
Area-Efficient Buffer Binding Based on a Novel Two-Port FIFO
Structure

Kyoungseok Rha

Samsung Electronics Co., Ltd.
Yongin, Kyunggi-do 449-711, Korea

contron@poppy.snu.ac.kr

Kiyoung Choi
School of EECS

Seoul National University
Seoul 151-742, Korea

+82-2-880-6768
kchoi@azalea.snu.ac.kr

ABSTRACT
In this paper, we address the problem of minimizing buffer storage
requirement in buffer binding for SDF (Synchronous Dataflow) graphs.
First, we propose a new two-port FIFO buffer structure that can be
efficiently shared by two producer/consumer pairs. Then we propose a
buffer binding algorithm based on this two-port buffer structure for
minimizing the buffer size requirement. Experimental results
demonstrate 9.8%~37.8% improvement in buffer requirement
compared to the conventional approaches.

Keywords
Buffer binding, buffer sharing, SDF, scheduling

1. INTRODUCTION
Synchronous dataflow (SDF) graphs have been widely accepted as a
powerful computation model for DSP applications. An SDF graph
consists of a set of nodes (also called actors) representing tasks and a set
of arcs (also called channels) representing communications between
tasks. A communication is modeled as a sequence of tokens passing
through an arc. The temporal sequences of values passed along the
communication channels can be viewed as streams.

In DSP systems, buffer memory size is a critical factor that must be
considered during the design process because of limited on-chip
memory constraints. Many researchers have proposed efficient
scheduling algorithms for buffer size reduction. E. A. Lee and D. A.
Messerschmitt propose ‘block scheduling’ for buffer size reduction [4].
But the scheduling algorithm does not consider pipelining, thereby
produces a scheduled graph having poor throughput.

A linear programming formulation (called the Optimal Schedule Buffer
Allocation (OSBA) formulation) to obtain rate-optimal buffer-optimal
schedule for homogeneous graphs is proposed in [7]. The OSBA
algorithm converts an original SDF graph to an equivalent
homogeneous SDF graph before it schedules the graph. The limitation is

that it takes long time and the buffer size result can be worse for the
original SDF graph, even if it is optimal for the homogeneous
graph.MBRO algorithm proposed by R. Govindarajan and G. R. Gao
also gives rate-optimal schedule while reducing buffer size requirement
[8]. They formulate the problem as a unified linear programming
problem to shorten the execution time.

Many researchers propose buffer sharing algorithms for buffer size
reduction. However, they allow buffer sharing only for
communications that are guaranteed to not overlap with each other in
life-time.

In this paper, we propose a new two-port FIFO buffer structure that can
improve the buffer utilization by allowing two simultaneous accesses to
the same buffer. Based on the buffer structure, we propose a buffer
binding algorithm that minimizes the buffer size requirement for a
scheduled SDF graph . The rest of this paper is organized as follows.
The following section motivates our work with the help of an example.
In Section 3, we discuss the proposed two-port FIFO buffer structure.
Section 4 describes the method of calculating the buffer size requirement,
and Section 5 deals with the proposed buffer binding algorithm. In
Section 6, we report experimental results. Concluding remarks are
presented in Section 7.

2. MOTIVATIONAL EXAMPLE

Consider the SDF graph shown in Fig. 1. Let the execution time of actor
a be 3 time units while those of other actors be unity. Throughout this
paper, we do not allow two instances of an actor to fire concurrently.
This is because the actors typically maintain some internal state, which
may affect the subsequent firing.

Fig. 1. Motivational example.

After rate-optimal schedule presented in [8], which minimizes the buffer
size requirement, the number of tokens on each edge at every time step
is shown in Fig. 2 (without loss of generality, we assume that each token

has the same amount of data).

Fig. 2. The number of data on each edge at every time step.

The size of a buffer mapped to an edge must be the maximum number
of tokens on the edge at every time step. Denoting the required size of a
buffer mapped to edge euv as b(u,v),

b(a,b)=2; b(b,a)=3; b(d,b)=2; b(d,b)=3; b(c,d)=5; b(d,c)=6.

