
A Systematic Approach to Software Peripherals for
Embedded Systems

Ass. Prof. D. Lioupis
Computer Technology Institute, 61
Riga Feraiou St, Patras, Greece

+3061960359

lioupis@cti.gr

A. Papagiannis
Dept. of Computer Engineering &

Informatics, Univ. of Patras, Greece
+3061997750

papagian@ceid.upatras.gr

D. Psihogiou
Dept. of Computer Engineering &

Informatics, Univ. of Patras, Greece
+3061997750

psixogiu@ceid.upatras.gr

ABSTRACT
The continued growth of microprocessors’ performance and the
need for better CPU utilization, has led to the introduction of the
software peripherals’ approach: By this term we refer to software
modules that can successfully emulate peripherals that, until now,
were traditionally implemented in hardware. Software
implementations offer great flexibility in product design and in
functional upgrades, while they have high contribution in the
cost/performance ratio optimization. We focus on embedded
applications, where the cost and the short time to market are the
leading issues. In this paper, we study the hardware and software
requirements for developing a generic microprocessor with
support for software peripherals. Additionally, we present three
software peripherals, a Universal Asynchronous Receiver
Transmitter, a keypad controller and a dot matrix LCD controller,
and we analyze their impact in CPU occupation. Finally, we
explore the impact of using a software UART on system power
dissipation.

Keywords

Software peripherals, embedded processors, reconfigurable
architectures

1. INTRODUCTION
Embedded microprocessors are used in a wide range of
applications, from automotive control systems to Palmtops and
communication devices. These different markets have a common
point: The need for low cost microprocessors, with high level of
integration and performance. The growth of the embedded
applications’ market has brought an increasing migration from
application specific logic to application specific code running on
embedded processors [9]. The main reasons for this transition
from hardware to software are lower cost, flexibility and reduced
time to market that software solutions can provide.

The current state in embedded processor market includes a
number of different core CPU architectures implemented by

several vendors [2]. Examples of such architectures are
Motorola’s 68000, Intel’s i960, Sun’s Sparc, Hitachi’s SuperH,
etc. There are two strategies for integrating peripherals on such
microprocessors. According to the first strategy, a basic core and
additional logic for a custom device are integrated onto the same
die. The second approach uses a standard microprocessor together
with a companion chip that serves applications’ specific needs [1].
These strategies, and especially the first, are leading to chips that
are produced in relatively small volumes due to the fact that they
serve only a small range of embedded applications (usually one).
Small production volumes are translated in higher final cost.
Additionally, developers’ choice becomes quite difficult, when
they have to choose a microprocessor that covers exactly their
needs from the provided variety. This mean more time for
searching and learning which entails higher cost of the final
product, and longer time to market.

A solution to the problem stated above, is to produce more
generic microprocessor chips, which can be software
configurable, implementing several peripherals, allowing the
resultant generic microprocessor to be tailored to many
application areas. In this paper, we study a possible structure for
such a microprocessor, which will provide the appropriate
flexibility and will be able to constitute a common platform for
the application designers.

The remainder of the paper is organized as follows: in the next
section we present the current state of the art in the domains of
hardware to software migration and reconfigurable architectures.
In section 3 we give a brief description of the microprocessor’s
schema and in section 4 we present the expected benefits of this
approach. The utilization of the CPU is the key issue in such a
design, thus in section 5 we present the performance analysis
concerning a system with three software peripherals. In section 6
we study the effect that a software peripheral may have in power
consumption, presenting the comparison between a software and a
hardware implemented UART. Conclusions are presented in
section 7.

2. RELATED WORK
A large embedded processor manufacturer such as Advanced
RISC Machines (ARM) claims that many modern 32-bit RISC
processors can be used to implement many functions in software,
including signal processing [3]. Recently, software modems have
appeared in the market trying to replace modems traditionally
implemented in hardware. Similarly, Motorola Semiconductors
has developed the SM56 PCI software modem [14] and they aim

to establish a ‘software communication’ market. With this term,
they mean that in the future everything except the physical
interface will be implemented in software including control, error
correction, compression/decompression and modulation. These
efforts are focused on high performance desktop processors. In
our approach we deal exclusively with embedded processors
taking into account their inherent limitations.

