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ABSTRACT

In this paper, we address the problem of minimizing buffer orage
requirement in buffer binding for SDF (Synchronous Dataflow) graphs
Hrg, we propose a new two-port FHFO buffer sructure thet can be
efidently shared by two producer/consumer pars Then we propoea
buffer binding dgorithm besad on this two-port buffer sructure for
minimizing the buffer dze requiremat. Expaimetd reslts
demonsrate  9.8%~37.8% improvemat in buffer requirement
compered to the convertiond goproaches
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1. INTRODUCTION

Synchronous dataflow (SDF) graphs have been widdy acogpted as a
powerfu computation modd for DSP gpplications An SDF graph
consstsof asgt of nodes (Ao cdled actors) representing tasksand aset
of acs (do cdled channds) represanting communications between
tasks A communication is modded as a ssquence of tokens pessng
through an ac. The tempord sequences of vaues pessed dong the
communication channdscan beviewed assreams

In DSP systems; buffer memory sze is a ariticd factor that must be
considered during the desgn process because of limited onchip
memary condrants May ressarches have proposed  efident
scheduling dgoarithms for buffer Sze redudtion. E- A. Lee and D. A.
Messerschmitt propose’ block scheduling for buffer Sze reduction [4].
But the scheduling dgorithm does not condder pipdining, therey
producesascheduled grgph having poor throughput.

A linear programming formulaion (cdled the Optima Schedule Buffer
Allocation (OSBA) fomulation) to dbtain rate-optimal buffer-optimal
shedule for homogeneous grgphs is proposed in [7]. The OSBA
dgoithm conveats an oigind SDF grgoh to an equivdet
homogeneous SDF graph beforeit schedulesthe grgph. Thelimitationis
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thet it takes long time and the buffer Sze resuit can be worse for the
oigind SDF grgoh, even if it is opimd for the homogeneous
ggoh.MBRO dgarithm proposed by R. Govindargan and G. R. Gao
dso gives rale-optimd schedule while reduding buffer Sze requirement
[8]. They fomulate the problem as a unified lineer programming
problemto shortentheexecutiontime.

Many ressarchars propose buffer shaing dgorithms for buffer dze
reduion. However, they dlow buffer shaing only for
communications that are guaranteed to not overlgp with each ather in
lifetime.

In this peper, we propose anew two-port HFO buffer sructure thet can
improve the buffer utilization by dlowing two Smultaneous accessssto
the same huffe. Basad on the buffer structure, we propose a buffer
hinding dgorithm tha minimizes the buffer sze requirement for a
sheduled SDF grgph . The rest of this paper is organized as folows
The fdlowing section mativates our work with the hdp of an example
In Sedtion 3, we discuss the proposed two-port HIFO buffer sructure
Saction 4 destribesthe method of cdauldting the buffer Sze requirement,
and Section 5 deds with the proposed buffer binding dgorithm. In
Saction 6, we report expaimentd reults Conduding remarks are
presantedin Sadtion 7.

2. MOTIVATIONAL EXAMPLE

Condder the DF graph shownin Hg. 1 Let theexecution time of actor
abe 3 time units while those of other actors be unity. Throughout this
paper, we do nat dlow two ingances of an actor to fire concurrently.
Thisis because the actars typicaly maintain some intemd date, which
may affect the ubsequent firing.

Fig. 1. Mcativationa example

After rete-optimel schedule presented in[8], which minimizesthe buffer
Size requirement, the number of tokens on eech edge a evary time gep
isshownin Hg. 2 (without loss of generdity, weassumethat each token



hesthesameamount of data).
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Fig. 2. Thenumber of dataon each edgeat every timegep.

The dze of abuffer magpped to an edge mugt be the maximum number
of tokenson the edge a every time sep. Denating the required Sze of a
buffer mapped to edgeg,, asb(uv),

b(ab)=2; b(b.2)=3; b{db)=2: b(db)=3; bcd)=5; b(d,)=6.

Theareforethetatd buffer 9zeis 2+3+2+3+5+6=21. However, if weuse
a two-part buffer that can be shared by two dreams of data on two
dfferent edges, thetota buffer 5ze can bereduced further.
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Fig. 3. Theusedf atwo-port buffer.

The dze of each two-port buffer mugt be the maximum number of
tokens on bath of the two edges & every time sep. If each neighboring
pars of edgesin FHg. 1 are bound to each two-port buffer as shown in
Hg. 3, thetatd buffer szeis B1+B2+B3=12. o, if we do nat condder
the overheed of the two-part buffer, the buffer Sze requirement is
reduced by 43%.

3. TWO-PORT FHFO BUFFER

3.1 Implementation of the Two-Port FIFO Buffer

The two-part FIFO buffer is redized by extending the one-port HFO
buffer of shift-regiser style Thesructureof the proposad two-port FIFO
bufferisshowninFHg. 4.

write point  read point

write point  read point

Fig. 4. Thedructureof theproposad two-port FIFO buffer.

