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ABSTRACT 
In this paper, we address the problem of minimizing buffer storage 
requirement in buffer binding for SDF (Synchronous Dataflow) graphs. 
First, we propose a new two-port FIFO buffer structure that can be 
efficiently shared by two producer/consumer pairs. Then we propose a 
buffer binding algorithm based on this two-port buffer structure for 
minimizing the buffer size requirement. Experimental results 
demonstrate 9.8%~37.8% improvement in buffer requirement 
compared to the conventional approaches.  
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1. INTRODUCTION 
Synchronous dataflow (SDF) graphs have been widely accepted as a 
powerful computation model for DSP applications. An SDF graph 
consists of a set of nodes (also called actors) representing tasks and a set 
of arcs (also called channels) representing communications between 
tasks. A communication is modeled as a sequence of tokens passing 
through an arc. The temporal sequences of values passed along the 
communication channels can be viewed as streams. 
 
In DSP systems, buffer memory size is a critical factor that must be 
considered during the design process because of limited on-chip 
memory constraints. Many researchers have proposed efficient 
scheduling algorithms for buffer size reduction. E. A. Lee and D. A. 
Messerschmitt propose ‘block scheduling’ for buffer size reduction [4]. 
But the scheduling algorithm does not consider pipelining, thereby 
produces a scheduled graph having poor throughput. 
 
A linear programming formulation (called the Optimal Schedule Buffer 
Allocation (OSBA) formulation) to obtain rate-optimal buffer-optimal  
schedule for homogeneous graphs is proposed in [7]. The OSBA 
algorithm converts an original SDF graph to an equivalent 
homogeneous SDF graph before it schedules the graph. The limitation is 

that it takes long time and the buffer size result can be worse for the 
original SDF graph, even if it is optimal for the homogeneous 
graph.MBRO algorithm proposed by R. Govindarajan and G. R. Gao 
also gives rate-optimal schedule while reducing buffer size requirement 
[8]. They formulate the problem as a unified linear programming 
problem to shorten the execution time. 
 
Many researchers propose buffer sharing algorithms for buffer size 
reduction. However, they allow buffer sharing only for  
communications that are guaranteed to not overlap with each other in 
life-time.  
 
In this paper, we propose a new two-port FIFO buffer structure that can 
improve the buffer utilization by allowing two simultaneous accesses to 
the same buffer. Based on the buffer structure, we propose a buffer 
binding algorithm that minimizes the buffer size requirement for a 
scheduled SDF graph . The rest of this paper is organized as follows. 
The following section motivates our work with the help of an example. 
In Section 3, we discuss the proposed two-port FIFO buffer structure. 
Section 4 describes the method of calculating the buffer size requirement, 
and Section 5 deals with the proposed buffer binding algorithm. In 
Section 6, we report experimental results. Concluding remarks are 
presented in Section 7. 

 
2. MOTIVATIONAL EXAMPLE 
 
Consider the SDF graph shown in Fig. 1. Let the execution time of actor 
a be 3 time units while those of other actors be unity. Throughout this 
paper, we do not allow two instances of an actor to fire concurrently. 
This is because the actors typically maintain some internal state, which 
may affect the subsequent firing. 

 

 
Fig. 1. Motivational example. 

 
After rate-optimal schedule presented in [8], which minimizes the buffer 
size requirement, the number of tokens on each edge at every time step 
is shown in Fig. 2 (without loss of generality, we assume that each token 



has the same amount of data). 

 
Fig. 2. The number of data on each edge at every time step. 

 
The size of a buffer mapped to an edge must be the maximum number 
of tokens on the edge at every time step. Denoting the required size of a 
buffer mapped to edge euv as b(u,v), 

 
b(a,b)=2; b(b,a)=3; b(d,b)=2; b(d,b)=3; b(c,d)=5; b(d,c)=6. 
 

Therefore the total buffer size is 2+3+2+3+5+6=21. However, if we use 
a two-port buffer that can be shared by two streams of data on two 
different edges, the total buffer size can be reduced further. 
 

 
 

Fig. 3. The use of a two-port buffer. 
 
The size of each two-port buffer must be the maximum number of 
tokens on both of the two edges at every time step. If each neighboring 
pairs of edges in Fig. 1 are bound to each two-port buffer as shown in 
Fig. 3, the total buffer size is B1+B2+B3=12. So, if we do not consider 
the overhead of the two-port buffer, the buffer size requirement is 
reduced by 43%. 
 
3. TWO-PORT FIFO BUFFER 
 
3.1 Implementation of the Two-Port FIFO Buffer 
The two-port FIFO buffer is realized by extending the one-port FIFO 
buffer of shift-register style. The structure of the proposed two-port FIFO 
buffer is shown in Fig. 4. 
 

