
A Constructive Algorithm for Memory-Aware Task
Assignment and Scheduling

Radoslaw Szymanek
Dept. of Computer Science
Lund University, Sweden

e-mail: Radoslaw.Szymanek@cs.lth.se

Krzysztof Kuchcinski
Dept. of Computer Science
Lund University, Sweden

e-mail: Krzysztof.Kuchcinski@cs.lth.se
ory
ory

flu-
esis
.
an
put
ec-
ike
ith
nts.
aph

ti-
ted
re
5.
nts

ist-

sor.
to/
ata

gic
ABSTRACT
This paper presents a constructive algorithm for memory-aware
task assignment and scheduling, which is a part of the prototype
system MATAS. The algorithm is well suited for image and video
processing applications which have hard memory constraints as
well as constraints on cost, execution time, and resource usage.
Our algorithm takes into account code and data memory con-
straints together with the other constraints. It can create pipelined
implementations. The algorithm finds a task assignment, a sched-
ule, and data and code memory placement in memory. Infeasible
solutions caused by memory fragmentation are avoided. The
experiments show that our memory-aware algorithm reduces
memory utilization comparing to greedy scheduling algorithm
which has time minimization objective. Moreover, memory-aware
algorithm is able to find task assignment and schedule when time
minimization algorithm fails. MATAS can create pipelined imple-
mentations, therefore the design throughput is increased.

keywords: task scheduling, task assignment, memory constraints,
constraint programming

1. INTRODUCTION
The data memory aspect in embedded systems is especially impor-
tant for signal and image processing applications which process
enormous amounts of data. A good utilization of memories is an
essential issue in achieving low cost solutions with modest amount
of memory components. Prior work on scheduling concentrated
mostly on fulfilling deadlines without considering memory cost.
Memory constraints are difficult to model, but neglecting them can
produce considerable waste of memory capacity. In our approach,
we consider memory constraints during task assignment and
scheduling to reduce the amount of needed memory.

The algorithm, presented in this paper, is a part of the prototype
design systemMemory-AwareTaskAssignment andScheduling
(MATAS). MATAS aims at helping a designer during the system
level synthesis step. The decisions at this level have significant
impact on the final product characteristics such as cost, perform-
ance, and time to market. A unified approach to the design
synthesis step was presented in [3] and our work fits into task-level
abstraction model defined there.

The complexity of task assignment and scheduling for hetero-

geneous architectures increases significantly when mem
constraints are considered. These constraints define mem
requirements for tasks and communications and therefore in
ence task assignment and scheduling decisions. New synth
methods are required to cope with these constraints efficiently

The goal of the work presented in this paper is to develop
efficient algorithm for a system synthesis tool that accepts an in
specification given as communicating tasks and system archit
ture. We assume that the input specification, described in C-l
language, is compiled into an acyclic task graph annotated w
estimates of execution time, code and data memory requireme
The task assignment and scheduling algorithm uses this task gr
[8], generated from the original specification, as an input.

The rest of this paper is organized as follows. Section 2 mo
vates our work through an example. In section 3, we outline rela
work in this area. Section 4 defines our model of the architectu
and application. MATAS system is briefly presented in section
Section 6 describes the flow of our algorithm. Section 7 prese
experimental results. Finally, section 8 concludes the paper.

2. MOTIVATIONAL EXAMPLE
Consider, for example, a task graph depicted in Figure 1a cons
ing of four tasks T1, T2, T3, and T4. Data is transferred between
these tasks by three communications C1, C2, and C3. Each task
requires 1 kb of code memory and 2 ms to execute on a proces
The data memory is used for storing incoming, outcoming data
from the task as well as local data. Each task needs 4 kb of d

This work has been supported by the Foundation for Strate
Research, INTELECT program.