In the case of port 1 (It port), write point is fixed and reed paint is
floating. And in the case of port 2 (right port), write point isfloating and

reed point isfixed. Datashift in each port can ooour independently. Data
shift in port 1 oocurs on write access to part 1, and data hift in port 2
oocurson reed accessto port 2. Toimplement thisindgpendent datashift,
we divide the regiger into 16 pats and contral the shift of each part

sparady (Fig. 5).
N N LN

Shift control

Shift control Shift contral

Fig. 5. Partial shift contrd of thetwo-port FIFO buffer.

If shift contrdl sgndl to a pat islogic 1, the pat is shifted when there
exigswriteacoessto port 1. If the shift contrd Sgnd islogic O, thepattis
shifted when there exists reed aocess to port 2. Shift contrdl signd
generator watches the tall regider of port 1, and essgnslogic 1 to shift
control Sgndsto the parts thet gore port 1 data, and assgnslogic 0 to
shift contrdl dgndls to the parts that dore port 2 data We add one
dummy part to the buffer to avaid the case where port 1 dataand port 2
daacoedidinthesamepart.

3.2 Area Overhead of the Two-Port FIFO Buffer
We implemented both one-port HIFO buffer and two-port HFO buffer
in VHDL and gyntheszed to obtan gaelevd ndligs using the

Synopsys Design Compler.

Table 1. Area Overhead of the Two-Port FIFO Buffer

Area
Buffer 9z | Oneport | Twoport | Overhead
2x32 857012 10344.65 20.7%
64x32 1701352 | 21070.70 238%
128x 32 3300852 | 421409 24.3%
256x32 6798067 | 8433380 24.1%

There is about 2006~24% overheed in the proposed two-port HFO
buffer compared to the convertiond one-port FIFO buffer which hasthe
same capedity. The averhead (average 22%) istaken into accourt for dl
dsussonsinthefdlowing ssdtions

4. BUFFER SZE CALCULATION

In this saction, we explain how to cdculate the buffer size requirement
for ascheduled SDF graph. In our gpproach, an edge inthe SDF grgph
can be bound to an one-port FIFO buffer or atwo-part AFO buffer, 0
wemud cdaulaethe buffer sze of both types After the cdaulation, we
paform buffer binding (Section 5) to decide how to bind buffers (one-
port or twio-part) to edgesin the SDF grgph.

4.1 Sze Calculation for theOne-Port FIFO Buffer
Suppose that the schedule for the SDF graph of Fg. 6 hes dreedy been
finished, and actors A and B are concurrently fired a time sep t



according to the schedule? And supposethat dl the edges are bound to
one-port HFO buffers. Acoording to the previous work [8], the number
of detain buffer a does not chenge a time sep t, because the same
number (10) of tokens are aregted and consumed & the same time.
However, this calculation is basad on the premise thet the consumption
oocursawaysealier then the production (Fg. 7.(9) ).
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Fig. 6. An example of SDF graph.
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Fig. 7. Two extreme cases (8) consumption occurs earlier than
productionand (b) production occurs earlier than consumption
(worst cas9).

If wedori t know whether the production isearlier than the consumption
or nat, we must cculate the buffer 5ze asin theworst case (Fg. 7.(b))
to avoid buffer oveflow. In this regard, we meke the falowing
asumption. Input tokens ramain on the incoming edge until the
adtivation (firing) of the consumer is completed and output tokens are
producad (dl a once) at the dart of the firing of the producer. This
asumption gives worgt cdaulaion of the Sze of eech oneport HFO
buffer but guarantess correct aperation.

4.2 SzeCalculation for theTwo-Port FIFO Buffer
Let's condder a two-port HFO buffer shared by the input and output
Sreamsof tokensof anactor.
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Fig.8. Mage actorson thetwo-port FIFO buffer.

1 We assume that the actors are implemented in hardware or
software with separate |Ps or modules. If two or more actors are
implemented with one IP, then they can be merged into one 'super-
actor'.

There are two adtors that write to the buffer and two adtors thet reed
from the buffer. Hg. 8 shows an example where actor U and actor V
writeto abuffer, and actor V and actor W reed from the buffer. When U
writesto the buffer, we cdlcuaethe buffer Szeasinthewors case (ub-
stion 4.), that is we add the number of tokens produced by actor U
when the firing of adtor U darts When W finishes we subtract the
number of tokensconsumed by actor W from the buffer 5ze

For the contribution of actor V to the buffer Size, if we dori t know the
buffer access patten of actor V, wemugt cdculaeit asintheworst case
Thet is a the sart of firing of actor V, we add to the buffer ze the
number of tokens produced, and a the completion of actor V, we
ubitract the number of tokens consumed.