 
 

Fig. 4. The structure of the proposed two-port FIFO buffer. 
 
In the case of port 1 (left port), write point is fixed and read point is 
floating. And in the case of port 2 (right port), write point is floating and 

read point is fixed. Data shift in each port can occur independently. Data 
shift in port 1 occurs on write access to port 1, and data shift in port 2 
occurs on read access to port 2. To implement this independent data shift, 
we divide the register into 16 parts and control the shift of each part 
separately (Fig. 5). 

 

 
 

Fig. 5. Partial shift control of the two-port FIFO buffer. 
 
If shift control signal to a part is logic 1, the part is shifted when there 
exists write access to port 1. If the shift control signal is logic 0, the part is 
shifted when there exists read access to port 2. Shift control signal 
generator watches the tail register of port 1, and assigns logic 1 to shift 
control signals to the parts that store port 1 data, and assigns logic 0 to 
shift control signals to the parts that store port 2 data. We add one 
dummy part to the buffer to avoid the case where port 1 data and port 2 
data coexistin the same part. 

 
3.2 Area Overhead of the Two-Port FIFO Buffer 
We implemented both one-port FIFO buffer and two-port FIFO buffer 
in VHDL and synthesized to obtain gate-level netlists using the 
Synopsys Design Compiler. 
 

Table 1. Area Overhead of the Two-Port FIFO Buffer 

Area  
Buffer size One-port Two-port Overhead 

32 x 32 8570.12 10344.65 20.7% 

64 x 32 17013.52 21070.70 23.8% 

128 x 32 33908.52 42140.96 24.3% 
256 x 32 67980.67 84333.80 24.1% 

 
There is about 20%~24% overhead in the proposed two-port FIFO 
buffer compared to the conventional one-port FIFO buffer which has the 
same capacity. The overhead (average 22%) is taken into account for all 
discussions in the following sections. 
 
4. BUFFER SIZE CALCULATION 
In this section, we explain how to calculate the buffer size requirement 
for a scheduled SDF graph. In our approach, an edge in the SDF graph 
can be bound to an one-port FIFO buffer or a two-port FIFO buffer, so 
we must calculate the buffer size of both types. After the calculation, we 
perform buffer binding (Section 5) to decide how to bind buffers (one-
port or two-port) to edges in the SDF graph. 

 
4.1 Size Calculation for the One-Port FIFO Buffer 
Suppose that the schedule for the SDF graph of Fig. 6 has already been 
finished, and actors A and B are concurrently fired at time step t 

ebd 

ecd edc 

eab edb eba 



according to the schedule.1 And suppose that all the edges are bound to 
one-port FIFO buffers. According to the previous work [8], the number 
of data in buffer a does not change at time step t, because the same 
number (10) of tokens are created and consumed at the same time. 
However, this calculation is based on the premise that the consumption 
occurs always earlier than the production (Fig. 7.(a) ). 
 
 
 

 
 

Fig. 6. An example of SDF graph. 
 
 
 

 
 
Fig. 7.  Two extreme cases: (a)  consumption occurs earlier than 
productionand (b) production occurs earlier than consumption 
(worst case). 
 
If we don’t know whether the production is earlier than the consumption 
or not, we must calculate the buffer size as in the worst case (Fig. 7.(b)) 
to avoid buffer overflow. In this regard, we make the following 
assumption. Input tokens remain on the incoming edge until the 
activation (firing) of the consumer is completed and output tokens are 
produced (all at once) at the start of the firing of the producer. This 
assumption gives worst calculation of the size of each one-port FIFO 
buffer but guarantees correct operation. 

 
4.2 Size Calculation for the Two-Port FIFO Buffer 
Let's consider a two-port FIFO buffer shared by the input and output 
streams of tokens of an actor. 
 
 
 

 
 

Fig. 8.  Master actors on the two-port FIFO buffer. 
                                                                 
1 We assume that the actors are implemented in hardware or 
software with separate IPs or modules. If two or more actors are 
implemented with one IP, then they can be merged into one 'super-
actor'. 

There are two actors that write to the buffer and two actors that read 
from the buffer. Fig. 8 shows an example where actor U and actor V 
write to a buffer, and actor V and actor W read from the buffer. When U 
writes to the buffer, we calculate the buffer size as in the worst case (Sub-
section 4.1), that is, we add the number of tokens produced by actor U 
when the firing of actor U starts. When W finishes, we subtract the 
number of tokens consumed by actor W from the buffer size. 
 
For the contribution of actor V to the buffer size, if we don’t know the 
buffer access pattern of actor V, we must calculate it as in the worst case. 
That is, at the start of firing of actor V, we add to the buffer size the 
number of tokens produced, and at the completion of actor V, we 
subtract the number of tokens consumed. 