T1 T3

T2 T4

C3C1 C2
P1 P2

L1

a) a task graph example b) an example of the system architecture

Figure 1. Task data flow graph and target architecture

Figure 2. Data memory requirements

T3

T1 T4T2P1

L1

P2

T3

T1

T4

T2

P1

L1

P2

C2

C3

DT1
DT3DT4

DC2

DT2 DC2

P2

DT3 DT1DT4

P1

DT2

P2

DC3

a) inefficient memory utilization

b) optimal memory utilization

P1

6

4

2

4

2

6

4

2

6

DC3
DC2

6

4

2

8
DC3

DMDM

t

DM

t

t

DM

DC1

Task schedule Data memory utilization

t t

t

CPU/
Link

CPU/
Link

ally.
the
sed

ima-
ta
his
in
an
-
is
l.
for
et-

. In
of
ces,
te
no

pre-
ic
by

ese
th
an
se
en

ns
on-
nd
ry.
ing
oid
lgo-
e
the
c-
e a

s
nner
he
s as

and
ng
n
f
ch
s
ng
ncy
ne
.
se
find

s-
memory during its execution. Data transfers send 2 kb of data.
Consider a target architecture as depicted in Figure 1b. Two

distinct schedules of a given task graph are depicted in Figure 2.
The left most diagram in Figure 2a and b represents the task
schedule while other diagrams represent data memory utilization.
DT’s rectangles represent the data memory used by tasks during
their execution while DC’s rectangles represent the data memory
used to store data communicated between tasks. During interproc-
essor communication both processors have to allocate memory
for the transferred data. For example, rectangle DC2 in Figure 2a,
which represents data transferred between tasks T3 and T4,
appears in data memory usage for both processors. Please note
that there is no DC1 data rectangle in Figure 2a since the producer
and consumer tasks are executed at the same processor one after
the other.

The two schedules have the same length but use different
amount of memory. The schedule depicted in Figure 2a has inef-
ficient memory utilization. The amount of needed data memory
(DM) on processor P1and P2 is 8kb and 4kb respectively. The uti-
lization of code memory is unbalanced. Processors P1 and P2 use
3kb and 1kb of code memory respectively (not shown in Figure
2). The schedule depicted in Figure 2b has the same length as the
first one while memory usage is balanced and optimal. Both proc-
essors P1 and P2 use 2kb of code memory and 4kb of data
memory. The importance of memory consideration was also indi-
cated in [4, 9, 12, 13].

3. RELATED WORK
The work on memory aspects in system design has been studied
by several authors. Their publications address different aspects of
this research problem.

The research presented in [9] addresses the problem of embed-
ded system synthesis under memory constraints. It uses a genetic
algorithm to solve the synthesis problem. The authors assume that
code and data memories are implemented using RAM memories.
The code memory can be used as data memory and vice-versa. In
our work, we made an assumption that ROM and RAM are used
for implementing code memory and data memory respectively.
The assumption of having RAM only implementation can be eas-
ily introduced into our work and it will make the synthesis
problem simpler. In addition, we consider the actual placement of
data in data memory and we avoid invalid solutions due to mem-
ory fragmentation problem. Genetic algorithms can have
problems giving valid solutions when the synthesis problem is
very constrained. Our constructive approach seems to tackle big-
ger problems even with additional extensions we have made.

Some work on task assignment and scheduling was also
described in [12] and its previous version [11]. The former was
extended by the inclusion of a simple memory model. This
approach uses Mixed Integer Linear Programming which results
in many inequalities and binary decision variables. Since the
authors aimed at finding optimal solutions, the runtimes are pro-
hibitively large even for the example consisting of nine tasks. This
work does not address fragmentation problem and considers
RAM memories only.

An other system synthesis approach which guarantees optimal
solutions is described in [1]. The presented algorithm makes it
possible to introduce multiple computations of the same task on
several processing units in order to remove some communications
from the buses. This approach imposes two restrictions on the tar-
get architecture. First, all buses have the same transmission rate.

Second, all tasks assigned to ASIC’s are executed sequenti
The global memory is used to store input and output data of
whole task graph only, the intermediate data produced and u
by tasks cannot be stored there.

