs Q = fq1; : : : ; qMg
such that Nq is the number of copies of the FU q 2 Q. We
associate to each instruction u its reservation table RT u.

3. DAG MODEL
ADAG G = (V;E; �) consists of a set of operations V , and

a set of arcs E which contains the data dependences between
the operations with any other precedence constraints. Each
operation u has a latency �(u). We assume one sink opera-
tion ? in G which reects the total schedule time : if there
is more than one sink node, we add the virtual node ? with
an arc e from each sink s to ? with �(e) = lat(s). A valid
schedule of G is a positive integer function � which asso-
ciates to each operation u an issue time �(u). Any acyclic
schedule � of G must ensure that :

8(u; v) 2 E : �(v)� �(u) � �(u)

In this paper, we consider that each operation u 2 V writes
into at most one register of a type t 2 T . The operations
which de�ne multiple values with di�erent types are ac-
cepted in our model i� they do not de�ne more than one
value of a certain type. We denote by ut the value of type t
de�ned by the operation u. We also consider the following
sets :

1. VR;t is the set of the values of type t 2 T ;

2. ER;t is the set of the ow dependency arcs through the
values of type t 2 T . If there is some values not read
in the DAG, or are still read after leaving this DAG,
these values have to be kept in registers. We consider
then that there is a ow arc from these values to ? ;

Finally, we consider that reading from and writing into a
register can be delayed from the beginning of the schedule
time (VLIW case). We de�ne the two delay functions �r;t
and �w;t such that :

�w;t : VR;t ! N
u 7! �w;t(u)= 0 � �w;t(u) < �(u)
the write cycle of ut is �(u) + �w;t(u)

�r;t : V ! N
u 7! �r;t(u)= 0 � �r;t(u) � �w;t(u) < �(u)
the read cycle of u is �(u) + �r;t(u)

4. ACYCLIC SCHEDULING PROBLEM
A valid schedule � of G is �rst constrained by the inherent

data dependency relations between the operations or any
other serial constraints. The target architecture limitations
impose other constraints which are the limited number of
resources constraints and registers.

4.1 Resources Constraints
The resources constraints are simply the fact that two

operations must not execute simultaneously on the same FU,
i.e. the total number of operations which execute on a FU
q during a clock cycle c must not exceed Nq the number of
the FU copies. By using the reservation tables, an operation

u executes on a FU q during a clock cycle c i� RT u[c �
�(u); q] = 1. Formally, the resources constraints are :

80 � c � �(?); 8q 2 Q
X
u2V

RT u[c� �(u); q] � Nq

4.2 Registers Constraints
A value ut 2 VR;t is alive at the �rst step after the writing

of ut until its last reading (consumption). The set of the
consumers of a value ut 2 VR;t is the set of the operations
which read it :

Cons(ut) = fv= 9(u; v) 2 ER;tg

The last consumption of a value is called the killing date
and noted ;

8u
t
2 VR;t kill(ut) = max

v2Cons(ut)

�
�(v) + �r;t(v)

�

We assume that a value written at a clock cycle c in a reg-
ister is available one step later. That is to say, if operation
u reads from a register at a clock cycle c while operation
v is writing in it at the same clock cycle, u does not get
v's result but gets the value that was previously stored in
that register. Then, the lifetime interval LT�ut of the value
ut is]�(u) + �w;t(u); kill(u

t)]. Given the lifetime intervals
of all the values, the number of registers of type t needed
to store all the de�ned values is the maximum number of
values of type t that are simultaneously alive. We call this
number the register need (requirement) of the schedule �,
and we note it RN�

t (G). This register need is computed by
building the indirected interference graph H�

t = (VR;t;E),
such that ut and vt are adjacent i� they are simultaneously
alive, i.e. their lifetime intervals interfere. Then, the maxi-
mal number of values simultaneously alive is the cardinality
of the maximal clique (complete subgraph) of H�

t .
Since the number Rt of available registers of type t is

limited in the target processor, we need to �nd a schedule
which doesn't need more than Rt registers :

8t 2 T RN
�
t (G) � Rt

If such schedule doesn't exist, spill code has to be generated,
i.e. we must store some values in memory rather than in
registers. Spilling increases the total schedule time because
it inserts new operations and the spilled data may cause
cache misses. We do not handle spill code in this paper.