Ubicom Inc., (formerly Scenix) [15], has introduced the concept
of ‘Virtual PeripheralTM’, a method of using a portion of the
processor's power to perform peripheral functions in software.
Their 8-bit RISC-based microprocessor is the platform for
running the virtual peripheral modules. Combining advanced
architectural features the device is able, in spite of the small data
bus, to implement hard real-time functions as software modules to
replace traditional hardware functions.

DSP Processors [4] with the appropriate software routines can
replace hardware modules of a design (e.g. modems). This
category of processors has a special architecture, which help them
to execute software related with signal processing quite fast. DSPs
can handle in real time tasks that demand high processing power.
This kind of processors have been used in several application
areas, like cellular telephony, audio and video products etc. This
novel market demands has led the manufactures of
microprocessors to include DSP functionality into their chips
which is achieved by adding fast multipliers, Multiply and
Accumulate (MAC) units or adding separate DSP cores into the
same chip. Interesting architectures that fall under this category
are SH-DSP from Hitachi[11], Picollo from Advanced RISC
Machines[12], and Tricore from Siemens[13].

FPGA manufacturers follow a different approach to
reconfigurability, based on the idea of reconfigurable hardware.
Software, written in some Hardware Description Language, can
program the FPGAs to operate as an ASIC. CPU cores are
provided as software modules by a lot of companies like Altera
Corporation and Xilinx Inc. Additionally, any peripheral can be
added to the FPGA as a separate soft macro. New studies in
reconfigurable architectures try to integrate FPGA, RISC core,
and SRAM within the same die. Garp architecture [5] sets a trend
to incorporate RISC cores with FPGA arrays. Towards this
direction, Triscend Corporation produces the A7 device family
[16] that combines a 32-bit ARM processor core with
programmable logic and many other system functions onto a
single chip. This solution gives great flexibility and could achieve
significant speedups compared to traditional General Purpose
Processors. However, adding reconfigurable hardware to
implement peripherals introduces greater cost and requires more
silicon area. In addition, such devices need to be programmed
individually before they are used in the field. This limits the scope
of such microprocessors to small volumes and thus higher cost.

In our approach, we propose a careful combination of both
hardware and software methods to develop peripherals. Our
primary concern remains the hardware to software migration.
Nevertheless, there are functions that cannot be implemented
efficiently with software. Additionally, the purely software
approach can be proven inadequate, when we have to deal with
demanding peripherals. In this work we present a case where a
minor addition in hardware can have beneficial effect in system
performance.

3. SYSTEM ARCHITECTURE
In this section we present the hardware and software requirements
for developing a generic microprocessor with support for software
peripherals. High performance and fast interrupt response are two
important requirements, as software peripherals are individual
tasks that need to be executed always on time, and microprocessor
must be capable to satisfy this demand. Another important issue is
the definition of the set of minimal hardware, which is essential
for the efficient system operation. The system must also provide a
fast and simple way for upgrading peripherals through a well-
specified programmable interface, and must be capable to achieve
optimal synchronization of all tasks running concurrently, with a
robust scheduling algorithm. We suggest that in an embedded
system, software peripherals should not occupy more than the
20% of the CPU time. Setting this limitation, we ensure that
software peripherals will never introduce great overhead to the
system, leaving up to 80% of CPU time for the main application.
In our analysis, which is presented in section 5, we will show that
this threshold is adequate to emulate our peripherals.

3.1 CPU Architecture Requirements
The functional blocks required by a microprocessor to make it an
ideal platform for 'software peripherals’, have been defined as
hardware functions in the CPU. Figure 1 shows the resultant CPU
architecture. As mentioned above, the embedded microprocessor
must include:

High performance core: High performance is a critical issue for
the described microprocessor. Common techniques to achieve
high performance are high clock frequencies, RISC core and
pipelining. A high performance CPU can meet our goal of being
able to emulate several peripherals, without disrupting the main
application.
Fast Interrupt Response: Implementing peripherals in software,
increase the software contexts in an embedded system. We use
banked registers to reduce context switch time and achieve fast
interrupt response.