The research presented in [6] concentrates on storage est
tion for data intensive applications. The estimators of da
memory requirement are obtained through code analysis. T
work can be used to optimize the data memory utilization with
one task by changing the code of the task. This optimization c
make it easier for our MATAS system to find valid task assign
ment and schedule for the whole task graph. This work
complementary to ours and targets a different abstraction leve

Our work concentrates on task assignment and scheduling
heterogeneous architectures with any type interconnection n
work. The data placement in data memory is also considered
order to find a good solution we need to balance the utilization
the resources such as processing units, communication devi
code and data memory. Our work gives the possibility to crea
pipelined implementations. Up to our best knowledge there is
previous work which tackles all these aspects.

The work presented in this paper is based on the research
sented in [7, 13]. Our approach uses Constraint Log
Programming (CLP) to represent the system synthesis problem
a set of finite domain variables and constraints imposed on th
variables. The efficiency of CLP approach is compared wi
another approaches in favour of CLP [8]. Optimal solutions c
be obtained for small problems, while large problems require u
of heuristics. The system can minimize the design cost for a giv
execution time or vice versa.

The work presented in this paper removes the limitatio
imposed on the target architecture in [7] and adds memory c
straints. We consider processors, ASIC’s, buses, links, a
memories. Local memory is divided into code and data memo
This research extends also work presented in [14] by consider
actual data placement in data memory. Therefore we can av
problems caused by memory fragmentation. The presented a
rithm is a part of the prototype synthesis system MATAS. Th
system is interactive and a designer has freedom to influence
final design by making decisions concerning the final archite
ture, task assignment, and task scheduling. He can also provid
partial solution which will be used to obtain a final one. Thi
makes it possible to guide the synthesis process in a clean ma
and still use the full power of automatic synthesis methods. T
prototype we developed produces good results for large design
shown in section 7.

4. SYSTEM MODELING
In our approach, CLP is used to model the system architecture
the design problem. Since CLP is a relatively young programmi
framework, we will briefly present it here. A general introductio
to CLP is given in [10], for example. A CLP program consists o
constraints over finite domain variables (FDV’s) and a sear
method. Each FDV is initially defined by a set of integer value
that constitute its domain. Constraints specify relations amo
these variables. Constraint engines provide constraint consiste
and propagation methods. Therefore restricting a domain of o
FDV usually results in restricting domains of the other FDV’s
Since CLP solvers over finite domain are not complete, they u
search methods, such as branch-and-bound and heuristics, to
solutions.

We use the Constraint Handling in Prolog (CHIP) v. 5.2 sy

sk
rent
or

uta-
e:

ry

T

ed
ays
by
’s

data
of

-
n
on-

he
nce
f
on-
the

uni-

exe-
wo
at-

ent
d to
d by

xe-
the

us

al
the
at
er-
].
tem. The CHIP system implements basic and global constraints.
The basic constraints are equality, inequality or conditional con-
straints. The CLP modelling with basic constraints is similar to
ILP modelling style, but the underlaying solvers are different.
CLP frameworks introduced powerful modelling constraints,
called global constraints, to limit number of constraints and pro-
vide advanced constraint consistency and propagation methods.
The global constraints are based on extensive work conducted in
operating research community. These constraints provide concise
modelling, good time complexity bounds, and good constraint
propagation. The global constraints encompass particular model-
ling problems. For example, they can impose restrictions on
cumulative use of resources, rectangle placement or partitioning
of graphs [2]. Modelling the problem using global constraints
gives a clean and understandable description.

4.1. Architecture model
The target architecture, in our approach, consists of processing
units, such as processors and ASIC’s, and communication
devices, such as buses and links. The processors have one local
memory for code and one local memory for data. ASIC’s have
data memory only. The processing units can compute, send, or
receive data concurrently. We will often refer to processor instead
of processing units for both processors and ASIC’s if it does not
create confusions. The architecture is described by specifying
processors, ASIC’s, buses, links and their interconnection struc-
ture. Each bus or link is described by its cost and speed.

An ASIC consists of several parts. These parts operate inde-
pendently making possible parallel execution of tasks. Since we
define the maximum number of tasks which can be executed in
parallel on the ASIC we can derive the ASIC’s cost as needed for
our synthesis tool. All tasks assigned to an ASIC have access to
its local data memory.