4.3 Cache Effects
In the area of �ne grain scheduling, the cache e�ects are

rarely taken into account because their behavior di�er from
one platform to another. Furthermore, reducing the cache
e�ects may require more registers to issue more operations
during the miss stall cycles, and sometimes may require ex-
tensive code size expansion due to loop unrolling to exhibit
more ILP. To exploit this ILP, the memory load which causes
a cache misse must be issued well ahead of the operation
which requires the loaded data in order to reduce the cache
miss stall cycles to a minimum. The scheduling method
used in this paper is based on this technique where we try
to cover the compulsory misses if a subset of memory loads
access to the same cache line.
Given some memory loads operations accessing the same

cache line, the �rst issued load causes a cache compulsory
miss and brings the entire line into the cache, while the
subsequent access to the loaded cache line are hits. To �x the

ideas, we assume the following scenario. We call a leading
cache e�ect[14] the penalty for a miss reference, and we note
it lce1. A subsequent reference to the same cache line su�ers
a trailing cache e�ect tce due to the latency of fully servicing
the miss : the requested data which causes the miss bypass
the cache and goes directly from the memory bus to the
CPU, while the subsequent hits must wait tce cycles for
loading the whole cache line into the cache.
According to above, the cache e�ects make the mem-

ory operations latencies variable according to the schedule.
There is an inter-dependence between the schedule and the
cache e�ects. For instance, suppose that three memory loads
a; b; c access the same cache line. If a is scheduled before
b and c, then this load is an essential (compulsory) miss
which can not be eliminated. The latency of a must be set
to �(a) = lce if we want to avoid stalling the processor. To
eliminated the trailing cache e�ects of b and c, we must issue
them after the schedule time of a with at least (lce + tce)
clock cycles.

5. INTEGER LINEAR PROGRAMMING
An integer linear programming problem (intLP) [11] is to

solve : �
maximize (or minimize) cx
subject to Ax = b

with c; x 2 Nn : x � 0, and A is an (m � n) constraints
matrix. This is the standard formulation. In fact, we can
use other linear constraints (�;�;<;>;=).

5.1 Logical Operators
Intrinsically, an intLP model de�nes the conjunctive op-

erator ^. Given two constraints matrix A and A0, saying
that x must be a solution for both Ax � b and A0x � b0 is
modeled by : �

A

A0

�
x �

�
b

b0

�

The nagation of a constraints matrix A with m lines (m
linear constraints f1; f2; � � � ; fm), i.e. forcing x to do not
verify Ax � b is modeled by :

f1(x) < b1 _ f2(x) < b2 _ � � � _ fm(x) < bm

In [6], the authors shown how to model the disjunctive op-
erator _. Consider the problem :�

maximize (or minimize) f(x)
subject to : g(x) � 0 _ h(x) � 0

By introducing a binary variable � 2 f0; 1g, this disjunction
is equivalent to : �

g(x) � �g

h(x) � (1� �)h

where g and h are two known non null �nite lower bounds
for g and h resp. We generalize to an arbitrary number of
constraints in an n-disjunctive formula _n :

_n(f1; � � � ; fn) = (f1(x) � 0 _ f2(x) � 0_ � � � _ fn(x) � 0)

Since the dichotomy operator _ is associative, we group the
constraints two by two from left to right. There is (n � 1)

1This latency depends on the memory access latency and
the memory bus bandwidth.

internal _ operators which need to de�ne (n � 1) boolean
variables (h1; � � � ; hn�1). The �nal constraints system to
express _n has O(n) constraints and O(n) boolean binary
variables.
From above, we deduce the linear constraints of any other

logical operator :

1. g(x) � 0 =) h(x) � 0 can be written

g(x) < 0 _ h(x) � 0

2. g(x) � 0() h(x) � 0 can be written�
g(x) � 0 ^ h(x) � 0

�
_

�
h(x) < 0 ^ g(x) < 0

�

5.2 Maximum an Minimum
In our intLP formulation, we need to compute the func-

tion z = max(x;y) which can formulated by considering the
following constraints :

8>>><
>>>:

z � x

z � y
z � (1� �)x+ ��y
z � �y+ (1� �)�x
� 2 f0; 1g

where (�x; �y) are two �nite non null upper bounds for x; y
resp. We can also express the maxn function with arbitrary
number of parameters z = maxn(x1; x2; � � � ; xn). Sincemax

is associative, we group the variables two by two from left
to right. The general form of maxn is :8>>>>><