Therefore the total buffer size is 2+3+2+3+5+6=21. However, if we use
a two-port buffer that can be shared by two streams of data on two
different edges, the total buffer size can be reduced further.

Fig. 3. The use of a two-port buffer.

The size of each two-port buffer must be the maximum number of
tokens on both of the two edges at every time step. If each neighboring
pairs of edges in Fig. 1 are bound to each two-port buffer as shown in
Fig. 3, the total buffer size is B1+B2+B3=12. So, if we do not consider
the overhead of the two-port buffer, the buffer size requirement is
reduced by 43%.

3. TWO-PORT FIFO BUFFER

3.1 Implementation of the Two-Port FIFO Buffer
The two-port FIFO buffer is realized by extending the one-port FIFO
buffer of shift-register style. The structure of the proposed two-port FIFO
buffer is shown in Fig. 4.

Fig. 4. The structure of the proposed two-port FIFO buffer.

In the case of port 1 (left port), write point is fixed and read point is
floating. And in the case of port 2 (right port), write point is floating and

read point is fixed. Data shift in each port can occur independently. Data
shift in port 1 occurs on write access to port 1, and data shift in port 2
occurs on read access to port 2. To implement this independent data shift,
we divide the register into 16 parts and control the shift of each part
separately (Fig. 5).

Fig. 5. Partial shift control of the two-port FIFO buffer.

If shift control signal to a part is logic 1, the part is shifted when there
exists write access to port 1. If the shift control signal is logic 0, the part is
shifted when there exists read access to port 2. Shift control signal
generator watches the tail register of port 1, and assigns logic 1 to shift
control signals to the parts that store port 1 data, and assigns logic 0 to
shift control signals to the parts that store port 2 data. We add one
dummy part to the buffer to avoid the case where port 1 data and port 2
data coexistin the same part.

3.2 Area Overhead of the Two-Port FIFO Buffer
We implemented both one-port FIFO buffer and two-port FIFO buffer
in VHDL and synthesized to obtain gate-level netlists using the
Synopsys Design Compiler.

Table 1. Area Overhead of the Two-Port FIFO Buffer

Area
Buffer size One-port Two-port Overhead

32 x 32 8570.12 10344.65 20.7%

64 x 32 17013.52 21070.70 23.8%

128 x 32 33908.52 42140.96 24.3%
256 x 32 67980.67 84333.80 24.1%

There is about 20%~24% overhead in the proposed two-port FIFO
buffer compared to the conventional one-port FIFO buffer which has the
same capacity. The overhead (average 22%) is taken into account for all
discussions in the following sections.

4. BUFFER SIZE CALCULATION
In this section, we explain how to calculate the buffer size requirement
for a scheduled SDF graph. In our approach, an edge in the SDF graph
can be bound to an one-port FIFO buffer or a two-port FIFO buffer, so
we must calculate the buffer size of both types. After the calculation, we
perform buffer binding (Section 5) to decide how to bind buffers (one-
port or two-port) to edges in the SDF graph.

4.1 Size Calculation for the One-Port FIFO Buffer
Suppose that the schedule for the SDF graph of Fig. 6 has already been
finished, and actors A and B are concurrently fired at time step t

ebd

ecd edc

eab edb eba

according to the schedule.1 And suppose that all the edges are bound to
one-port FIFO buffers. According to the previous work [8], the number
of data in buffer a does not change at time step t, because the same
number (10) of tokens are created and consumed at the same time.
However, this calculation is based on the premise that the consumption
occurs always earlier than the production (Fig. 7.(a)).

Fig. 6. An example of SDF graph.

Fig. 7. Two extreme cases: (a) consumption occurs earlier than
productionand (b) production occurs earlier than consumption
(worst case).

If we don’t know whether the production is earlier than the consumption
or not, we must calculate the buffer size as in the worst case (Fig. 7.(b))
to avoid buffer overflow. In this regard, we make the following
assumption. Input tokens remain on the incoming edge until the
activation (firing) of the consumer is completed and output tokens are
produced (all at once) at the start of the firing of the producer. This
assumption gives worst calculation of the size of each one-port FIFO
buffer but guarantees correct operation.