The cost of the architecture is associated with processing units
and communication devices. The cost of processing components
includes the cost of their memory. This procedure of computing
the cost suits the situation when a designer creates the architecture
from off-the-shelf components which have all features fixed. Dif-
ferentiating the cost of the processor with different amount or
kind of memory can be modelled.

There is no restriction on the nature of the interconnection
structure. The designer specifies possible connections between
processing and communication devices. This specification is used
to impose constraints on bus or link selection for transferring data
between two communicating tasks, if they are executed on differ-
ent processing units.

4.2. Problem definition
The functional description of a system is given as an acyclic ta
graph, as presented in Figure 3. Please note that this is diffe
from a task graph presented in Figure 1, which was simplified f
a purpose of motivational example.

The task graph nodes denoted as ellipses represent comp
tional tasks. Each task is described by the following FDV’s tupl

T=(τ, ρ, δ, µc, µd, π) (1)
whereτ denotes the start time of the task execution,ρ denotes the
resource on which the task is executed,δ denotes the task execu-
tion time,µc andµd denote the amount of code and data memo
needed for the execution of the task, and finallyπ denotes the
exact placement of data in the data memory. For example, task1
from Figure 3 can be modelled in the following wayτT1 :: 0..20,
ρT1 :: 1..2,δT1:: 1..2,µcT1 :: 1..2,µdT1 :: 3..4,π :: 0..100.

The execution time, code memory and data memory requir
by the task depends on the processor. The tasks must be alw
scheduled on one of the processing units. This is modelled
imposing constraints which define finite relations between FDV
of (1) representing different tasks [7].

The task graph nodes denoted as rectangles represent
transfers between tasks. Each data is described by a tuple
FDV’s:

C=(τd, ρd, δd, α, πp, πc) (2)
whereτd denotes the start time of the communication,ρd denotes
the resource which is used for transferring data,δd denotes the
duration of the communication,α denotes the amount of the trans
ferred data,πp and πc denotes the exact placement of data i
memory of the processing units which execute producer and c
sumer tasks.

4.2.1. Basic constraints
The FDV’s of (1) and (2) are constrained. In most cases, t

constraints imposed on these FDV’s are basic constraints si
they involve small number of FDV’s and lack the global view o
the problem. The basic constraints ensure that the FDV’s are c
sistent. The basic constraint presented below ensures that
consumer task does not start before the end of the data comm
cation to this task.

Each data node in a task graph imposes a constraint on an
cution order of its producer and consumer tasks. There are t
possible scenarios for transferring data between two communic
ing tasks. In the first scenario, tasks are executed on differ
processors. In this case, the communication must be assigne
and scheduled on a communication device. This case is define
a conjunction of two following inequality constraints:

 ∧ (3)
where task Tp sends data to task Tc using communication Cd.

In the second scenario, both communicating tasks are e
cuted on the same processor and they communicate using
local memory of the processing unit. In this case, the previo
constraints reduce to the following one , sinceδd
equals zero.

4.2.2. Global constraints
The important shortcoming of basic constraint is their loc

perspective. The global constraints express a global view of
problem. We use global constraints mostly for ensuring th
resources like time, code memory, and data memory are not ov
used. The main constraint used in this framework is diffn/1 [2, 7

Figure 3. Simple task graph example

τp δp τd≤+ τd δd τc≤+

τp δp τc≤+

e
ch
ow-
ide

k T
le

tion

the

)
nd
M
ory

6)
7)
The diffn/1 constraint takes as an argument a list of n-dimensional
rectangles and assures that for each pair ofi, j (i≠j) of n-dimen-
sional rectangles, there exist at least one dimensionk wherei is
after j or j is afteri. The n-dimensional rectangle is defined by a
tuple [O1, ..., On, L1, ..., Ln], whereOi and Li are respectively
called the origin and the length of the n-dimensional rectangle in
i-th dimension. Obviously the diffn/1 constraint can be used to
express requirements for packing and placement problems but in
our approach we will use it for defining constraints for scheduling
and resource binding.

