
A Constraint-based Application Model and
Scheduling Techniques for Power-aware Systems �

Jinfeng Liu, Pai H. Chou, Nader Bagherzadeh, Fadi Kurdahi
Dept. of Electrical & Computer Engineering

University of California at Irvine
Irvine, CA 92697-2625 USA

fjinfengl, chou, nader, kurdahig@ece.uci.edu

ABSTRACT
New embedded systems must be power-aware, not just low-power.
That is, they must track their power sources and the changing power
and performance constraints imposed by the environment. More-
over, they must fully explore and integrate many novel power man-
agement techniques. Unfortunately, these techniques are often in-
compatible with each other due to overspecialized formulations or
they fail to consider system-wide issues. This paper proposes a
new graph-based model to integrate novel power management tech-
niques and facilitate design-space exploration of power-aware em-
bedded systems. It captures min/max timing and min/max power
constraints on computation and non-computation tasks through a
new constraint classification and enables derivation of flexible system-
level schedules. We demonstrate the effectiveness of this model
with a power-aware scheduler on real mission-critical applications.
Experimental results show that our automated techniques can im-
prove performance and reduce energy cost simultaneously. The
application model and scheduling tool presented in this paper form
the basis of the IMPACCT system-level framework that will enable
designers to aggressively explore many power-performance trade-
offs with confidence.

Keywords
constraint modeling, power-aware real-time scheduling, embedded
systems software, system-level design

1. INTRODUCTION
Power management is becoming a central issue in embedded sys-

tems. It is particularly critical to systems that must carry their own
energy source. As these systems are deployed in an diverse range
of operating conditions, they must be able to adapt to radically dif-
ferent constraints by shifting their power/performance curves.

An example of such a system is the NASA Mars Pathfinder de-
veloped at JPL [1]. It draws power from a battery pack and a solar

�This research was sponsored by DARPA under contract F33615-
00-1-1719

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

panel to operate under extremely harsh weather and power condi-
tions for hundreds of days. Such systems pose new challenges to
hardware/software co-design in design space exploration. It is no
longer sufficient to find just one good design point; instead, the
same design must cover a range of behaviors depending on the op-
erating conditions.

In this section, we sketch our motivating example, and highlight
several key issues: (1) the need for power-aware designs, rather
than just low-power; (2) the need for power management for the
entire system that includes thermal and mechanical subsystems, not
just the digital computer or microprocessors; (3) the need to inte-
grate novel power management techniques into the same co-design
framework. To address these issues, we propose a new system-
level model that captures the essential power/performance features
in a concise form. It enables our constraint-driven power manager
to meet both min/max timing constraints and unsteady min/max
power constraints for the entire system.

1.1 Example: the Mars Pathfinder
The NASA/JPL Mars Pathfinder is a rover designed to roam on

the surface of Mars to several target locations for an extended pe-
riod of time. Its tasks include performing experiments and taking
snapshots and transmitting them wirelessly back to the spaceship.
Since the temperature on Mars can be as low as�80 �C, the motors
must be kept heated periodically in order to turn normally. It also
uses a laser-guided hazard detection system for its navigation. Dur-
ing daytime, the rover draws most of its power from the solar panel
for its operations. Any excess power cannot be stored, since the
battery pack is not rechargeable (for weight/efficiency concerns);
instead, it is dumped into the heater for natural dissipation. At
night, the system draws power from the battery pack to remain in
sleep mode and to keep it warm above a minimum temperature.

The designers of the rover were extremely concerned about power
usage and took a conservative approach: they serialized all power
draws. This allows the rover to operate with very low battery power
indeed, which enables it to run for hundreds of sols (Martian days)
during daylight. However, full serialization also means the rover
moves as slowly as 10cm per minute, and it can take a total of only
three pictures per day.

1.2 Power-aware vs. low-power
Traditionally, many components and systems have been designed

to be low-power. The existing Mars rover is an example of a low-
power design, whose goal is to minimize power usage. Another
mission to Mars or other planets may have a different set of objec-
tives, e.g., shorter mission completion time, taking more pictures,
or traveling a farther distance. In these cases, the low-power design
is too rigid and cannot support all these power/performance trade-

offs. Instead, it must be designed to be power-aware, which means
making the best use of its available power. Power-aware designs
subsume low-power as a special case: it must handle not only max-
power constraints (for low power cases), but min-power constraints
as well.