4.2 Size Calculation for the Two-Port FIFO Buffer
Let's consider a two-port FIFO buffer shared by the input and output
streams of tokens of an actor.

Fig. 8. Master actors on the two-port FIFO buffer.

1 We assume that the actors are implemented in hardware or
software with separate IPs or modules. If two or more actors are
implemented with one IP, then they can be merged into one 'super-
actor'.

There are two actors that write to the buffer and two actors that read
from the buffer. Fig. 8 shows an example where actor U and actor V
write to a buffer, and actor V and actor W read from the buffer. When U
writes to the buffer, we calculate the buffer size as in the worst case (Sub-
section 4.1), that is, we add the number of tokens produced by actor U
when the firing of actor U starts. When W finishes, we subtract the
number of tokens consumed by actor W from the buffer size.

For the contribution of actor V to the buffer size, if we don’t know the
buffer access pattern of actor V, we must calculate it as in the worst case.
That is, at the start of firing of actor V, we add to the buffer size the
number of tokens produced, and at the completion of actor V, we
subtract the number of tokens consumed.

However, if we know the buffer access pattern of actor V, we can reduce
the two-port buffer size, still maintaining correct operation.
In the best case, if actor V is known to produce all output tokens only
after it consumes all input tokens, we can add the number of tokens
produced to the buffer size after we subtract the number of tokens
consumed.

Fig. 9. Three buffer access patterns: (a) the best case, (b) a case in
between, and (c) the worst case.

Fig. 9 shows three different cases and the corresponding traces of buffer
usage, dv(t).The peak value of dv(t) is the required buffer size.As shown
in Fig. 9., due to the firing of actor V, we add 1, 2, and 4 to the buffer size
for the cases of (a), (b), and (c), respectively.

5. BUFFER BINDING
Fig. 10 shows that there exist several buffer binding schemes for one
SDF graph. Rectangles with ‘d’ represent dedicated (one-port) FIFO
buffers and those with ‘s’ represent shared (two-port) FIFO buffers. We
restrict sharing such that only neighboring two edges can be bound to
one two-port FIFO buffer to alleviate the routing problem at the layout
level.

Fig. 10. Several buffer binding methods.

)N(O)4(O(1))B4(O......

))(N/2BO(4(N/2))BO(4BB(N)
2NlogNlog

22

22 ==×==

×=×=

B

BB

For the explanation of the proposed buffer binding algorithm, we first
explain buffer binding algorithm for an SDF graph that has only one
path, and then extend the algorithm to the case of multiple paths, which
is the general case.

5.1 Buffer Binding for One-Path SDFGraph
Fig. 11 shows an example of SDF graph with only one path. The buffer
binding problem can be transformed to an actor selection problem. For
example, selecting actor C in Fig. 11 implies that the incoming edge and
the outgoing edge of actor C are bound to a two-port FIFO buffer. If we
do not select actor C, then it means that the incoming edge is bound to an
one-port FIFO buffer, and the outgoing edge is bound to another FIFO
buffer.

Fig. 11. An example of one-path SDF graph.

Fig. 12. When V(n) is not selected.

To solve the buffer binding problem, we take the divide and conquer
approach. Fig. 12 shows an one-path SDF graph with 2n actors where
actor V(n) is not selected. In this case, the buffer binding problem can be
divided into that of left sub-graph (V(1)~V(n-1)) and that of right sub-
graph (V(n+1)~V(2n)). Note that, once V(n) is decided not to be
selected, the buffer binding of the left sub-graph and that of the right sub-
graph are mutually independent. Therefore, the problem can be divided
into two smaller problems.

Fig. 13. When V(n) is selected

Fig. 13 shows the case where V(n) is selected. In this case, V(n-1) and
V(n+1) cannot be selected. Therefore, the binding of the left sub-graph
V(1)~V(n-2) and that of the right sub-graph V(n+2)~V(2n) are mutually
independent. Except the exclusion of the two actors V(n-1) and V(n+1),
the problem division process is the same as that in the case of Fig. 12.

Fig. 14. Buffer binding algorithm for one-path SDF graph.