Set of hardware functions: As it was previously mentioned, there
are functions that cannot be implemented efficiently with
software. In this work, we use basic hardware functions like
timers and interrupt handlers, to implement software peripherals.
In other embedded areas like multimedia applications, additional
functions in hardware, as for example digital to analog converters,
are necessary to retain processor’s performance at high level.
Furthermore, additions in CPU core, like Multiply and

Figure 1. Block diagram of the microprocessor

E x te r n a l
M e m o r y
I n te r f a c e

 C P U C O R E A d d it iv e H /W
F u n c t io n s

I n t e r n a l B u s

O n C h ip
R A M

 R e c o n f ig u r a b le
 P in s

B a n k e d r e g i s t e r s T im e r &
I n t e r r u p t
c ir c u it r y

M A C
u n it

O n C h ip
E P R O M

P r o g r a m m a b le
I n t e r f a c e

Accumulate Units, should also be included in requirements to
support performance demanding DSP applications.
Reconfigurable Pins: Reconfigurable pins correspond to a
common Programmable Peripheral Interface. According to the
peripheral set that is loaded to the system, these pins obtain the
appropriate functionality.
Sufficient Amount of Memory: The microprocessor should include
sufficient internal memory (RAM & EPROM) to satisfy increased
system demands due to software peripherals. Through a
programmable interface the appropriate peripherals and
application code will be loaded or updated. Nevertheless, an
external memory interface is necessary for more demanding
applications.

A chip designed in such way, allows efficient implementation of
software based peripherals and permits its integration in any
embedded system. External peripherals can still be employed if
necessary.

3.2 Implications on System Software Design
Software peripherals and main application program must execute
concurrently. We consider software peripherals as tasks that are
waiting for their service. It is possible that complex software
peripheral can consist of several simpler ones. We can therefore
build a software peripheral based on a hierarchy of simpler
functions. These peripherals can be combined in a second level to
construct a new peripheral and so on.

Software peripherals introduce extra tasks to the system software
design. Scheduling these tasks on the processor, so that all the
critical constrains are met, is a difficult problem. A great deal of
work has been done on scheduling of embedded systems [6],
including those with mixed workloads [7]. We can classify the
scheduling policies for real time systems into two categories:
Static or preruntime, where the scheduling algorithm runs offline
and the tasks are well known in advance, and dynamic or runtime,
where the scheduling is decided online. Each policy suits well in
specific cases. In our case, the workload introduced by software
peripherals is highly dependent of the target application and so
does the scheduling technique. Static scheduling technique can
offer a very good optimization when the time that events occur is
well known in advance. Round-robin method is probably the
simplest solution to our problem. Going a step further, we can use
more sophisticated algorithms such as the interval scheduling
described in [8]. In the scenario described in section 5, software
peripherals are implemented as timer routines having well known
occurrences. Thus, static scheduling is applied. On the other hand,
when we cannot predict the arrival and the execution time of
tasks, dynamic scheduling gives us great flexibility providing on-
line scheduling, increasing though the system complexity.

4. System Approach Rationale
The system designed and implemented as above offers the
following advantages to the system designer:
♦ Fast Upgrade: Software peripherals introduce a new fast and

simple method of adding peripherals to a system or upgrading
the existing ones through programmable interface.

♦ Multiple configurations: The microprocessor in the described
schema has a set of reconfigurable pins. According to the
application, the peripheral set is loaded to the processor and the

reconfigurable pins obtain the appropriate properties. In this
way, multiple configurations of the same chip are possible.

♦ Common development environment: Application Developers
will have one processor for all the different applications that
they design. This means less time for learning, great save to
expenses of buying different evaluation boards, and shorter time
to market for the final product.

♦ Gain in Space: The microprocessor designers can utilize the
saved silicon area to enrich the features of the main CPU core
and increase its performance, while at the same time unused
functions are eliminated.

♦ CPU Utilization: CPU power is fully exploited since it is now
also used for the execution of peripheral functions and it does
not remain inactive for long period of times.

♦ Chip Count Reduction: The processor will be able to substitute
external chips, simplifying the PCB design and reducing the
critical time-to-market for the final product.

♦ Low Power Consumption: The overall power consumption of
the application depends on the main processor utilization and
the minimal set of hardware functions and not on external chips
and circuits. In section 6, we present a case where the software
solution is competitive to hardware solution.

Despite the referred advantages, there are also open issues that
need to be resolved:
♦ Performance: Software, of course, cannot replace hardware

without trade offs in performance. Emulated peripherals are
expected to have lower performance than the hardware ones.
Nevertheless the effect of slower peripherals is expected to be
minimal as processors become faster.