Two dimensional rectangles are used in our approach to repre-
sent tasks in processor/time space as well as memory placement
in memory address/time space. These constraints represent data
memory placement and Gantt diagrams for tasks and communica-
tions see Figure 6. Using global constraints we are able to
estimate the amount of needed data memory early in the design
phase. The estimates developed for our algorithm use constraints
and increase the chance of finding a solution for which the maxi-
mal usage of data memory does not exceed the available memory
size.

5. MATAS
The MATAS prototype system was implemented in Java and Con-
straint programming language CHIP v5.2. CHIP is used for
modelling and constraint solving. The user interface was devel-
oped in Java. During synthesis the designer can express different
restrictions and constraints on the final design. The system allows
to constrain all FDV which constitute the model. Therefore timing
constrains for task Ti can be expressed by restrictingτi. The con-
strains on assignment of task Ti can be expressed by restrictingρi.

MATAS prototype system gives the choice to create pipelined
implementation of the task graph. The designer has to specify the
number of pipeline stages, the maximal latency of a pipeline stage
as well as initiation rate. In functional pipelining, we assume that
the same tasks from different pipeline stages execute on the same
processor. Thus the code memory does not increase.

6. TASK ASSIGNMENT AND
SCHEDULING ALGORITHM

The task assignment and scheduling algorithm presented in
this paper takes into account memory constraints. The general
flow of the algorithm is depicted in Figure 4.

The proposed constructive algorithm balances the usage of the
code memory, data memory, and time. It copes with code mem-
ory, data memory, and timing constraints. Our algorithm tries first
to schedule tasks from the critical path until the estimates of data
memory usage is below the memory size. When the estimate of
future utilization of data memory exceeds memory size, our algo-
rithm chooses tasks which will decrease the estimated data
memory usage. The actual data memory utilization depends on
future decisions regarding the schedule. We use two estimation
methods to estimate the peak of data memory requirement on all
processors.

The algorithm selects in each iteration a single task Ti from
tasks with all preceding tasks already scheduled. At this stage we
choose a task from the critical path to reduce the schedule length.

This decision is justified by the fact that, in general, delaying th
execution of not urgent tasks for the favour of the tasks whi
belong to the critical path, decreases the schedule length. H
ever, it usually increases data memory requirements as a s
effect.

The second step computes the cost of implementing task Ti on
each processor. The implementation cost ci consists of two terms.
The cdataterm, depicted in (4), depends on∆di, which is computed
as a difference between data produced and consumed by tasi.
The cdatacost depends also on the amount of currently availab
data memory on the processor (ProcAMn), and the size of proces-
sor memory (ProcM). The communication cost ccomm, depicted in
(5), represents the average time of interprocessor communica
needed. We use minimum, min(δi), and maximum communica-
tion duration time, max(δi), since the incoming communication Ci
is not assigned yet and actual communication time depends on
assigned communication device.

Finally, The implementation cost cexecrequires the following
measures to be computed.

Two kinds of measures, UCM (utilization of code memory
and UTS (utilization of processor time slots) are general a
describe the current utilization of the whole architecture. UC
and UTS use two lower bounds: the used amount of code mem
(LCM) and the processor time units (LTS).
UCM = LCM/PCM, where PCM - processor code memory (
UTS = LTS/PTS, where PTS - processor time units (

(4)cdata

∆di

ProcAMn
------------------------- i f ∆di 0

ProcAMn

ProcM
------------------------- 2

3
---<∧>

0 i f otherwise

=

ccomm

min δi() max δi()+

2
--

ci

∑= (5)

data estimate no. 1 holds?

data estimate no. 2 holds orY

N

N

Figure 4. Algorithm for task assignment and scheduling

Choose a task Ti from ready task set, such that it has the
minimal max(τi). Quit when no more tasks to schedule.

Compute cost (c) of implementing task Ti on each processor

ci = cdata + cexec

cdata = f (produced_data, available_memory)

ccomm = f (communication_time)
cexec = f(code_memory, execution_time, avail_cm, avail_time, ccomm)

Assign task Ti to a processor Pn for which the cost Ci is minimal

Schedule communications in such a way that τi is minimal

Assign data memory for the task and its data

Update data amount currently stored on each processor

Choose a task Ti from ready task set which consumes most
data (minimal (outcoming data - incoming data))

Y

Undo all decisions taken in this iteration

Ti chosen using minimize
data criteria?