 
However, if we know the buffer access pattern of actor V, we can reduce 
the two-port buffer size, still maintaining correct operation.  
In the best case, if actor V is known to produce all output tokens only 
after it consumes all input tokens, we can add the number of tokens 
produced to the buffer size after we subtract the number of tokens 
consumed. 

 
 

Fig. 9.  Three buffer access patterns: (a) the best case, (b) a case in 
between, and (c) the worst case. 
 
Fig. 9 shows three different cases and the corresponding traces of buffer 
usage, dv(t).The peak value of dv(t) is the required buffer size.As shown 
in Fig. 9., due to the firing of actor V, we add 1, 2, and 4 to the buffer size 
for the cases of (a), (b), and (c), respectively. 
 
5. BUFFER BINDING 
Fig. 10 shows that there exist several buffer binding schemes for one 
SDF graph. Rectangles with ‘d’ represent dedicated (one-port) FIFO 
buffers and those with ‘s’ represent shared (two-port) FIFO buffers. We 
restrict sharing such that only neighboring two edges can be bound to 
one two-port FIFO buffer to alleviate the routing problem at the layout 
level.  

 

 
Fig. 10. Several buffer binding methods. 
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For the explanation of the proposed buffer binding algorithm, we first 
explain buffer binding algorithm for an SDF graph that has only one 
path, and then extend the algorithm to the case of multiple paths, which 
is the general case. 

 
5.1 Buffer Binding for One-Path SDFGraph 
Fig. 11 shows an example of SDF graph with only one path. The buffer 
binding problem can be transformed to an actor selection problem. For 
example, selecting actor C in Fig. 11 implies that the incoming edge and 
the outgoing edge of actor C are bound to a two-port FIFO buffer. If we 
do not select actor C, then it means that the incoming edge is bound to an 
one-port FIFO buffer, and the outgoing edge is bound to another FIFO 
buffer.  
 

 
Fig. 11. An example of one-path SDF graph. 

 
 

 

 
 

Fig. 12. When V(n) is not selected. 
 
 
To solve the buffer binding problem, we take the divide and conquer 
approach. Fig. 12 shows an one-path SDF graph with 2n actors where 
actor V(n) is not selected. In this case, the buffer binding problem can be 
divided into that of left sub-graph (V(1)~V(n-1)) and that of right sub-
graph (V(n+1)~V(2n)). Note that, once V(n) is decided not to be 
selected, the buffer binding of the left sub-graph and that of the right sub-
graph are mutually independent. Therefore, the problem can be divided 
into two smaller problems. 
 

 
 

Fig. 13. When V(n) is selected 
 
 
Fig. 13 shows the case where V(n) is selected. In this case, V(n-1) and 
V(n+1) cannot be selected. Therefore, the binding of the left sub-graph 
V(1)~V(n-2) and that of the right sub-graph V(n+2)~V(2n) are mutually 
independent. Except the exclusion of the two actors V(n-1) and V(n+1), 
the problem division process is the same as that in the case of Fig. 12. 
 

 
 

Fig. 14. Buffer binding algorithm for one-path SDF graph. 
 
 
Fig. 14 depicts the proposed recursive buffer binding algorithm for a 
one-path SDF graph. The buffer binding algorithm finds an optimum 
solution to the problem with N actors by trying both cases: the one 
where V(N/2) is selected and the other where V(N/2) is not selected. 
Each case is divided into two sub-problems: buffer binding of the left 
sub-graph and that of the right sub-graph.  

 
 

Theorem: The computational complexity of the proposed buffer 
binding algorithm is O(N2). 
Proof: Let the computational complexity of the algorithm for N actors 
be BB(N). Then,  
 

 
 

 
 
5.2 Buffer Binding for a Multi-Path SDF Graph 
Fig. 15 shows an example of SDF graph with multiple paths. In this case, 
we first divide the SDF graph into several one-path sub-graphs as shown 
in Fig. 15. Actor a (b) has several output (input) ports. We call the actor 
that has several input or output ports multi-port actor.  

 

 
 

Fig. 15. An example of multi-path SDF graph. 
 
 
The total buffer size requirement is much affected by how to bind the 
edges incident to/from the multi-port actors to one-port or two-port 
FIFO buffers.  



 
 
Fig. 16. Several choices that bind the buffers to the edges of multi-
port actors 
 
 
If we bind the edges as shown in the upper case of Fig. 16(the incoming 
edge and one outgoing edge of actor a are bound to a two-port FIFO 
buffer and each of the edges of actor b is bound to a separate one-port 
FIFO buffer), the left most actor of path 2 cannot be ‘selected’ (Sub-
section 4.1). Similarly in the lower case of Fig. 16, the right most actor of 
path 2 and the left most actor of path 3 cannot be ‘selected’.  
 