♦ Synchronization: In a complex application with several
peripherals running in parallel, the synchronization of all tasks
is a critical issue. The scheduler’s operation and optimization
should be carefully studied.

5. PERFORMANCE ANALYSIS
In this section we study the performance of software peripherals
implemented in our lab. We chose to implement a combination of
three software peripherals that are used in a wide range of
embedded applications like cellular phones and Personal Digital
Assistants. These peripherals are a) a UART, b) a keypad
controller and c) a dot matrix LCD controller. The integration of
these peripherals in the embedded system is presented in Figure2:

Figure 2. System loaded with three S/W peripherals

 C P U C O R E

S e t o f H /W
F u n c t i o n s

 R e c o n f i g u r a b l e P i n s

T i m e r & I n t e r r u p t
c i r c u i t r y

R A M

E P R O M

E

6 7 . . .

U A R T e x e c u t i o n c o d e

K e y p a d e x e c u t io n c o d e

L C D e x e c u t i o n c o d e

. . .

U A R T L C D K e y p a d

D e v i c e D i s p l a y B u t t o n s

P r o g r a m m a b l e
I n t e r f a c e M a i n A p p l i c a t io n

. . .

U A R T
T i m e r

L C D
T i m e r

K e y p a d
T i m e r . . .

A p p l i c a t i o n
R A M

. . .

C h a r
C h a r a c te r
G e n e r a to r

R O M
D i s p l a y

R a m

V o l t a g e
G e n e r . O s c . . .

K e y p a d
L o o k u p

We assume that the target processor has the following
characteristics: 16 or 32 bit RISC processor with CPI equal to 1
and clock frequencies that vary from 30 to 100 MHz, fast
interrupt response, low power features and at least one internal
timer for synchronization. These assumptions are not far from
reality as there are several processors in the market that
correspond to the above characteristics. Examples of such
processors are microSPARC-IIep by Sun Microelectronics, the
MCF5104 by Motorola, or the 80960HA/HD/HT by Intel etc. All
three peripherals mentioned above are analyzed in the next
paragraphs.

a) In case of the UART implementation, we initially consider the
popular 1 Start bit, 8 Data bits, 1 Stop Bit, No parity, which is the
simplest and needs the minimal number of instructions. First, we
estimate the CPU percentage that the software UART occupies
during execution. For the transmission and the receive of one bit
the CPUtime is calculated as follows:

CPUtime = (Instruction count x CPI + interrupt response
cycles)x(clock frequency)-1 (5.1)

For the CPU occupation, we use the relation:

CPUocc = CPUtime x Baud rate (5.2)

From the implemented UART program, the instruction count is
equal to 16. Assuming that CPI is equal to 1, the Clock frequency
is in a range from 30 to 100 MHz and the interrupt response is 8
clock cycles, we can conclude that CPU time for one bit lies also
in a range from 800nsecs to 240nsecs.

Rate

MHz
19200
bit/s

38400
bit/s

57600
bit/s

115.2
Kb/s

30 1.536% 3.072% 4.608% 9.216%

50 0.922% 1.843% 2.765% 5.530%

75 0.614% 1.229% 1.843% 3.686%

100 0.461% 0.922% 1.382% 2.765%

As we can see from the above table, the CPU occupation varies
from 0.5 % to 10% for all the different frequencies and baud rates.
These values indicate that such software peripheral can be
incorporated in any application.

In the scenario that we used to calculate the above CPU
occupation values, we assumed that one bit is received and
transmitted at the same time (Full Duplex). In real applications
this scenario rarely happens. The most common case is that some
bytes are transmitted and some other bytes are received in separate
time intervals (Half Duplex). To serve one of the two functions
each time, processor should execute only 10 instructions from our
UART code. This observation can reduce the calculated CPU
occupation values for about 25% and can make the software
solution even more attractive. If we add parity generation and
checking functions, the CPU occupation is increased by 11.5% in
full duplex mode and 7.6% in half duplex.

b) Next we study the case of a keypad controller for an
embedded system implemented in software. We simulated the
functionality of such a controller, by writing an appropriate
software peripheral in assembly language. The keypad controller
supports a 4x8 keypad. We used the technique of ‘row scanning’:
Each row and each column is connected to the microprocessor.
We shift a ‘1’ in each row and we read the output from columns.
If a key is pressed a ‘1’ will be scanned in the specific column.
The combination row-column reveals the identity of the pressed
key through a look-up table. This software peripheral can be
fairly implemented as an internal timer routine that is executed
every 0.01 sec (scanning frequency). The code length of such a
keypad controller is no more than 12 instructions for the service
routine and another 32 bytes for the look-up table. An execution
of this routine involves about 32 executions of instructions, due to
the shifting loop. Then, CPU occupation for the keypad is:

CPUocc = CPUtime x Scanning Frequency (5.3)

where CPU time is calculated from (5.1).

