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Abstract Such a disadvantageous approach leads to a large communica-
. . tion overhead after synthesis.

_A new approach for the translation of SD'_— specifica-  atter partitioning the SDL processes are synthesized sepa-
tions to a mixed hardware/software system is presented.rately. The current approach for hardware generation is to
Based on the computational model of communicating translate each EFSM to one VHDL process and to connect this
extended finite state machines (EFSM) the control flow process to a run-time support system (RTSS) which imple-
is separated from data flow of the SDL process. Hence ments the communication. The resulting hardware description
for the first time it is possible to generate a mixed hard- contains a complete finite state machine with data operations
ware/software implementation of an SDL process. This which is difficult to translate by high-level synthesis to the reg-
technique also reduces the complexity for high-level and ister transfer level. Mixing a large control flow dominated de-

- . scription with only a few data operations leads to inefficient
register-transfer synthesis tools for the hardware parts results of the high-level synthesis. On the other hand in data-

of the system. The advantage of this methodology isfioy, gominated applications the control-structure of SDL
shown by a design example of a wireless communicationjeads to a large amount of overhead.

chip. As a solution for the aforementioned problems this paper
) presents an integrated approach for the translation of SDL
1 Introduction specifications to mixed hardware/software systems. First the

explicitly formulated control-flow of the state machine is sep-
arated from the data operations of the transitions. The separate
A i ; control flow can be translated to a software or hardware de-
uted communication _systems. S.DL IS popular in - the scription. The hardware description can be given at register
communication industry because it provides language con-yanefer level because the scheduling of the operations is al-
structs needed for protocol development and systems €NAeady defined. In the next step every SDL transition is translat-
neering. The computapongl model of SDL is bgs_ed ON ed on its own. Using separate VHDL processes for the
asynchronous communication between extended finite statey,itions with complex data operations simplifies high-level

ma?hln%s g’dm‘éh all?ws th$hsp_e0|f|cat|_on of d|str|bu_tec:_concur- ynthesis. Resource sharing between the different transitions is
rent embedded systems. The increasing communication aspeck, oo ted by multi-process high-level synthesis.

of modern automotive systems makes SDL also feasible for Using this approach it is possible to perform a fine grain

the design of car control systems. hardware/software partitioning where the control-flow is per-

SDL allows the d(_asigner to sp_ecify electroni_c systems inde- formed by software and high-performance data-operations are
pendent from the implementation. Communication systems performed by hardware.

like routers, switches and the complete mobile telephone net-

work are typical hardware/software systems. Therefore SDL

becomes popular as a language for hardware/software co-de-2 Related Work

sign. To support the co-design process some tools have been Translating designs described in SDL [10] to implementa-

developed to generate automatically VHDL descriptions from tion languages was first made for software. The commercially

SDL specifications in addition to commercial software code available case tool TAU [16] allows the generation of C and

generators. Integrating these tools together is only possibleChill code. The main application area for TAU is the emula-

when the partitioning is performed on the grain level of pro- tion of the SDL system on a host computer. New code genera-

cesses. tors of the TAU framework also allow the implementation of
In common cases the designer has this in mind during the embedded software systems. But when performing an integra-

specification phase. As a result the designer intuitively createstion on commercial real-time operating systems a lot of SDL

small SDL processes with less functionality because he takesconstructs are not supported by these code generators.

into consideration that the specification will be partitioned.  The TAU framework only supports the server model ap-

proach when generating an implementation. During the last

Since several years the Specification and Description Lan-
guage SDL is widely used for the specification of large distrib-
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years a new application model has become more popular: the
activity thread model [11] which eliminates signal queues _I SDL-Parser I_
from time critical paths of the SDL specification. Tools which
translate hardware implementations from SDL are generally
using the server model. With the server model approach the
EFSM s directly translated to hardware while the communica-
tion model is selected from a library [9].