Task selection criteria - minimize data utilization:

Task selection criteria - minimize schedule length:

Set all constraints

sible
is
em-
a

e-
les
well

all
T
k
ory

the
w
sk
ect-

-
m
o a
his
The
o-
s
.

nts
phs

be
aph
hs
ri-
in

lgo-
d

oc-
Ind = UTS - UCM (8)
We also compute the ACMin and ATSin measures. They denote
the available code memory and available time units on processor
Pn, after assigning task Ti to processor Pn. These two kinds of
measures are used when computing the costcexecof implementing
task Ti on processor Pn. The cost function uses, in addition, the
amount of code memory (Cin) needed to execute task Ti on proc-
essor Pn and Din which represents the time needed to execute task
Ti on processor Pn plus cost ccomm.

The execution cost formula is depicted in Figure 5. In case (10),
when Ind < -L1, the code memory is used much more than the proc-
essor time and, therefore, only the code memory contributes to cost
cexec. The algorithm should minimize further increase in code
memory utilization. On the other hand, when value Ind is greater
than L1, the algorithm aims at minimizing further increase of proc-
essors utilization. When the utilization of processor time and code
memory is balanced, (12), both terms are taken into consideration
with the same weight. The remaining cases, (11) and (13), describe
situation when one of the resources is slightly overused. To coun-
teract this, the weight of the other resource is decreased. The
algorithm selects the processor Pn for implementation of task Ti if
the related implementation cost, ci, is lowest.

After assigning task Ti to processor Pn, the task is scheduled.
The algorithm performs branch-and-bound search to find earliest
possible start time of task Ti. During this search, the communica-
tions are also scheduled. Finally, data memory for incoming data
as well as data memory for task execution is assigned.

The next algorithm step updates the amount of currently stored
data on the processor. This takes into account data which were
produced by all already scheduled tasks, but not yet consumed.
This is our first estimate of used data memory. The estimate is
depicted in (9), where Sn is a set of tasks scheduled on processor

Pn, S is a set of already scheduled tasks, tasks Tj are direct succes-
sors of task Ti, and data dij is amount of data communicated
between Ti and Tj. This estimate is very fast to compute but inac-
curate, since it does not take into account the data memory needed
for task execution and additional data needed during interproces-
sor communication. However, if the amount of needed data
memory on each processor is less than a certain limit we can pro-
ceed and start next iteration of the algorithm.

When this simple estimate does not hold, a more accurate and
time consuming estimate is computed. It uses the global con-
straint diffn/1 to assess the required data memory. During the
algorithm execution, only some of the rectangles in diffn/1 con-
straint have fixed size and placement. For “data rectangles” which

have not fixed placement and size we assume the biggest pos
size. If the global constraint does not fail immediately with th
pessimistic assumption, we can expect that there exist data m
ory placement. The Gantt diagram on the right in Figure 6 is
diffn/1 constraint viewer and it shows the data memory requir
ments after the algorithm has finished. Therefore all rectang
have fixed size and exact amount of needed data memory as
as data memory placement is known.

If the second pessimistic estimate fails we have to roll back
decisions taken in this iteration and choose a different taski.
Task Ti is chosen now according to a different criteria. A tas
which consumes most data and, thus, reduces the data mem
usage is selected. In most cases, this task will not belong to
critical path, so the schedule length will increase. With the ne
task Ti the algorithm proceeds and finds an appropriate ta
assignment and schedule. The algorithm continues then by sel
ing tasks from the critical path.