The calculated CPU occupation of this peripheral is extremely
low: from 0.013% for a 30MHz CPU to 0.004% for a 100MHz
CPU. The main reason for these low values is because the
interrupt service routine is executed rarely. Adding more features
to the keypad controller, increasing its code complexity and
length, will have little impact on CPU occupation which remains
far below 1%. The disadvantage of the described solution is the
large number of pins that should be used (4+8=12 pins). This
problem can be moderated if we use encoder/decoder circuits at
the columns/rows of the keypad respectively, reducing the number
of used pins to 2+3=5.

c) Finally, we study the case of a dot matrix LCD controller.
Examples of such LCD controllers are HD44780 from Hitachi
[17] and MSM6222B from OKI [18]. These controllers support
several features like two different character sizes (5x8 or 5x10),
on chip display RAM, on chip character generator ROM, small set
of user-programmable character patterns, on chip LCD signal
drivers, cursor manipulation instructions etc. Our software LCD
controller supports 5x8 dot characters, variable length RAM,
according to the size of target LCD and variable length EPROM,
according to the size of the character set of the application. There
is no need of external RAM and EPROM memories, as the LCD
controller can use portions of the on chip RAM and EPROM. For
example, a 4x16 character LCD demands 64 bytes for display
RAM. Assuming that the target application uses a set of 128
characters, our software controller needs another 5x8x128=5120
bits or 640 bytes of EPROM to store all the character patterns.

This software peripheral can be implemented efficiently enough as
an internal timer routine. To calculate the exact frequency that this
timer interrupt should occur, we take into consideration the LCD
refresh rate and the total size of the display in dots:

Timer frequency = Refresh Rate * X * Y (5.4)

where X and Y are the numbers of dots in horizontal and in
vertical dimension respectively. It is efficient to define that the
refresh rate of the LCD is equal to 60Hz. Thus, for a 2x16
character display, where each character has 8x5 dots, the
calculated timer frequency is:

Timer frequency = 60*(2*8)*(16*5) = 76800 Hz

Table 1. CPU Occupation for the Uart

The software LCD controller should shift a bit to the output every
1/Timer frequency seconds. This bit will be shifted in an external
LCD driver like MSM5260 [19] from OKI semiconductor, which
will be responsible for the interfacing between the software
controller and the target display. The software controller should
execute the following operations in order to emulate successively
the functionality of a hardware implementation: a) read a
character from display RAM, b) find the correct character pattern
in character generator ROM, c) load the appropriate 5-bit value
that corresponds to the current displayed horizontal dot line, d)
shift one bit out and e) occasionally, proceed to the next character,
load new horizontal dot line, or go to the next character line.
Shifting is the only operation that is always executed at the timer
frequency. All the other operations have fewer occurrences than
the shifting operation in the same time interval. For example, the
read-from-RAM and the corresponding 5bit-load-from-ROM,
occur every 5/(timer frequency) seconds, or the dot-line-change
occurs every 5*Y/(timer frequency) seconds, where Y is the
number of horizontal dots. Although in our case the total number
of instructions is about 35, the average number of instructions
executed per interrupt is less than 10 (9.3 in our implementation).
Consumed CPU occupation due to this software peripheral is:

CPUocc = CPUtime x Timer Frequency (5.5)

where CPUtime is calculated from (5.1) assuming that CPI is
equal to 1, as in the case of the UART.