In [3] the control flow is also separated from the data flow
while for the transitions an application independent data pro-
cessor is used which was manually designed before. For many

Syntax Tree Data Structure

Internal Representation

cases the application independency of the data processor leads _I Hardware/Software Code Generator RTSS
to an unnecessary amount of gates. —
The SDL2VHDL tool described in [2] allows the generation Soﬂwar% » ’_E‘—rdware
of VHDL code for different abstraction levels. For SDL pro- c £ || [ ooare potare o [Ho
cesses with a high amount of computational data operations EFSN Hardware | || & c e o e &
behavioral VHDL is generated. Automatically this behavioral VAP L 5 | frvansition ™SO 3
description can be connected to a hardware RTSS [6] whichis  [|CES Ersv 11 8 D P
described at RT-level or which can already be presynthesized. g SR -
On the other hand the hardware of control flow dominated pro- § 1
cesses can be synthesized directly from RTL VHDL descrip- |
tions which can also be connected to the RTSS. In [13] and Comoler J| | l Datapath _§
[14] an extension of the SDL2VHDL code generator is de- * Compiler *|
scribed. This extension allows the automatic implementation
of the activity thread model in hardware. The generation of High-Level and/or RT-Level-Synthesis |
software parts is not supported by these tools. To support hard-
ware/software co-design they are used with commercial code Figure 1: The SDL co-design code generator

generators as described in [8] and [14].

The only integrated framework to generate hardware and
software from a SDL specification is COSMOS. It is based on
an intermediate system description format called SOLAR. The
framework allows the designer to split and to merge SDL pro- .
cesses before starting the code generation process but does no8-2 Architecture of the Tool
allow to split control- from data-flow or the use of different In fig. 1 the architecture of the integrated co-design code
synthesis techniques after partitioning. The hardware transla-generator for the implementation synthesis of SDL specifica-
tor of COSMOS was described in [4] while a case study is pre- tions is shown. The SDL specification is translated by a Java
sented in [5]. In this case study a partitioning of the SDL parser to an internal representation. The syntax tree is based on
process is not considered which leads to the disadvantages oflava classes generated by the tree generator JavaTree. For the

ing services and continuous signals it is possible to specify
synchronous communication inside processes. These features
are important for the design of real-time systems with SDL.

the discussed approach. semantic analysis of SDL some additional Java classes are im-
plemented to store e.g. variable lists, signal identifiers, signal
3 Generating Mixed HW and SW Imple- destination lists and process identifiers.
mentations from SDL From that internal representation the software and the hard-
ware parts are generated. The code generator uses a template
3.1 Specification and Description Language which defines the structure of the final C or VHDL descrip-

o ) - tion. We have defined different templates for C and VHDL to

_The language SDL was originally designed for the specifica- support different implementation strategies and to be flexible
tion of protocol automata in communication systems. These g change the implementation strategies in the future. This
automata are extended by data operations which leads to theoncept also allows to support the different code generation
model of an extended finite state machine. The computational strategies described in [2]. The hardware/software code gener-
model of SDL is based on asynchronous communication be- ator only has to emit code for the application specific behavior
tween the EFSM. Additionally to the specification of commu-  of the SDL system. The application independent functionality
nicating automata SDL allows to describe the module structure jike inter process communication or process scheduling is en-
of a system. Each system can be partitioned into blocks, sub-capsulated in the RTSS which is connected to the application
blocks, processes, and services. Each process or service cofgy procedure or function calls.
tains anindependent EFSM and each process has an own FIFO
input queue. The communication structure of the system is de- 3 3 Generating Hardware
scribed by channels between blocks and signal routes between ) o
processes or services. The communication is performed by Generating Hardware from SDL specifications means to
sending a signal from one process to another. translate the str.uc.tural and beha}woral SDL speqlflcatlon toa