 

 
 

Fig. 17. Four types of the restriction on the neighboring one-path 
sub-graphs 
 
 
We classify such effects on an one-path sub-graph into 4 types as shown 
in Fig. 17. Now the proposed general buffer binding algorithm is as 
follows. First, we divide the SDF graph into several one-path sub-
graphs. Secondly, we run the buffer binding algorithm for an one-
path SDF graph (Subsection 5.1) on all one-path sub-graphs , for 
all of the 4 types. Thirdly, for each combination of buffer binding 
for the multi-port actors, we select suitable types of one-path sub-
graphs and add up all optimal costs to obtain the total buffer size 
requirement. Finally, we select the combination that gives the best 
solution. 
 

Because the algorithm exhaustively searches all combinations, the 
complexity is exponential in the number of multi-port actors. However, 
since most of the computations in the main loop body are simple 
additions, the algorithm runs relatively fast. Besides, in actual cases, there 
are a few multi-port actors in SDF graphs (Section 6). 
 

 
6. EXPERIMENTAL RESULTS 
Table 2 shows the information about five DSP applications used for our 
experiments. As we mentioned in Subsection 5.2, there are a few multi-
port actors in the examples. So the execution time of our buffer binding 
algorithm is very short (less than 1 second for all examples on a Sun 
workstation). 
 

Table 3. DSP Applications 

Examples No. of  
Actors 

No. of  
Edges 

No. of  
Multi-port Actors 

JPEG 3 2 0 
OverlapAddFFT 7 7 2 
Analytic 8 7 1 
CD2DAT 4 3 0 
Satellite Receiver 22 26 6 

 
 
The procedure of our experiments is as follows. First, we ran the MBRO 
algorithm [8], which is a rate-optimal compile-time scheduling 
algorithm that minimizes buffer storage requirement without sharing, on 
five examples (second column in table 3). Then we compared the 
improvement in buffer size by the proposed method  (4-th ~ 6-th 
column in table 3) with that by the traditional buffer sharing (third 
column in table 3) that allows buffer sharing only between buffers that 
are guaranteed to not overlap with each other in life-time.  
 
For the approach that we propose, we tried three different cases: the 
‘Worst Case’, the ‘Actual Case’, and the ‘Best Case’ (refer to Subsection 
4.2). For the ‘Actual Case’, we analyzed source codes written in C to 
obtain the buffer access pattern for all actors in SDF graphs, and applied 
that information to our algorithm. We do not have data for the Satellite 
Receiver because the source code was not available. In reality, the 

Table 3  Buffer Size Requirement 

Our Approach 
Examples 

Using Only 
One-Port Buffers 

(MBRO) 

Traditional 
Buffer Sharing 
(Improvement) Worst Case 

(Improvement) 
Actual Case 

(Improvement) 
Best Case 

(Improvement) 
JPEG 256 256      (0%) 256        (0%) 231     (9.8%) 231     (9.8%) 

OverlapAddFFT 644 580   (9.96%) 644        (0%) 505    (21.6%) 505    (21.6%) 
Analytic 1441 1429  (0.84%) 1429       (0%) 1147   (20.4%) 1147   (20.4%) 

CD2DAT 496 496      (0%) 449      (9.95%) 446    (10.1%) 446    (10.1%) 
Satellite Receiver 1570 1544  (1.66%) 1561      (0.7%) - 976    (37.8%) 

 



‘Actual Case’ and the ‘Best Case’ have the same results in most cases. 
The reason is that most actors produce output tokens only after they 
consume all input tokens.  
 
The overhead (22%) of the proposed two-port buffers has already been 
added to the data in the table. In the case that there is no improvement 
(0%) as in the ‘Worst Case’, there is no buffer sharing and only one-port 
buffers are used. Therefore, there is no overhead added to the data. In this 
case, the traditional buffer sharing method looks better than the worst 
case of our approach. Note, however, that the traditional buffer sharing 
method can also be applied after our buffer binding algorithm. But 
considering the routing overhead due to the sharing, we do not expect 
significant improvement.  
 
Given the information on the buffer access patterns of the actors in an 
SDF graph, the experimental results show that our method can reduce 
the buffer size requirement by 9.8%~37.8% compared to the traditional 
approach. 
 
7. CONCLUSIONS 
In this paper, we proposed a new two-port FIFO buffer structure that can 
be used for an efficient buffer sharing. We also proposed a buffer 
binding algorithm that exploits the use of this two-port buffer to 
minimize the buffer size requirement for a scheduled SDF graph. 
 
The weak point of this paper is that the complexity of the buffer binding 
algorithm for a multi-path SDF graph is exponential in the number of 
multi-port actors. This remains as a future research. 
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