7. EXPERIMENTAL RESULTS
We compare our memory-aware algorithm, which is multiob

jective, to a greedy scheduling algorithm. The greedy algorith
always chooses a task from the critical path and assigns it t
processor which can finish its execution earliest. Therefore, t
algorithm does not care about data and code memory usage.
greedy algorithm is one objective algorithm. Our greedy alg
rithm is very good in minimizing the deadline since it benefit
from the use of global constraints available in the CHIP solver

First, we evaluated our system using five sets of experime
of random tasks graphs generated by TGFF v. 2.0 [5]. The gra
were scheduled on the architecture presented in Figure 7. To
able to repeat experiments we provide the options used for gr
generation in Figure 8. An experiment set consists of 22 grap
which were generated using seed from 1 to 22. In the first expe
ment, we used the greedy algorithm. The values presented
Table 1 are averages over all graphs. The greedy scheduling a
rithm was able to give short execution time due to unlimite
amount of resources. In addition, it yields more unbalanced pr

ε1 Pn() dij
Ti Sn∈ T j S∉,∀

∑= (9)

cexec

Cin

ACMin

Cin

ACMin

Din

AT Sin
--------------- 1 Ind–()×+

Cin

ACMin

Din

AT Sin
---------------+

Cin

ACMin
------------------ 1 Ind–()

Din

AT Sin
---------------+×

Din

AT Sin

=

if -1 < Ind < -L1 (10)

if -L1 ≤ Ind < -L2 (11)

if -L2 ≤ Ind ≤ L2 (12)

if L2 < Ind ≤ L1 (13)

if L1 < Ind < 1 (14)

where L1 and L2 are constants and are equal 0.16 and 0.08 respectively

Figure 5. Execution cost

Figure 6. Gantt diagrams

P1 P2

L1

Figure 7. Architecture used in random experiments

P3 P4

L2

B1
100 kb of code
memory
100 kb of data

processor

memory
on each

r
d
i-
s.

l
”,
),

r
/
l

e
th

th

g
s.,

d
”,

nd

em

th

r
,

y

in
”,
h,

d

1

essor usage. The data memory peek was 18% higher and code
memory peek was 33% higher than the figures obtained with our
approach (exp. 5). In the second experiment, we decreased the
amount of available data memory. The greedy algorithm fails to
find a solution in 14 cases. The third experiment is done for an
architecture with lower amount of code memory. For this setting,
the greedy algorithm fails to give a solution in 18 cases. The com-
parison between greedy scheduling algorithm and memory-aware
algorithm is more fair in the case where the resources code and
data memory are constrained. The fourth experiment shows that
the greedy scheduling is not able to find any solutions when both
the code and data memory size is decreased. The memory-aware
algorithm finds solutions to all graphs for reduced memory size as
presented in the fifth experiment. It is much more robust in the
case when we do not have an unlimited amount of memory.

We also applied our memory algorithm to a complex image
processing application based on CCITT recommendation H.261
presented in [1]. For this example, we present results obtained
when using algorithmic pipelining in Table 2. The pipeline imple-
mentation was constrained by defining the latency of one
application iteration to be at most 4000 clocks and an activation
period to be 1000 clocks. We assumed that the computation of
tasks require 50 data memory units for execution. We also
assumed that establishing communication with the environment
takes little time on the universal processor. The experiment no. 3
shows that using our memory-aware algorithm we decrease the
memory size by 16% and get only 1% deadline increase.

8. CONCLUSIONS
This paper presents a constructive algorithm for a task assignment
and scheduling under memory constraints. The algorithm gives
valid task assignments and schedules fulfilling all constraints,
including memory constraints. Since the peak of data memory
usage depends on task assignment, task schedule, and communi-
cation schedule, incorporating timing constraints with memory
constraints results in better resource utilization. The experimental
results show that data memory should be taken into account dur-
ing system level synthesis to avoid inefficient and costly designs.
Our algorithm provides good results for large, randomly gener-
ated task graph examples and also for a real-life example.