However, if we know the buffer acoess pattern of actor V, we can reduce
thetwo-port buffer Sze, ill maintaining correct operation.

In the best casg, if adtor V' is known to produce dl output tokens only
ater it consumes dl input tokens we can add the number of tokens
produced to the buffer gze dter we subtract the number of tokens

oconsumed.
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Fig. 9. Threebuffer access patterns (a) thebest case (b) acaein
between, and (c) thewor ¢ case

Hg. 9 howsthree different cages and the corresponding traces of buffer
usage av(t). The pesk vduedf dv(t) isthe required buffer Sze Asshown
inFg. 9, duetothefiring of actor V, weadd 1, 2, and 4 to the buffer sze
forthecasssof (a), (), and (C), respectively.

5. BUFFER BINDING

Fg. 10 shows that there exig severd buffer binding schemes for one
DF grgoh. Redtangles with * d  represent dedlicated (one-port) HFO
buffersand thosewith* $ represent shared (two-part) FIFO buffers We
resrict sharing such that only neighboring two edges can be bound to
one two-port FHIFO buffer to dleviate the routing problem a the layout
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Fig. 10. Several buffer binding methods.



For the explanation of the proposed buffer binding dgorithm, we firgt
explan buffer binding dgoarithm for an SDF grgph tha has only one
peth, and then extend the dgoarithm to the case of multiple peths which
isthegenerd case

5.1 Buffer Binding for One-Path SDFGraph

Fg. 11 showsan example of SDF graph with only one path. The buffer
hinding problem can be transformed to an actor sdection prablem. For
example, dedting actor Cin Hg. 11 impliestha theincoming edgeand
the outgoing edge of actor C are bound to atwo-port HFO buffer. If we
donat Hect actor C, then it meansthat theincoming edgeisboundtoan
one-port FIFO buffer, and the outgoing edge is bound to another HFO
buffer.
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Fig. 11. An exampleof one-path SDF graph.
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Fig. 12. When V(n) isnat sdected.

To sdlve the buffer binding problem, we take the divide and conquer
goproech. FHg. 12 shows an one-path SDF graph with 2n ectors where
actor V(n) isnot sdected. Inthis case, the buffer binding problem canbe
divided into thet of left sub-graph (V(1)~V(n+1)) and thet of right sub-
ggoh (V(mtD)~V(2n)). Note that, once V(n) is dedded not to be
Hected, thebuffer binding of theleft sub-grgph and thet of theright b
grgph are mutudlly independent. Therefore, the problem can be divided
intotwo smdler prodems
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Fig. 13 When V(n) issdected

Fg. 13 shows the case where V(n) is sdected. In this casg, V(n+1) ad
V(n+1) cannat be sHected. Therefore, the binding of the left sub-graph
V(D)~V(n-2) and thet of theright sub-graph V (n+2)~V(2n) aremutudly
independent. Exognt the exdusion of thetwo actorsV(n+1) and V(nH+2),
theprodlemdivison processisthesameasthet inthecase of FHg. 12,

When V(N/2)
is not selected.

When V(N/2)
is selected.
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Fig. 14. Buffer binding algorithm for one-path SDF graph.

Fg. 14 depicts the proposed recursive buffer binding dgorithm for a
one-path SDF grgph. The buffer hinding dgorithm finds an optimum
lution to the problem with N adtors by trying both cases the one
where V(N/2) is sdected and the other where V(N/2) is not seected.
Each caxeis divided into two sub-problems: buffer binding of the left

abgaphandthet of theright sb-graph

Theorem: The computationd complexity of the proposed buffer
binding dgorithmis O(\?).

Proof: Let the computationd complexity of the dgorithm for N actors
beBB(N). Then,

BB(N) =O(4" BB(N/2)) = O(4*" BB(N/2?))
=....=0(4°" " BB(1)) =0(4™)=O(N?) m

5.2 Buffer Binding for aM ulti-Path SDF Graph

Fg. 15 showsan example of SDF graphwith multiple peths Inthiscase,
wefirg dividethe SDF graphinto ssverd onepath sub-grgphsasshown
inHg. 15. Actor a(b) has severd output (input) ports Wecdl the actor
that hesseverd input or output portsmullti-port actor.

Fig. 15. An example of multi-path SDF graph.