A power-aware design can greatly improve the utility of the rover.
We observe that the battery is non-rechargeable, and thus excess so-
lar power would be wasted. In the existing design, the rover follows
the same serial schedule regardless of the solar power level. A rover
with more parallelism in its schedule can perform better while sav-
ing even more battery energy than the existing low-power design if
it can take advantage of the free solar power, as validated by our
experimental results. Our goal is to make this power/performance
“knob” available at runtime so the power manager can tune itself
as needed to match the changing conditions.

1.3 System-level power-aware design
Power-aware designs must be done at the system-level, not just

at the component level. Amdahl’s law applies to power as well as
performance. That is, the power saving of a given component must
be scaled by its percentage contribution to the entire system. There-
fore it is critical to identify where power is being consumed in the
context of a system, not just isolated components in the digital sub-
system. Instead, all relevant power consumers must be included.
In the case of the Mars rover, it turns out that the major power
consumers are the motors and the heaters rather than the digital
computer. A successful power-aware design must consider these
non-computation domains and coordinate their power usage as a
whole system. Also, power supplies with different characteristics
must be accounted for while making power management decisions.

1.4 Related work
Prior works have addressed minimization of power usage while

maintaining a satisfactory level of performance or meeting real-
time constraints. However, these low-power techniques often can-
not be directly adapted in power-aware systems due to limited com-
patibility between application models.

Shutting down idle subsystems can save a significant amount
of power in a system. Proposed improvements either attempt to
make the timeout adaptive to the actual usage pattern, or predict the
proper time to shutdown and power up subsystems [6, 3, 7]. Un-
fortunately, these techniques have several limitations. First, they
do not handle timing constraints, including deadlines and min/max
separation. Second, they are not power-aware in the sense that
they do not distinguish between free power (e.g., solar sources)
vs. expensive power (non-rechargeable battery). Rate-monotonic
scheduling has been extended to scheduling variable-voltage pro-
cessors. The idea is to slow down the processor just enough to
meet the deadlines [5, 4]. Such techniques also have limitations.
First, they are CPU schedulers that minimize CPU power, rather
than power managers that control subsystems and task executions.
Second, in practice, it may be difficult to tune the voltage or fre-
quency scale of processors. As a result, the risk of missing dead-
lines may be high, even if the context switching overhead is taken
into account. While these schedulers meet deadline-based timing
constraints, they do not handle power usage as hard constraints.

1.5 Application models and design tools
Our approach is to support power-aware designs with a system-

level design tool built on an application model that sufficiently cap-
tures task characteristics of the application. One lesson learned
from the rover was that without such tools, designers have no choice
but to hand-craft many power management decisions in the imple-

mentation, resulting in a conservative design that could not con-
sider more alternatives. The purpose of our tool is to enable the
exploration of many more points in the design space, so that ad-
ditional knowledge about the mission can be incorporated to re-
fine the design without requiring dramatic redesigns. The basis of
our tool-based methodology is to capture different timing relation-
ships and power characteristics in a constraint-based model that
effectively exposes the potential design alternatives to assist power
management decisions.

The work presented in this paper represents one of the core tools
in a larger co-design framework, called IMPACCT. The designer
inputs high-level behavioral specifications of the design in terms of
communicating tasks and constraints. The specifications are recon-
structed into a constraint graph based on the application model to
assist the power-aware scheduler. The output is then fed to another
tool that performs optimizations and synthesis of power managers
at the architectural level.

This paper is organized as follows. We present our application
model in Section 2 and graph-based scheduling algorithms in Sec-
tion 3. We discuss experimental results in Section 4 and highlight
several design points exposed by our model, which were otherwise
overlooked in the existing hand-crafted design.