>>>>>:

y1 = max(x1; x2)
y2 = max(y1; x3)
...
yn�2 = max(yn�3; xn�1)
z = max(yn�2; xn)

We need to de�ne n�2 intermediate yi variables and (n�1)
systems to compute\max" operators. It leads to a com-
plexity of O(n) intermediate and binary variables and O(n)
linear constraints (each \max" operator needs 4 linear con-
straints to be de�ned).
Also, computing the minimum z =min(x; y) can be done

either by computing z = �max(�x;�y) or by considering :

8>>><
>>>:

z � x

z � y
z � (1� �)x+ �y

z � �y+ (1� �)x
� 2 f0; 1g

where (x; y) are two �nite non null lower bounds for x; y
resp. To express the minn function, we also use the asso-
ciativity of min by grouping the variables two by two from
left to right as done for maxn. It leads to a complexity of
O(n) intermediate variables (the binary variables and those
which hold the intermediate minimums) and O(n) linear
constraints.
If the domain sets of all the variables are bounded, the

�nite non null upper and lower bounds of all the linear func-
tions are �nite and can de determined [13].

6. EQUIMINMAX FORMULATION
In this section, we de�ne a new formulation of schedul-

ing problem using integer linear programming (intLP). We

named it EquiMinMax because it uses the linear constraints
which express the equivalence relation (()) and the func-
tions minn and maxn.

6.1 Basic Variables and Objective Function
For any operation u 2 V , we de�ne an integer variable �u

which computes the schedule time. The objective function
of our model is to minimize the total schedule time i.e.

Minimize �?

The �rst linear constraints describe the precedence rela-
tions. For any operation excluding the memory access, the
latencies �(u) are known statically. Let Vl be the set of mem-
ory (load) operations in G. The latency of these operations
depends on the schedule time since this latter determines if
a load is a compulsory miss or not. So, we need to de�ne
an integer variable �u for each load operation representing
its latency which is set to a miss penalty lce i� u is a cache
miss, and to a hit latency otherwise. The following prece-
dence constraints are written in the model :

8e = (u; v) 2 E = u 62 Vl �v � �u � �(u)
8e = (u; v) 2 E = u 2 Vl �v � �u � �u

There is O(jV j+ jVlj) � O(2jV j) basic variables and O(jEj)
linear constraints. To make the domains set of our variables
bounded, we assume T as the worst possible schedule time
by including in the model the constraint �? � T . We chose
T su�ciently large, where for instance the sum of all the
operations latencies with considering a miss latency for loads
is a suitable worst total schedule time2. As consequence, we
deduce the bounded domain sets of our variables. For any
u 2 V :

� �u � �u = LonguestPathTo(u) is the \as soon as
possible" schedule time ;

� �u � �u = T � LonguestPathFrom(u) is the \as late
as possible" schedule time according to the worst total
schedule time T ;

6.2 Registers Constraints

6.2.1 Interference Graph
The lifetime interval of a value ut of type t is

LTut =]�u + �w;t(u); max
v2Cons(ut)

�
�v + �r;t(v)

�
]

We de�ne for each value ut the variable kut which computes
its killing date. The number of kut variables is O(jVR;tj).
Since the domain of our variables is bounded, we know that
kut is bounded by the two following �nite schedule times :

8t 2 T 8ut 2 VR;t kut < kut � kut

where

� kut = �u + �w;t(u) is the �rst possible de�nition date

of ut ;

� kut = maxv2Cons(ut)
�
�v+�r;t(v)

�
is the latest possible

killing date of ut.

2The case where no ILP is exploited.

We use the maxn linear constraints to compute kut like ex-
plained in Sect. 5.2 : we need to de�ne for each kut O(jCons(u

t)j)
variables and O(jCons(ut)j) linear constraints to compute
it. The total complexity to de�ne all the killing dates is
bounded by O(jV j2) variables and O(jV j2) constraints.
Now, we can consider Ht the indirected interference graph

of G for the register type t. For any couple of values of
the same type ut; vt 2 VR;t, we de�ne a binary variable
stu;v 2 f0; 1g which is set to 1 if the two values lifetimes
intervals interfere : 8t 2 T ; 8 couple ut; vt 2 VR;t

s
t
u;v =

�
1 if LTut \ LTvt 6= �
0 otherwise

For any registers type t 2 T , the number of variables stu;v
is the number of combinations of 2 values among jVR;tj i.e.�
jVR;tj � (jVR;tj � 1)

�
=2.