9. REFERENCES
[1] Bender, A., “Design of an optimal loosely coupled

heterogeneous multiprocessor system”,European Design
and Test Conference, 1996. ED&TC; Proceedings, 1996,
Page(s): 275 -281

[2] COSYTEC, CHIP, System Documentation, 1996
[3] Catthoor, F.; Verkest, D.; Brockmeyer, E., “Proposal fo

unified system design meta flow in task-level an
instruction-level design technology research for mult
media applications”,System Synthesis, 1998. Proceeding
11th International Symposium on, 1998, Page(s): 89 -95

[4] Danckaert, K.; Catthoor, F.; De Man, H., “System leve
memory optimization for hardware-software co-design
Hardware/Software Codesign, 1997. (CODES/CASHE ’97
Proceedings of the Fifth International Workshop on, 1997,
Page(s): 55 -59

[5] Dick, R.P.; Rhodes, D.L.; Wolf, W., “TGFF: task graphs fo
free”, Hardware/Software Codesign, 1998. (CODES
CASHE ’98) Proceedings of the Sixth Internationa
Workshop on , 1998, Page(s): 97 -101

[6] Kjeldsberg, P.G.; Catthoor, F.; Aas, E.J., “Storag
requirement estimation for data intensive applications wi
partially fixed execution ordering”,Hardware/Software
Codesign, CODES 2000. Proceedings of the Eigh
International Workshop on, Page(s): 56 -60

[7] Kuchcinski, K., “Embedded system synthesis by timin
constraints solving”,System Synthesis, 1997. Proceeding
Tenth International Symposium on, 1997, Page(s): 50 -57

[8] Kuchcinski, K., “Integrated resource assignment an
scheduling of task graphs using finite domain constraints
Design, Automation and Test in Europe Conference a
Exhibition 1999. Proceedings, 1999, Page(s): 772 -773

[9] Madsen, J.; Bjorn-Jorgensen, P., Embedded syst
synthesis under memory constraints,Hardware/Software
Codesign, CODES’99, Proceedings of the Seven
International Workshop on, 1999, Page(s): 188 -192

[10] Marriot K. and Stuckey P. J.,Programming with Constraints
- An Introduction, The MIT Press, ISBN 0-262-13341-5

[11] Prakash S. and A. C. Parker A. C., SOS:Synthesis of
Application-Specific Heterogeneous Multiprocesso
Systems, Parallel and Distributed Computing, pp. 338-351
1992

[12] Prakash S. and Parker A. C.,Synthesis of Application-
Specific Multiprocessor Systems Including Memor
Components, VLSI Signal Processing, 1994

[13] Szymanek, R.; Kuchcinski, K., “Design space exploration
system level synthesis under memory constraints
EUROMICRO Conference, 1999. Proceedings. 25t
Volume: 1, 1999, Page(s): 29 -36 vol.1

[14] Szymanek, R.; Kuchcinski, K., “Task assignment an
scheduling under memory constraints”,Euromicro
Conference, 2000. Proceedings of the 26th, Volume:,
2000, Page(s): 84 -90 vol.1

Table 1: Experimental results (random task graphs)

Experiment setup Results

E
xp

.

al
go

rit
hm

Each CPU

D
ea

dl
in

e
[m

s]

Data Mem. Code Mem.

so

lu
tio

ns

da
ta

 m
em

or
y

si
ze

 [k
B

]

co
de

 m
em

or
y

si
ze

 [k
B

]

ut
ili

za
tio

n
[k

B
]

pe
ak

 [k
B

]

ut
ili

za
tio

n
[k

B
]

pe
ak

 [k
B

]

1 greedy 100 100 171 243 78 319 98 22

2 greedy 75 100 182 233 68 310 96 8

3 greedy 100 75 169 257 79 294 75 4

4 greedy 75 75 - - - - - 0

5 memory 75 75 295 222 64 247 65 22

tg_cnt 1 seed ? task_degree 2 2 task_cnt 80 1 task_unique true
period_mul 1, 1
for tasks exec_time 4 2 1, code 4 2 1, data 3 1 1
for data data_amount 5 2 1

Figure 8. TGFF options

Table 2: Experimental results (H.261 algorithm)

E
xp

. #

al
go

rit
hm

P
ip

el
in

e
D

eg
re

e

D
ea

dl
in

e

A
ve

ra
ge

E
xe

cu
tio

n
T

im
e

Σ
D

at
a

M
em

or
y

∆
T

im
e

∆D
at

a
M

em
or

y

1 both 1 2871 2871 2683 - -

2 greedy 4 6743 1686 3812 0 0

3 memory 4 6781 1696 3259 1% -16%

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