2. PROBLEM FORMULATION
Our problem formulation is based on an extension to a constraint

graph used in a time-driven scheduling problem [2]. One distinc-
tion we make in this paper is that we represent one task by its start
event and end event. This separation enables a new constraint clas-
sification that exposes some key characteristics of this constraint
graph representation.

2.1 Problem definition
We formally define the objects in our model, including tasks,

constraints, resources, operational modes, and schedules.

Definition 1 (Task x 2 T) A task x is characterized by a set repre-
sentation in that x = fsx;ex;τx ;χx;Mx ;mx ;dx; pxg, where sx and ex
are the start and end events, respectively; τ x is a generalized work-
load of the task; χx is the power characteristic of the task; Mx is
the execution resource to which the task is mapped; mx 2 Mx is
the selected operational mode of resource Mx; dx is the execution
delay; px is the power profile function of the task over time in its
execution duration.

Among these attributes, sx, ex, τx and χx are intrinsic to the task
itself and will remain immutable over partitions and mode switches.
We use a pair of events sx, ex to capture the timing requirements
of the task itself, e.g., the variable execution delay on different
mode selections. Such timing relationships are partially related
to workload τx, in that execution time dx depends on τx. Power
characteristic χx is a general description of power behavior, e.g.,
constant, linear, exponential, etc. It must be specified explicitly
before the power profile px is given based on mode selection mx.
This power property can be adapted to various forms that either
characterize different subsystems or are application-specific. The
other attributes Mx, mx, dx, and px are determined by the sched-
uler. Resource mapping Mx is normally predefined in allocation.
The scheduler can also override it if migration is allowed. Mode
selection mx can be arranged by the scheduler either statically or
dynamically. Execution delay dx is a function of τx, Mx and mx. px
is a function of time with parameters dx, Mx and mx, it gives the
power profile of task x as px(t);0 � t � dx.

Definition 2 (Resource M with operational modes m) An execu-
tion resource M is a set of valid operational modes, M = fmig; i =
1; : : : ;n. An operational mode m is a collection m = (αm; fm),
where its characteristic parameters are included in αm, fm =(dm; pm)

is a series of functions including delay function dm(x) and power
function pm(x) to describe the behaviors of a task x that is executed
in this mode.

The parameter set αm consists of attributes of mode m such as
voltage, clock rate, bandwidth, etc. The function set fm includes
several functions that characterize tasks executed in this mode. For
a task x executed in mode m, the delay function d m(x) calculates
the execution delay dx of task x based on mode parameters α m and
workload τx; the power function pm(x) gives task x’s power profile
px(t), which is a function of mode parameters αm, delay dx, and
power characteristic χx.

Definition 3 (Timing constraints) A timing constraint specifies the
timing relationship between two events u and v, in one of the two
forms:
(1) A min timing constraint u! v : δ;δ� 0 indicates that v must
happen at least δ time units after u happens, formally tv� tu � δ.
(2) A max timing constraint u v : δ;δ> 0 indicates that v must
happen at most δ time units after u happens, formally tv� tu � δ.

This specification handles general timing relationships between
events. A deadline is a special case of a max timing constraint from
a task’s end event to the anchor, the start-event for the schedule.

Definition 4 (Schedule σ) Given a task set T and a resource set R,
a schedule σ maps a task x2 T to an operational mode m x 2Mx 2R,
and assigns start and end times tsx ;tex to events sx and ex. Without
ambiguity, we further overload the σ notation to map any event u
to its assigned time according to σ, that is, tu = σ(u).

The time assignment to sx and ex must be consistent with the
execution delay dx, σ(ex)� σ(sx) = dx. The power profile of a
schedule σ can be accumulated from the power profiles of each
task, pσ(t) = ∑ px(t � σ(sx)), 8 task x 2 T and time t such that
σ(sx)� t � σ(ex).

2.2 Constraint graph and its properties

Definition 5 (Constraint graph G(V;E)) Given a task set T , a tim-
ing constraint set C, a constraint graph G(V;E) can be constructed
as follows. The vertices V represent events fanchorg[fs x;exg,
8x 2 T , where anchor represents the virtual start-event that pre-
cedes all other events. The edges E �V �V represent timing rela-
tionships between events. For two vertices u;v 2 V , an edge (u;v)
with weight w(u;v) is denoted as (u;v) : w(u;v). It specifies the
timing relationships of event u and v, such that tv� tu � w(u;v).