LTut \LTvt = � means that one of the two lifetime inter-
vals is \before" the other, i.e. LTut � LTvt _ LTvt � LTut
where � denotes is the precedence operator (\before") in
the interval algebra. Then, we have to express :

s
t
u;v = 1() :

�
LTut � LTvt _ LTvt � LTut

�
Since stu;v 2 f0; 1g, these constraints are equivalent to :

s
t
u;v � 1()

�
kut � �v � �w;t(v)� 1 � 0
kvt � �u � �w;t(u)� 1 � 0

Given three logical expressions (P;Q; S), (P () (Q ^ S))
is equivalent to (P ^Q ^ S) _ (:P ^ :Q) _ (:P ^ :S). We
write these two disjunctions with linear constraints by in-
troducing two binary variables h; h0 2 f0; 1g (see Sect. 5.1)
and computing the �nite non null lower bounds of the linear
functions. The complexity of computing all the stu;v vari-
ables is O

�
jVR;tj�(jVR;tj�1)

�
binary variables (two for each

couple of values (ut; vt)) and O
�
7=2jVR;tj� (jVR;tj�1)j

�
lin-

ear constraints (seven for each couple of values). The total
complexity of considering the interference graph Ht is then
bounded by O(jVR;tj

2) variables and O(jVR;tj
2) constraints.

6.2.2 Maximal Clique in the Interference Graph
The maximum number of values of type t simultaneously

alive corresponds to a maximal clique in Ht = (VR;t;Et),
where (ut; vt) 2 Et i� their lifetime intervals interfere (stu;v =
1). For simplicity, rather to handle the interference graph
itself, we prefer considering its complementary graph H 0

t =
(VR;t;E

0
t) where (ut; vt) 2 E

0
t i� their lifetime intervals do

not interfere (stu;v = 0). Then, a maximal clique in Ht

corresponds to a maximal independent set3 in H 0
t.

To write the constraints which describe the independent
sets (IS), we de�ne a binary variable xut 2 f0; 1g for each
value xut 2 VR;t such that xut = 1 i� ut belongs to an IS
of H 0

t. We must express in the model the following linear
constraints : 8t 2 T ; 8 couple xut ; xvt 2 VR;t

xut + xvt � 1() s
t
u;v = 0

We use the linear expressions of the equivalence (()) de-
�ned in Sect. 5.1 by introducing a variable h 2 f0; 1g. The
number of the variables xut is O(jVR;tj). The number of
introduced binary variables to express the equivalences is
O(1=2 � jVR;tj � (jVR;tj � 1)). The number of the linear
constraints to de�ne the IS is O(2 � jVR;tj � (jVR;tj � 1)).

3It is a subgraph such that there is no two adjacent nodes.

The registers constraints are the fact that any set of values
simultaneously alive must not exceed the number of avail-
able registers Rt. Thereby, we write in the model :

8t 2 T
X

ut2VR;t

xut � Rt

There is O(jT j) = O(1) such constraints.

6.3 Cache Effects
In this section, we show how to model the compulsory

cache misses and how they inuence the schedule. We start
by grouping the memory access operations into subsets Vli �
Vl, such that all the operations belonging to the same subset
Vli access to the same cache line i (according to the cache
line boundaries [10]). so Vl0 = fa; b; cg. The �rst issued
load in a subset Vli causes a cache miss. Its latency must be
changed to lce. The remaining operations within that subset
have a hit latency while their issue time must be delayed at
least with (lce+ tce) like explained in Sect. 4.3.
To identify which load operation is being scheduled �rst

and causes a miss, we de�ne a variable mi for each subset
Vli which holds the �rst (minimal) issue time :

8Vli � Vl mi = min
u2Vl

i

�u

We use the linear expression of minn explained in Sect. 5.2.
There is at most O(jVlj) mi variables. The number of con-
straints and variables to compute all the mi is bounded by
O(jVlj) � O(jV j).
Any memory access operation u 2 Vli scheduled at time

mi must have a miss latency to avoid stalling the processor.
We write in the model the linear constraints of :

8Vli � Vl; 8u 2 Vli (�u =mi) =) (�u = lce)

All the subsequent memory access operations in Vli are hits
and must be delayed to avoid the trailing edge e�ects. We
write in the model the linear constraints of : 8Vli � Vl

8u 2 Vli (�u > mi) =)

�
�u = hit
�u �mi � lce+ tce

The number of the linear constraints which describe all these
implications is bounded by O(jVlj) � O(jV j).