Thetotd buffer 9ze requirement is much dfected by how to bind the
edges inddat toffrom the multi-port actors to one-port or two-port
RFObuffers



Fig. 16. Several chaicesthat bind the buffersto the edges of multi-
portators

If webind the edges as shown in the upper case of Fg. 16(theincoming
edge and one outgoing edge of actor a are bound to a two-part HFO
buffer and each of the edges of actor b is bound to a sgparate one-port
HFO buffe), the left most actor of path 2 cannat be* sHedted (SUo-
stion4.2). Smilaly inthelower case of Hg. 16, theright mog actor of
peth 2 and theleft most actor of peth 3 cannctbe* sdected .
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Fig. 17. Four types of the restriction on the naghboring one-path
aub-graphs

Wedassfy such efects on an one-path sb-grgphinto 4 typesasshown
in FHg. 17. Now the proposed generd buffer hinding dgorithm is as
fdlows First, we divide the SDF graph into several one-path sub-
graphs. Secondly, we run the buffer binding algorithm for an one-
path SDF graph (Subsection 5.1) on al one-path sub-graphs , for
all of the 4 types. Thirdly, for each combination of buffer binding
for the multi-port actors, we select suitable types of one-path sub-
graphs and add up al optimal costs to obtain the total buffer size
requirement. Finally, we select the combination that gives the best
solution.

Because the dgarithm exhaudively searches dl combindions, the
complexity is exponentid in the number of muiti-port actors However,
snce mog of the computations in the man loop body are smple
additions thedgorithm runsrddively fag. Besdes inactud cases there
aeafew multi-port adtorsin SDF grgphs (Section 6).

6. EXPERIMENTAL RESULTS

Table 2 showstheinformation about five DSP gpplications used for our
expaiments Aswe mattioned in Subsaction 5.2, there are afew multi-
port actorsin the examples So the execution time of our buffer binding
dgarithm is vary shart (less than 1 second for dl examples on a Sun
workgaion).

Table 3. DSP Applications

Exarpes No.of | No.of No. of

Adoas | Edges | Muti-pot Adars
JPEG 3 2 0
OverlgpAddFFT 7 7 2
Andytic 8 7 1
CD2DAT 4 3 0
Satdlite Receiver 2 2 6

Theproosdureof our expaimentsisasfdlows Hrg, werantheMBRO
dgaithm [8], which is a raeopimd compiletime scheduling
dgoarithm theat minimizes buffer gorege requirement without shering, on
five examples (sscond column in teble 3). Then we compared the
improvemat in buffer sze by the proposed method  (4th ~ 6th
colum in table 3) with thet by the tradiiond buffer shaing (third
column in table 3) thet dlows buffer sharing only between buffers that
areguaranteed to nat overlgp with eech ather inlifeime.

For the gpproach thet we propose, we tried three different ceses the
‘Word Cae , the' Adud Cas2 , and the’ Best Ca2 (refer to Subsaction
4.2). For the' Actud Ces2, we andyzed source codes written in C to
obtain the buffer acoess pettern for dl actorsin SDF graphs, and gpplied
that information to our dgoarithm. We do nat have data for the Satdlite
Recaiver because the source code wias nat avalable. In redity, the

Table3 Buffer Size Requirement

o UsngOnl Treditiond Our Approech
anpies O'E(F,a”BBRO)HS En“ﬁngwm Word Caee Adid Cae Bet Cae
(Improvement) (Improvemant) | (Improvement)
JPEG 256 %% (%) | 26 % | 231 (98%) | 231 (98%)
OverlapAddFFT 644 580 (996%) | 644 0% | 506 (21.6%) | 506 (21.6%)
Analytic 1441 1429 (084%) | 1429 (%) | 1147 (204%) | 1147 (204%)
CD2DAT 49% 49% () | 449 (995%) | 46 (101%) | 446 (101%)
SatdliteRecsiver 1570 1544 (166%) | 1561  (0.7%) - 976  (37.8%)




‘Adud Cas? andthe' Bet Cas2 have the same resulitsin mogt cases
The resson is thet most actors produce output tokens only &fter they
consumedl input tokens

The overhead (22%) of the proposed two-port buffers has dreedy been
added to the detain the table In the case thet there is no improvement
(0%) asinthe* Worg Cas2 , thereis no buffer sharing and only one-port
buffersare usad. Therefore, thereisno overhead added to the data. Inthis
cae, the traditiond buffer sharing method looks better than the worst
case of our gpproach. Nate, however, that the traditiond buffer sharing
method can dso be goplied ater our buffer binding dgorithm. But
considering the routing overheed due to the sharing, we do nat expect
sgnificantimprovemert.

Given the information on the buffer access pattems of the adtarsin an
DF graph, the expaimentd reaults show that our method can reduce
the buffer Sze reguirement by 9.8%6~37.8% compared to the traditiondl
goproach.

7. CONCLUSONS

Inthispaper, we proposad anew two-port FIFO buffer sructurethat can
be usd for en dfident buffer shaing. We d<o proposed a buffer
binding dgarithm that explaits the use of this two-port buffer to
minimizethe buffer Szerequirement for ascheduled DF grgph.

Thewesk point of this peper isthat the complexity of the buffer binding
dgarithm for a muiti-path SDF grgph is exponantid in the number of
multi-port actors Thisremansasafutureresearch,
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