Three types of edges represent three different types of timing
relationships between two events. They are defined as follows.

Definition 6 (Constraint edges (u;v) : δ) Each timing constraint in
C is represented by a constraint edge in the constraint graph G.
(1) A min timing constraint u! v : δ is represented by an edge
(u;v) : δ with weight δ� 0.
(2) A max timing constraint u v : δ is represented by an edge
(v;u) : �δ with weight �δ< 0.

sa

sb eb

3
d b

-d b

-7

ea

d a

-d a

d b - d a <= 4

sa

sb eb

3
-7

d b

-d b

d b <= 4

(a) (b)

Figure 1: Extra constraints extracted by preprocessing

Definition 7 (Duration edges (sx;ex) : dx and (ex;sx) : �dx) The ex-
ecution delay dx � 0 of a task x 2 T is represented by a pair of du-
ration edges in the constraint graph G: edge (sx;ex) : dx, and edge
(ex;sx) : �dx.

Definition 8 (Serialization edges (ex;sy) : 0) A serialization edge
(ex;sy) : 0 is an added edge to serialize task x before y.

Among all three types of edges, constraint edges represent tim-
ing constraints between tasks and always remain constant. The
weights on duration edges, which represent execution delays of
tasks, can be changed according to mode selection. Serialization
edges can be added and removed by the scheduler. Tasks that share
the same resource must be serialized to prevent resource conflict.
The scheduler can also serialize tasks to avoid exceeding maximum
supply power.

Lemma 1 (Schedulability properties) Given a scheduling prob-
lem formulated as a constraint graph, the time assignments by a
schedule σ can be computed as the single source longest path lengths
from the anchor vertex on the constraint graph. A positive cycle
in the graph indicates a conflicting set of timing requirements that
cannot be satisfied.

Corollary 1 (Extension to schedulability properties)
(1) If a positive cycle consists of only constraint edges, the problem
is not schedulable.
(2) If a positive cycle contains duration edges, the problem may be
solved by changing the operational modes of corresponding tasks.
(3) If a positive cycle contains serialization edges, the problem may
be solved by altering the partial ordering to serialized tasks.

Lemma 1 and Corollary 1 can be used to discover design points
that are implied in the problem. Fig. 1 shows an example of how
some extra constraints can be extracted by preprocessing the graph.
Since the delays are functions of modes, the inequalities involving
delays can be viewed as rules to mode selections on related tasks.

A valid schedule can be defined based on the constraint graph
and its properties.

Definition 9 (Validity of a schedule) Given a constraint graph G
constructed from a task set T and a constraint set C, and a resource
set R to which all tasks in T are mapped, a schedule σ is valid if
(1) G is schedulable by Lemma 1, and
(2) 8 tasks x;y 2 T such that Mx = My 2 R, x and y must be serial-
ized, that is, either σ(ex)� σ(sy) or σ(ey)� σ(sx) holds.

2.3 Slack properties of a valid schedule
Given a valid schedule, slack is a measure of how much an event

can be safely rearranged to another time without invalidating the
schedule.

Definition 10 (Constraint edge slack) For a given valid schedule
σ, 8 constraint edges (u;v) : δ in the constraint graph G, the slack
function of edge (u;v) is defined as slack(σ;u;v)= σ(v)�σ(u)�δ.

The slack value must be non-negative, otherwise the schedule
is not valid. The constraint edge slack exposes the bounds on re-
assigning time slots to events u and v (by delaying u or executing
v earlier) without violating timing constraint represented by edge
(u;v) : δ. We do not summarize the slack properties for serializa-
tion edges and duration edges. This is because serialization edges
are not necessary constraints for schedulability; and the slacks of
duration edges are zero by definition.