LCD Size

Clock freq

2x16

(16x80)

2x20

(16x100)

4x16

(32x80)

4x20

(32x100)

30MHz 4.61% 5.76% 9.22% 11.52%

 50MHz 2.76% 3.46% 5.53% 6.91%

 75MHz 1.84% 2.30% 3.69% 4.61%

100MHz 1.38% 1.73% 2.76% 3.46%

Display
RAM

32 bytes 40 bytes 64 bytes 80 bytes

In table 2 we experimented with four different display sizes and
processor’s clock frequencies and as we see, the results are quite
encouraging for the pure software solution. The maximum CPU
occupation is less than 12%, which occurs in the worst case of the
lowest frequency processor with the maximum LCD size. CPU
occupation increases linearly, thus for a double size LCD, we
expect the occupation also to be doubled. In case we wish to save
CPU resources for a demanding application we can use an
external or internal hardware shift register to reduce CPU
occupation by a factor of N, where N is the size of the shift
register.

By adding the worst cases for all three peripherals, the maximum
occupancy on a 30 MHz CPU is 20.75%. In all other cases, the
sum of occupation lies between 1.85% to 13.83% far bellow the
requirement of 20%. This result proves that further addition of
software peripherals is possible, allowing at the same time enough
CPU power for the execution of the main application.

6. POWER CONSUMPTION
Power consumption is an important issue affected by software
implementation of peripherals. To estimate the effect on power
consumption, we use the 1 Start bit- 8 Data bits- 1 Stop Bit- No
parity Full Duplex UART compared with another similar UART
implemented in hardware.

In the software implementation the only component that consumes
power is the main processor. The main application and the
software UART are running concurrently. When the CPU is idle,
we consider that it is in power-down mode. In the second
implementation there are two components: the main processor as
well as the external UART chip. While the CPU is idle, we
consider that it is in power-down mode as previously, but for
greater time intervals than in software implementation, as the
external UART deals with data receiving and transmitting. The
system current drain for the first case is:

ISW = ICPUactive * y + ICPUsleep * (1-y) (6.1)

where y is the time portion the software UART occupies the CPU,
ICPUactive is the current when the CPU is active and similarly
ICPUsleep is the current when the CPU is in power down mode. In
the second case the relation becomes as follows:

IHW = ICPUactive * (y/8n) + ICPUsleep * (1-y/8n) + Iuart (6.2)

where n is the size of UART FIFO buffer, Iuart is the current that
the external UART consumes while ICPUactive, ICPUsleep and y are
same as above. The main application time portion has not been
taken into account because it is the same for both occasions and it
does not affect the final result.

The factors that affect the power consumption are baud rate, size
of FIFO buffer, number of instructions per interrupt, interrupt
response time, clock per instruction (CPI), operating frequency,
CPU active current, CPU sleep current and external UART
current. We present two different cases. In both, the instructions
per interrupt is 16, the interrupt response takes 8 cycles, the CPI is
equal to 1, the FIFO buffer in the external UART is 16 bytes and
the Iuart is 15mA. In the first case we use a 30 MHz CPU with
ICPUactive = 300mA and ICPUsleep = 10mA. In the second case we use
a 100 MHz CPU with ICPUactive = 900mA and ICPUsleep = 20mA.

Table 2. CPU Occupation for the LCD controller

Figure 3. Power consumption curves

0 20 40 60 80 100 120
10

15

20

25

30

35

40

45

Kbit per second

m
A

S/W UART, 30MHz CPU
H/W UART, 30MHz CPU
S/W UART, 100MHz CPU
H/W UART, 100MHz CPU

65 71.5

As we can see in figure 3, the software implementation consumes
less than the hardware implementation up to the point the baud
rate reaches close to 70 Kbits/sec. To obtain these results we used
a simple power estimation model. We also made conventions
about the way the microprocessor operates. For example, we
assumed that there is no time or consumption penalty during a
transition from sleep mode to operational mode and vice-versa.
More detailed power estimation models are described in [9], [10].

7. CONCLUSIONS AND FUTURE WORK
We have presented a systematic approach to peripherals for
embedded systems, implemented in software. We tried to exploit
the extra performance that modern processors offer, replacing
traditionally hardware peripherals, with equivalent software ones.
The basic idea that led us to this direction of ‘software migration’
was to produce flexible embedded systems without any ‘glue
logic’. We constructed in software three popular peripherals, an
UART, a keypad controller and a dot matrix LCD controller. We
investigated their efficiency and the load that they introduce to the
main processor. In the case of the UART we also studied its
behavior from the scope of power consumption, comparing it with
that of an external hardware UART. We conclude that we can
have an equivalent system using software peripherals, at an
acceptable performance. In particular:

♦ Software peripherals can provide a feasible alternative, offering
great flexibility and simplifying the microprocessor design as
well as the design of the final embedded system.