6.4 Resources Constraints

6.4.1 Conflicting Graph
The resources constraints are handled by considering for

each FU an indirected graph Fq = (V; Eq) which represents
the conicts between the instructions on a FU q 2 Q. For
any couple of operations, (u; v) 2 Eq i� u and v are in con-
icts on q. Any clique in Fq represents the set of operations
which conict on q at the same time. So, any clique must
not exceed Nq the number of copies of the FU q.
We de�ne a binary variable fqu;v 2 f0; 1g such that fqu;v =

1 i� there is a conict between u and v on the FU q. Given
the RT of two operations u and v, we can deduce when a
structural hazards occurs on the FU q. The general formu-
lation of the conicting variables is the disjunction of all the
cases where a conict on the FU occurs.
Let Uu;q be the set of clock cycles in the reservation table

of u where the FU q is used by u :

8u 2 V 8q 2 Q Uu;q = fc 2 N=RT u[c; q] = 1g

The set of all cases where two operations conicts on a FU
q are described by the cartesian product Uu;q

N
Uv;q. The

general formula of the binary conicting variables is then :
8q 2 Q 8 couple u; v 2 V

f
q
u;v = 1()

_
(c1;c2)2(Uu;q

N
Uv;q)

�u + c1 = �v + c2

We use the linear constraints of equivalences and disjunc-
tions de�ned in Sect. 5 to write the linear description of
this formula in the model. The number of terms in this dis-
junction depends on jUu;q

N
Uv;qj which is a function of the

target architecture characteristics (reservation tables and
instructions set), and thereby it is constant for the input
DAGs.

6.4.2 Maximal Click in the Conflicting Graph
For simplicity, rather than considering the conict graph

Fq itself, we use its complementary F 0
q = (V;E 0q) such that

(u; v) 2 E
0
q i� u and v are not in conicts on q (fqu;v = 0).

Then, a clique in Fq becomes an independent set in F 0
q.

We de�ne a binary variable yqu 2 f0; 1g for each operation
u such that yqu = 1 i� u belongs to an IS of F 0

q. We write in
the intLP model the linear constraints of IS :

8q 2 Q 8 couple u; v 2 V y
q
u + y

q
v � 1() f

q
u;v = 0

We use the linear constraints of the equivalence (Sect. 5.1)
by introducing a binary variable h 2 f0; 1g. There is O(1=2�
jV j� (jV j� 1)) binary variables h for each FU (one for each
couple of operations) and O(2� jV j � (jV j � 1)) linear con-
straints to describe the IS. The resources constraints are the
fact that the cardinality of the any independent set in F 0

q

must not exceed Nq. We write in the model :

8q 2 Q
X
u2V

y
q
u � Nq

There is O(jQj) = O(1) such linear constraints.

7. RELATED WORK AND DISCUSSION
Acyclic scheduling under registers and resources constraints

is a classical problem where lot of works have been done. An
intLP formulation (SILP) was de�ned in [15] to compute
an optimal schedule with register allocation under resources
constraints. The complexity of this model is bounded by
O(jV j2) variables and O(jV j2) constraints. However, this
formulation does not introduce registers constraints, i.e. it
does not limit the number of values simultaneously alive.
Other formulations [7, 9] introduced registers constraints.
The number of variables was O(jV j2) but the number of
the linear constraints grown exponentially due to registers
constraints.
A polynomial formulation for the registers constraints was

de�ned in [4] with a complexity of O(T � jV j) variables and
O(jEj+T �jV j) constraints. Similar approaches minimized
the register requirement for the exact cyclic scheduling prob-
lem (software pipelining) under registers and resources con-
straints [1, 5, 3]. It is easy to rewrite these intLP models to
solve the acyclic scheduling problem. All these formulations
had a complexity which depended on the worst total sched-
ule time T . Indeed, they de�ne a binary variable �u;c for
each operation u and for each execution step c during the
whole execution interval [0; T]. �u;c is set to 1 i� the oper-
ation u is scheduled at the clock cycle c. The complexity of

their models was clearly bounded by O(T � jV j) variables
and O(jEj + T � jV j) constraints. In fact, the factor T can
be very large in real codes since it depends on the input data
itself (critical paths and speci�ed operations latencies). We
think that a complexity must depend only on the amount

of input data and not on the date itself. Otherwise, the
resolution time would not scale very well. For instance, if a
memory operation is always a cache miss, then we change its
static speci�ed latency to a memory access (� 100) in order
to better exploit free slots during scheduling. The number
of variables and constraints generated with all these tech-
niques is multiplied by a factor of hundred, while the size of
our model does not change anymore.
The coe�cients introduced by our formulation in the �nal

constraints matrix are all bounded by T and �T , which is
the case of the coe�cients in the models de�ned in [1, 4, 5,
4]. If T is very huge, the resolution process can be di�cult
because of computational overows [11]. Since EquiMax
reduces the size of the model, resolving an EquiMax model
is less critical than any one of the cited techniques.