Definition 11 (Constraint slack interval ∆t) For a given schedule
σ for a constraint graph G,
(1) The forward constraint slack of an event u is the minimum
among all edge slacks of u’s outgoing constraint edges,
f orward slack(σ;u)=min(slack(σ;u;v)), 8 constraint edges (u;v).
(2) The backward constraint slack of an events u is the minimum
among all edge slacks of u’s incoming constraint edges,
backward slack(σ;u)=min(slack(σ;v;u)), 8 constraint edges (v;u).
(3) The constraint slack interval ∆t(σ;u) of an event u is the inter-
val [σ(u)� backward slack(σ;u);σ(u)+ f orward slack(σ;u)] in
the time dimension.

Lemma 2 If a schedule σ is valid, then a modified schedule σ 0

does not violate any timing constraint if it is identical to σ except
σ(u) 6= σ0

(u), and σ0
(u) 2 ∆t(σ;u), for a specific event u.

Lemma 2 exposes the available time space for an alternative time
assignment to an event. However, such adjustment must not result
in any resource conflict. Definition 12 indicates the vacant time
slots to schedule a task without resource conflicts. The start and
end events of a task can have different constraint slack intervals,
while their resource slack intervals are defined to be identical.

Definition 12 (Resource slots λ i, resource slack intervals ∆ r) Given
a valid schedule σ and a task x,
(1) the ith resource slot of x λ i(σ;x) is a closed interval in time
dimension during which resource Mx is not occupied by any tasks
other than x.
(2) the resource slack intervals ∆ r(σ;x) of x are a collection of all
resource slots of x, ∆r(σ;x) =

S
i λi(σ;x).

(3) Events sx and ex have identical resource slots and resource
slack intervals as those of task x, λ i(σ;sx) = λi(σ;ex) = λi(σ;x),
∆r(σ;sx) = ∆r(σ;ex) = ∆r(σ;x).

Definition 13 (Overall slack intervals ∆) Given a valid schedule
σ and an event u, the overall slack intervals ∆(σ;u) of u are defined
as ∆t(σ;u)\∆r(σ;u).

Lemma 3 Given a valid schedule σ, a modified schedule σ 0 neither
violates any timing constraint nor causes any resource conflict, if it
is identical to σ except σ(u) 6= σ0

(u), and σ0
(u) 2 ∆(σ;u), for a

specific event u.

Lemma 4 (Slack-bounded schedulability) Given a valid sched-
ule σ, an alternative schedule σ0 to a task x is valid if and only
if:
(1) σ0

(sx) 2 ∆(σ;sx) and σ0
(ex)2 ∆(σ;ex), and

(2) 9i such that σ0
(sx) 2 λi(σ;x) and σ(ex) 2 λi(σ;x), and

(3) σ0
(ex)� σ0

(sx) = dx, which is a function of mode mx on re-
source Mx to execute task x.

a b

c d
-7

1

t1 32 4 5 6 7 8 9 10 11 12 13 140

2

-14

×

ebsb

t =10ts =8

Interval

and

Interval
and

Invalid
interval

b be

Schedule σ

Resource
slack

intervals

∆s(σ, b)

Constraint
slack

interval ∆t(σ, sb)

∆t(σ, eb)

Overall
slack

intervals ∆(σ, sb)

∆(σ, eb)

λ1(σ, b) λ2(σ, b)

Figure 2: Slack intervals of task b

Lemma 4 exposes the space to all alternative schedules of a task
in the time dimension. Such properties are especially meaningful
to incorporate different power management decisions. Fig. 2 ex-
emplifies the slack intervals of task b. Lemma 4 eliminates illegal
combinations of sb and eb.

2.4 Power consumption and power constraints
The power profile of a task can be calculated by the power func-

tion associated with the selected operational mode. In practice,
the power consumption could be a range or in the form of (min,
max, typical) or an exact number. These cases can be formulated
as special cases of power functions. The global power profile of a
schedule is the accumulation of power profiles of all tasks that are
mapped into different time slots. This is constrained by two input
parameters, max power and min power. The max power is a hard
constraint: at any given moment, the total power consumption by
all running tasks must not exceed this limit. The min power is a
soft constraint: the scheduler should make the best effort to meet
the min power goal. This will control the amount of jitter in power
draw, as well as ensuring full utilization of free power such as so-
lar.