Fig. 14 depicts the proposed recursive buffer binding algorithm for a
one-path SDF graph. The buffer binding algorithm finds an optimum
solution to the problem with N actors by trying both cases: the one
where V(N/2) is selected and the other where V(N/2) is not selected.
Each case is divided into two sub-problems: buffer binding of the left
sub-graph and that of the right sub-graph.

Theorem: The computational complexity of the proposed buffer
binding algorithm is O(N2).
Proof: Let the computational complexity of the algorithm for N actors
be BB(N). Then,

5.2 Buffer Binding for a Multi-Path SDF Graph
Fig. 15 shows an example of SDF graph with multiple paths. In this case,
we first divide the SDF graph into several one-path sub-graphs as shown
in Fig. 15. Actor a (b) has several output (input) ports. We call the actor
that has several input or output ports multi-port actor.

Fig. 15. An example of multi-path SDF graph.

The total buffer size requirement is much affected by how to bind the
edges incident to/from the multi-port actors to one-port or two-port
FIFO buffers.

Fig. 16. Several choices that bind the buffers to the edges of multi-
port actors

If we bind the edges as shown in the upper case of Fig. 16(the incoming
edge and one outgoing edge of actor a are bound to a two-port FIFO
buffer and each of the edges of actor b is bound to a separate one-port
FIFO buffer), the left most actor of path 2 cannot be ‘selected’ (Sub-
section 4.1). Similarly in the lower case of Fig. 16, the right most actor of
path 2 and the left most actor of path 3 cannot be ‘selected’.

Fig. 17. Four types of the restriction on the neighboring one-path
sub-graphs

We classify such effects on an one-path sub-graph into 4 types as shown
in Fig. 17. Now the proposed general buffer binding algorithm is as
follows. First, we divide the SDF graph into several one-path sub-
graphs. Secondly, we run the buffer binding algorithm for an one-
path SDF graph (Subsection 5.1) on all one-path sub-graphs , for
all of the 4 types. Thirdly, for each combination of buffer binding
for the multi-port actors, we select suitable types of one-path sub-
graphs and add up all optimal costs to obtain the total buffer size
requirement. Finally, we select the combination that gives the best
solution.

Because the algorithm exhaustively searches all combinations, the
complexity is exponential in the number of multi-port actors. However,
since most of the computations in the main loop body are simple
additions, the algorithm runs relatively fast. Besides, in actual cases, there
are a few multi-port actors in SDF graphs (Section 6).

6. EXPERIMENTAL RESULTS
Table 2 shows the information about five DSP applications used for our
experiments. As we mentioned in Subsection 5.2, there are a few multi-
port actors in the examples. So the execution time of our buffer binding
algorithm is very short (less than 1 second for all examples on a Sun
workstation).

Table 3. DSP Applications

Examples No. of
Actors

No. of
Edges

No. of
Multi-port Actors

JPEG 3 2 0
OverlapAddFFT 7 7 2
Analytic 8 7 1
CD2DAT 4 3 0
Satellite Receiver 22 26 6

The procedure of our experiments is as follows. First, we ran the MBRO
algorithm [8], which is a rate-optimal compile-time scheduling
algorithm that minimizes buffer storage requirement without sharing, on
five examples (second column in table 3). Then we compared the
improvement in buffer size by the proposed method (4-th ~ 6-th
column in table 3) with that by the traditional buffer sharing (third
column in table 3) that allows buffer sharing only between buffers that
are guaranteed to not overlap with each other in life-time.

For the approach that we propose, we tried three different cases: the
‘Worst Case’, the ‘Actual Case’, and the ‘Best Case’ (refer to Subsection
4.2). For the ‘Actual Case’, we analyzed source codes written in C to
obtain the buffer access pattern for all actors in SDF graphs, and applied
that information to our algorithm. We do not have data for the Satellite
Receiver because the source code was not available. In reality, the

Table 3 Buffer Size Requirement

Our Approach
Examples

Using Only
One-Port Buffers

(MBRO)

Traditional
Buffer Sharing
(Improvement) Worst Case

(Improvement)
Actual Case

(Improvement)
Best Case

(Improvement)
JPEG 256 256 (0%) 256 (0%) 231 (9.8%) 231 (9.8%)