♦ They can dramatically reduce the final cost of an embedded
application and retain the overall performance in a satisfactory
level, giving an excellent cost/performance ratio.

♦ Software peripherals can follow the rapid microprocessor
advances. As the microprocessors get faster the performance of
software peripherals will also increase.

All the three peripherals that we studied had little impact on CPU
performance, which decreases linearly as the clock frequency of
the processor is increased. We should also point out that when a
software peripheral overcomes the desired threshold of CPU
occupation, small hardware additions, like the addition of a shift
register in the LCD controller case, might have catalytic impact in
the system performance.

The future directions of this work will be the thorough definition
of a minimal set of hardware peripherals that are used by a wide
range of embedded applications and cannot be implemented in
software. Additionally more complicated software peripherals will
be implemented and studied. Finally, we will also turn into the
domain of embedded scheduling and study the feasibility of
systems with a substantial number of software peripherals and
mixed workloads.

8. ACKNOWLEDGEMENTS
This work was supported by the Caratheodory Programme of

the University of Patras.

9. REFERENCES
[1] Manfred Schlett “Trends in Embedded-Microprocessor

Design”, IEEE Computer Aug. 1998 pp 44-49
[2] J.Turley, “Evaluating Embedded Processors”, Micro

Design Resources, Sebastopole, Calif., 1997.

[3] Dave Walsh, “Reducing System Cost with Software
Modems”, IEEE Micro August/July 1997.

[4] Jennifer Eyre, Jeff Bier, “DSP processors hit the
mainstream”, IEEE Computer, Aug. 1998 pp 51-59

[5] Hauser, J. R., Wawrzyneck J., “Garp: A MIPS
Processor with a Reconfigurable Coprocessor”
Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 1997.

[6] Felice Balarin, Luciano Lavagno, Praveen Murthy, and
Alberto Sangiovanni-Vincentellii “Scheduling for
Embedded Real-Time Systems” IEEE Design & Test
of Computers, Vol. 15, No. 1, January/March 1998.

[7] Mark K. Gardner, Jane W.S. Liu, “Performance of
Algorithms for Scheduling Real-Time Systems with
Overrun and Overload”, Proc. of 11th Euromicro Conf.
on Real-Time Systems, June 1999 York, England.

[8] Pai Chou, Gaetano Borriello, “Interval Scheduling:
Fine-Grained Code Scheduling for Embedded
Systems”, 32nd ACM/IEEE Design Automation
Conference, 1995.

[9] V. Tiwari, S. Malik, A. Wolfe, “Power analysis of
embedded software: a first step towards software
power minimization”, IEEE Trans. on VLSI Systems,
Dec. 1994.

[10] Jeffry T. Russell, Margarida F. Jacome, “Software
Power Estimation & Optimization for High
Performance 32bit Embedded Processors” Proceedings
of ICCD ’98, 5-7 October 1998 in Austin, Texas.

[11] SH-DSP Microprocessor Overview. Hitachi Semi-
conductors Inc, 1998 Doc. Number PMH1DTB001D1.

[12] ARM Signal Processing Architecture Reference Manu-
al. ARM Ltd, 1997. Doc. Number: ARM IP0025B-07.

[13] TriCore Architecture Overview. Siemens Microelectro-
nics, Inc., 1997. Order Number: M32T008.

[14] Motorola Corporation software modem Home Page,
http://www.mot.com/softmodem

[15] Ubicom (formerly Scenix) Corporation Home Page,
http://www.ubicom.com

[16] Triscend Corporation, A7 CSoC family:
http://www.triscend.com/products/indexA7.html

[17] Hitachi, HD44780U (LCD-II) Dot Matrix Liquid
Crystal Display Controller/Driver, ADE-207-272(Z)
’99.9, Rev. 0.0.

[18] OKI Semiconductor, Dot Matrix LCD Controller with
16-dot Common Driver and 40-dot Segment Driver
MSM6222B-xx. Version November ’97.

[19] OKI Semiconductor, 80-dot Common/Segment Driver
MSM5260. Version November ’97.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