3. SCHEDULING ALGORITHMS
Based on the constraint graph formulation, we develop graph al-

gorithms for power-aware scheduling, shown in Fig. 3. We present
an incremental approach to exploring a schedule that satisfies all
constraints in three phases: (1) timing, (2) max power, (3) min
power. First, we apply basic graph algorithms to solve all timing
constraints. Second, starting with a valid schedule computed by
step one, if max power constraint is violated at some time, we par-
tially serialize tasks to decrease power consumption based on slack
analysis. Finally, given a schedule that meets both timing and max
power constraints, we reorder tasks within their slack intervals to
match the min power constraint.

In the first phase, the scheduler performs a topological traversal
on the graph by interleaving a start event with its corresponding
end event so that one task is scheduled by visiting every two ver-
tices. Serialization edges are added for tasks that share the same
resource. This algorithm is proved to be able to find a valid sched-
ule if one exists. It extends a previous serialization algorithm [2] to
supporting parallel tasks on multiple execution resources.

In the second phase, the algorithm scans the schedule computed
by the previous phase to find the time slots when the max power
constraint is violated. The algorithm first attempts a partial reorder-
ing on simultaneous tasks to reduce power consumption. Several
tasks are selected to be delayed within their slack intervals. If no
tasks can be delayed, an arbitrary delay is enforced and a total re-

TimingConstraintScheduler(Graph G, vertex anchor, vertex c)
La := SINGLE SOURCE LONGEST PATH(G;anchor)
if (positive cycle found) then return FAIL
C := set of topological successors of candidate c
if (C = /0) then return σ with σ(c) := La
while (C 6= /0) do

if (c is a start event) then v := end event of c
else

v := SelectSuccessor(C)
C := C�fvg
if (v is an end event) v := start event of v

B: foreach u 2C do
if u =2 v’s successors, then add u to v’s successors
if (Mc = Mu) then

u := start event of u
add serialization edge (c;u) to G

w := the most recently scheduled end event, where (M w = Mv)
if (w 6= nil) then add serialization edge (w;v) to G

σ = TimingConstraintScheduler(G;anchor;v)
if (σ 6= FAIL) then return σ with σ(c) := La
Undo changes to G since step B
if (c is a start event) then return FAIL

return FAIL
(a) Scheduling algorithm for timing constraints

MaxPowerConstraintScheduler(Graph G, vertex anchor, MaxPower)
σ := TimingConstraintScheduler(G, anchor, anchor)
if (σ = FAIL) then return FAIL
for (t := 0; t � execution time of σ; t := t + 1) do

S := set of active tasks at t, ordered by forward slacks
power := power consumption of all tasks in S
reschedule := FALSE
while (power > MaxPower or reschedule = TRUE) do

B: repeat
v := task with largest slack in S
if (slack(v) = 0) then reschedule := TRUE
delay v by some time units (heuristically determined)
power := power� p(v)
S := S�fvg

until (power �MaxPower or S = /0)
if (S = /0) then return FAIL
if (reschedule = TRUE) then

lock start time of all tasks in S
σ := MaxPowerConstraintScheduler(G;anchor;MaxPower)
if (σ 6= FAIL) then return σ
Undo changes to G since step B

return σ
(b) Scheduling algorithm for max power constraint

Figure 3: Power-aware scheduling algorithms

ordering to all tasks is performed. A valid schedule is found if the
max power constraint is satisfied for all time slots in the schedule.
The key issue in this algorithm is to properly select tasks to be de-
layed. We apply a slack-based heuristic ordering function so that
the tasks with the largest slack will be selected first. Slack-based
heuristics are appropriate in leading the algorithm to a feasible so-
lution and converge more quickly.

In the third phase, the algorithm examines the valid schedule
computed by the second phase and tries to reorder tasks within their
slack intervals for min power. If such adjustments are not possible,
the schedule is returned as a feasible solution in the sense that all
hard constraints are satisfied. Since the algorithm can be easily
developed based on slack analysis to the tasks, the illustration is
omitted.