OverlapAddFFT 644 580 (9.96%) 644 (0%) 505 (21.6%) 505 (21.6%)
Analytic 1441 1429 (0.84%) 1429 (0%) 1147 (20.4%) 1147 (20.4%)

CD2DAT 496 496 (0%) 449 (9.95%) 446 (10.1%) 446 (10.1%)
Satellite Receiver 1570 1544 (1.66%) 1561 (0.7%) - 976 (37.8%)

‘Actual Case’ and the ‘Best Case’ have the same results in most cases.
The reason is that most actors produce output tokens only after they
consume all input tokens.

The overhead (22%) of the proposed two-port buffers has already been
added to the data in the table. In the case that there is no improvement
(0%) as in the ‘Worst Case’, there is no buffer sharing and only one-port
buffers are used. Therefore, there is no overhead added to the data. In this
case, the traditional buffer sharing method looks better than the worst
case of our approach. Note, however, that the traditional buffer sharing
method can also be applied after our buffer binding algorithm. But
considering the routing overhead due to the sharing, we do not expect
significant improvement.

Given the information on the buffer access patterns of the actors in an
SDF graph, the experimental results show that our method can reduce
the buffer size requirement by 9.8%~37.8% compared to the traditional
approach.

7. CONCLUSIONS
In this paper, we proposed a new two-port FIFO buffer structure that can
be used for an efficient buffer sharing. We also proposed a buffer
binding algorithm that exploits the use of this two-port buffer to
minimize the buffer size requirement for a scheduled SDF graph.

The weak point of this paper is that the complexity of the buffer binding
algorithm for a multi-path SDF graph is exponential in the number of
multi-port actors. This remains as a future research.

REFERENCES
[1] V. Madisetti, VLSI Digital Signal Processors: An Introduction to Rapid

Prototyping and Design Synthesis, Bufferworth-Heinemann, Boston, MA,
1995.

[2] R. Karp and R. Miller, "Properties of a model for parallel computations:
determinancy, termination, queueing," SIAM Journal of Applied Math., Vol. 14,
No. 6, Nov. 1996.

[3] E. Lee and D. Messerschmitt, "Synchronous data flow," Proceedings of IEEE,
Vol. 75, No. 9, pp. 1235~1245, Sept. 1987.

[4] E. Lee and D. Messerschmitt, "Static scheduling of synchronous data flow
programs for digital signal processing," IEEE Trans. on Computers, Vol. C-36,
No. 1, pp. 24~35, Jan. 1987.

[5] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, "Ptolemy: a framework for
simulating and prototyping heterogeneous systems," Int. Journal of Computer
Simulation, Vol. 4, No. 2, pp. 155~182, April 1994.

[6] S. Bhattacharyya, P. Murthy, and E. Lee, "APGAN and RPMC :
complementary heuristics for translating DSP block diagrams into efficient
software implementations," Journal of Design Automation for Embedded
Systems, Vol. 2, No. 1, pp. 33~60, Jan. 1997.

[7] Q. Ning and G. R. Gao, "A novel framework of register allocation for software
pipelining," Conf. Rec. of the Twentieth Ann. ACM SIGPLAN-SIGACT Symp.
On Principles of Programming Languages, pages 29-42, Charleston, South
Carolina, Jan. 10-13, 1993. ACM SIGACT and SIGPLAN.

[8] R. Govindarajan, G. R. Gao, and P. Desai, "Minimizing memory requirements
in rate-optimal schedules," Proc. of the 1993 Intl. Conf. on Application Specific
Array Processors, pages 77-88, Venice, Italy, October 1993.

[9] R. Govindarajan, G. R. Gao, "Multi-rate optimal software pipelining for
regular dataflow networks," ACAPS Technical Memo 61, School of Computer
Science, McGill University, Montreal, Que., 1993.

[10] V. Van Dongen, G. R. Gao, and Q. Ning, "A polynomial time method for
optimal software pipelining," Proc. of the Conference on Vector and Parallel
Processing, pages 613-624, Lyon, France, Sept. 1992. Also in LNCS-634.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