8. CONCLUSION
In this work, we give an intLP formulation of the op-

timal scheduling under resources and registers constraints
with cache e�ects. The FUs can have a complex and het-
erogeneous usage pattern and are modeled by reservation
tables. We handle multiple registers types and delayed read
from and write into the registers. In this work, we reduce
the cache e�ects caused by the compulsory misses. The com-
plexity of our model is polynomial on only the size of the
input DAG. Theoretically, our formulation must reduce con-
siderably the exact resolution time. In the future, we will
try to model the capacity and conict misses and extend
our formulation to cyclic scheduling (software pipelining),
where the lifetime intervals of the values and the resources
usage patterns become cyclic.

9. REFERENCES
[1] Eric Altman. Optimal Software Pipelining with

Functional Units and Registers. PhD thesis, McGill
University, Montreal, October 1995.

[2] Alain Darte, Yves Robert, and Fr�ed�eric Vivien.
Scheduling and Automatic Parallelization. Birkhauser
Boston , 2000.

[3] Alexandre E. Eichenberger, Edward S. Davidson, and
Santosh G. Abraham. Minimizing Register
Requirements of a Modulo Schedule via Optimum
Stage Scheduling. International Journal of Parallel
Programming, 24(2):103{132, April 1996.

[4] Christine Eisenbeis, Franco Gasperoni, and Uwe
Schwiegelshohn. Allocating Registers in Multiple
Instruction-Issuing Processors. In Proceedings of the

IFIP WG 10.3 Working Conference on Parallel

Architectures and Compilation Techniques, PACT'95,
pages 290{293. ACM Press, June 27{29, 1995.

[5] Christine Eisenbeis and Antoine Sawaya. Optimal
Loop Parallelization under Register Constraints. In
Sixth Workshop on Compilers for Parallel Computers

CPC'96. , pages 245{259, Aachen - Germany,
December 1996.

[6] Robert S. Gar�nkel and George L. Nemhauser. Integer
Programming. John Wiley & Sons, New York, 1972.

Series in Decision and Control.

[7] C. H. Gebotys. Optimal Scheduling and Allocation of
Embedded VLSI Chips. In Proceedings of the 29th

Conference on Design Automation, pages 116{119,
Los Alamitos, CA, USA, June 1992. IEEE Computer
Society Press.

[8] C. H. Gebotys and M. I. Elmasry. A Global
Optimization Approach for Architectural Synthesis. In
Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 258{261, Santa Clara,
CA, November 1990. IEEE Computer Society Press.

[9] D. Kaestner and M. Langenbach. Code Optimization
by Integer Linear Programming. Lecture Notes in
Computer Science, 1575:122{136, 1999.

[10] David A. Patterson and John L. Hennessy. Computer
Organization and Design The Hardware-Software

Interface. Morgan Kaufmann Publishers, 1994.

[11] Alexander Schrijver. Theory of Linear and Integer

Programming. John Wiley and Sons, New York, 1987.

[12] Jurij Silc, Borut Bobic, and Theo Ungerer. Processor
Architecture: from Dataow to Superscalar and

Beyond. Springer, �rst edition, 1999.

[13] Sid-Ahmed-Ali Touati. Optimal Register Saturation in
Acyclic Superscalar and VLIW Codes. Research
Report, INRIA, November 2000.
ftp.inria.fr/INRIA/Projects/a3/touati/optiRS.ps.gz.

[14] Perry Wang and Edouard Davidson. Hierarchical
performance modeling with cache e�ects: A case
study of the dec alpha. Technical report, Advanced
Computer Architecture Laboratory, University of
Michigan, March 1995.
http://www.eecs.umich.edu/home/techreports/cse95.html.

[15] L. Zhang. SILP: Scheduling and Register Allocation

with Integer Linear Programming. PhD thesis,
University of Saarlands, 1996.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