4. EXPERIMENTS AND RESULTS
We model the Mars rover in the proposed constraint graph, ap-

ply power-aware schedulers to the rover with changing power con-
straints, and compare the results with the schedules used in past
missions. The timing constraints on the rover are summarized in
Table 1, and the constraint graph is shown in Fig. 4. We investi-
gate three cases where power constraints and power consumption
vary with the environment: the best, typical and worst cases, with
solar power levels at 14.9W, 12W, and 9W, respectively, as shown
in Table 2. In all cases, the min power constraint to the rover is the
available solar power. This solar power level plus 10W maximum
battery power output constitutes the max power constraint.

We first examine the existing schedule shown in Fig. 5. JPL uses
a completely serialized schedule that is low-power but not power-
aware. This schedule is too conservative in cases where the avail-
able solar power is sufficient to support parallel operations. This
can be revealed by examining the slack intervals of tasks. All heat-
ing tasks have large slack intervals, which indicate that serializa-
tion to these tasks is not necessary. Without a design tool, such
an opportunity for improving performance and power utilization is
usually overlooked.

Fig. 6 and 7 illustrate the schedules for the best case and typical
case after applying power-aware scheduling. In the best case, we
manually unroll the loop and insert two heating tasks to improve so-

Operation Duration Timing constraints
Heating steering motors 5

(s)
At least 5s, at most 50s before steering

Heating wheel motors 5 At least 5s, at most 50s before driving
Hazard detection 10 At least 10s before steering

Steering 5 At least 5s before driving
Driving 10 At least 10s before next hazard detection

Table 1: Timing constraints in Mars rover’s operations

-40 ºC -60 ºC -80 ºC

Solar panel 14.9 12 9
Battery 10 max 10 max 10 max

Heat one motor 5 5.1 6.2 7. 5

Heat two motors 5 7.6 9.5 11.3

Drive 10 7.5 10.9 13.8

Steer 5 4.3 6.2 8.1

Hazard detection 10 5.1 6.1 7.3
CPU Constant 2.5 3.1 3.7

Power(W)Tasks & Duration(s)
Power sources

Table 2: Power consumption of Mars rover’s operations

S

5

-5
E

Heating
steering

motor 1&2

Constraint edge

S

10

-10
E

Hazard
detection:

step 1

S

5

-5
E

S

10

-10
E

Driving:
step 1

0
0

S

10

-10
E

S

5

-5
E

Steering:
step 2

S

10

-10
E

0
0

0

0

0

0

S

5

-5
E

0 0

0

0

-50
-50

-50
-50

Heating
steering

motor 3&4

S

5

-5
E

Heating
driving
motor
1&2

0 -50

S

5

-5
ES

5

-5
E

0 -50
0 -50

0 -50
0 -50

0 -50

Heating
driving
motor
3&4

Heating
driving
motor
5&6

Duration edge

Serialization edge

Hazard
detection:

step 2

S

E

Start event

End event

Driving:
step 2

Steering
step 1

:

Figure 4: Constraint graph for Mars rover’s operations

Schedule for worst case

0

4

8

12

16

20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Time

Power

Heat steer

Heat wheel

Drive

Steer

Hazard
detection

CPU

Figure 5: The existing design only schedules for the worst case

Schedule for best case

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Time

Power

Heat steer

Heat wheel

Drive

Steer

Hazard
detection

CPU

Figure 6: Power-aware schedule for the best case

Schedule for typical case

0

2

4

6

8

10

12

14

16

18

20

22

5 10 15 20 25 30 35 40 45 50 55 60

Time

Power

Heat
steer

Heat
wheel

Drive

Steer

Hazard
detection

CPU

Figure 7: Power-aware schedule for the typical case

lar energy utilization. Since power budget is high, a fast schedule is
given by allowing parallel tasks. In the typical case, parallel opera-
tions are still possible while some tasks are serialized. In the worst
case, our scheduler produces the same fully serialized schedule as
JPL’s hand-crafted solution. The distinction is that our schedule is
completely constraint-driven without hardwiring any decision into
the implementaion. The schedules are compared in Table 3.

We use execution time and non-rechargeable energy cost as the
metrics to evaluate the schedules. Although the rover under the
existing scheme runs very slowly, such a low-power design draws
less energy from the battery. To evaluate this power-performance
trade-off, we apply the schedules to a mission scenario, where the
available solar power varies over time. We assume the rover is trav-
eling to a location that is 48 steps away. The mission starts from
the best case. Then the solar power level drops from 14.9W to 12W
after 10 minutes, and falls to the worst case at 9W 10 minutes later.
Under the existing schedule, the rover will spend 10 minutes evenly
in each of the three cases since its speed (16 steps per 10 minutes)
does not track the available solar power. This results in a long exe-
cution time and high energy cost in the worst case for 10 minutes.
When power-aware schedules are used, the rover finishes 50% of
the work (24 steps) in the first 10 minutes, and 42% (20 steps) in

Solar power (W) Battery energy (J) Solar energy(J) Utilization of solar energy Time(s) Moving distance
14.9 0 672.5 60% 75 2 steps - 14cm
12 55 817 91% 75 2 steps - 14cm
9 388 675 100% 75 2 steps - 14cm

Solar power (W) Battery energy (J) Solar energy(J) Utilization of solar energy Time(s) Moving distance
14.9 79.5(1st iter.) 6(rest) 534 70% 50 2 steps - 14cm
12 147 679 94% 60 2 steps - 14cm
9 388 675 100% 75 2 steps - 14cm

(a) Performance of the rover under existing schedule

(b) Performance of the rover under power-aware schedules

Table 3: Performance-energy comparison of the two schedules

Travel
distance

Time Energy
cost

Travel
distance

Time Energy
cost

0-599 14.9 16 600 0 24 600 145.5
600-1199 12 16 600 440 20 600 1470

1200 - 9 16 600 3114 4 160 776
Total 48 1800 3554 48 1360 2391.5

Improve
ment

24.4% 32.7%

Power-awareJPLTime frame Solar power
(W)(s) (s) (s)(J) (J)

Table 4: Comparison under a mission scenario

the next 10 minutes, leaving remaining 8% (4 steps) executed in the
worst case for less than 3 minutes. Therefore, the rover can finish
the mission earlier before having to work in the costly worst case.
The analysis in Table 4 shows power-aware schedules can win both
on performance and energy savings considerably.

5. CONCLUSION
Successful power-aware designs require incorporation of the best

power management techniques. A main obstacle that prevents their
smooth integration is the hardwired assumptions in various formu-
lations. In this paper, we propose a novel application model that
represents the first step towards overcoming this inherent barrier.
Our experiments on real applications demonstrate promising re-
sults by exposing non-obvious design points that yield both sig-
nificant energy reduction and performance speedup at the system
level. Such improvements are due to the synergy of several novel
techniques, which would not be applicable separately.

6. REFERENCES
[1] NASA/JPL’s Mars Pathfinder home page.

http://mars3.jpl.nasa.gov/MPF/index0.html.
[2] P. Chou and G. Borriello. Software scheduling in the co-synthesis of

reactive real-time systems. In Proc. Design Automation Conference,
pages 1–4, June 1994.

[3] E.-Y. Chung, L. Benini, and G. De Micheli. Dynamic power
management using adaptive learning tree. In Proc. International
Conference on Computer-Aided Design, pages 274–279, 1999.

[4] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of
hard real-time tasks on variable voltage processor. In Proc.
International Conference on Computer-Aided Design, pages 653–656,
November 1998.

[5] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task scheduling for
a variable voltage processor. In Proc. International Symposium on
System Synthesis, pages 24–29, 1999.

[6] T. Simunic, L. Benini, and G. De Micheli. Event-driven power
management of portable systems. In Proc. International Symposium
on System Synthesis, pages 18–23, 1999.

[7] M. Srivastava, A. Chandrakasan, and R. Brodersen. Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation. IEEE Transactions on VLSI Systems,
4(1):42–55, March 1996.

Acknowledgement
Special thanks to Dr. N. Aranki, Dr. B. Toomarian, Dr. M. Mojarradi and Dr.
J. U. Patel from JPL for their assistance with the Mars rover application.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