As mentioned before in SDL behavior can be described with hardware description language like VHDL or Verilog. Earlier
processes and with services. While all processes may run inProposals as discussed in section 2 generate one VHDL pro-
parallel, services are part of a process and are executed sequer§€Ss for each SDL process. In the following we will call this
tially. Each transition of a EFSM is triggered by the receipt of the monolithic approach. Normally the behavioral part of the
an asynchronous signal, the change of a process local variableSPL Specification is translated by system level synthesis to a
(continuous signal) or both of them (enabling condition). Us- controller and a datapath which can be synthesized to a gate
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level circuit. The RTSS system comes from a library and con-
tains VHDL code at register transfer level. 3.5 Mixing Hardware and Software

o e oo o i o oy Usig he new concep s possie 0 mx ardre and
Theref h SDL or is translated to at least t VHDL software on a fine level c_)f granularity. A software |mpler_nen-
erefore eac process is transiated to at least two tation for the state machine of the SDL process can be imple-
processes. The SDL state machine is transla_t_ed t0 a separatg, oo while the transitions will be implemented on an
VHDL state machine and for each SDL transition a separate ,  yi-aiion specific coprocessor which was synthesized by
VHDL process is generated. 'I_'he finite state macr_nne of the high-level synthesis. Using a new approach for multi-process
process W'.” dlrec_tly be Symh??'z‘*d by RTL synthesis to acon- high-level-synthesis as described in [1] it is possible to share
troller engine while the transitions containing data operations resources of the hardware over all transitions. In fig. 3 and fig.
W'" be synt_he5|zed by high-level synthesis or by RTL synthe- 4 two different mixed implementations are shown. In fig. 3
sis depending on the number of data operations. The Commu'onIy the state machine is implemented in software while in fig.

hication t_Jetvyeer_1 all VHDL processes is pe_rformed by a small 4 also a transition is implemented in software. All communi-
communication interface which also contains shared memory ..o petween the different implementation entities is sup-

to store the variables of the SDL process. In fig. 2 the architec- ported by a generic hardware/software interface described in
ture of the new approach is shown. The complete SDL Processi o next section of the paper
is connected to a RTSS module as described in [6]. ’

3.4 Generating Software 4 Run-Time Support System

Generating software from SDL is a well known area. The 4.1 Hardware Interfaces and Hardware
SDL extended finite state machine is translated to a case- or if- Library

structure of a high-level programming language and the com- . . .
putational model is supported by an operating system with pro- 1€ RTSS for SDL processes implemented in hardware is
cesses and asynchronous message passing. Another approa8iilt as described in [6]. Scalable modules containing message
to translate SDL to software is table driven: Each transition of dU€ues, timer modules, and communication infrastructure are
the state machine is encapsulated in a function. The identifier I"Stantiated by the compiler. For data passing the SDL compil-
of the next signal and the state of the SDL process are indicese! eMits procedure calls which are resolved by a behavioral
in a two dimensional array which contains references to the COMPiler. As an alternative in case of not using high-level syn-
functions implementing the transitions. thesis, the compiler is also able to emit code fragments given
In dependency from the application area of the final system
the documentation of TAU [16] differentiates between two im-

i i walr fsm.c data3.c
plementation strategies: One where all SDL processes are lo- ggfth are
cated in a single operating system process and the Finite.State Transition 3 RTSS
communication and scheduling of processes is managed by a Machine Data-Operation

RTSS also belonging to this process, and another strategy
where one operating system process is used for each SDL pro- :
cess. Inthe second case the complete RTSS is implemented by _{ - Hwiswntertace

system calls to the operating system. While TAU does not sup-
port important language constructs like continuous signal or

enabling conditions when mapping SDL to a real-time operat-

ing system, the SDL2VHDL code generator was extended to
generate software implementations especially for embedded
real-time systems. Such constructs are very useful to perform |VHDPL-Process 1

N . . VHDL-Process 2
synchronous communication, which reduces the overall com- HardwarevuoL.entr
munication overhead. 7

Variables

Transition 2
Data-Operation:

Figure 4: HW/SW Partitioning: Mixed Implementation
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as templates, e.g. the body of the aforementioned proceduregplaces a transition code in a communication register. The write
themselves. access to the register triggers an interrupt on the processor. The

processor executes an interrupt service routine (ISR) which

4.2 Software Interfaces and Real-Time Operat- reads the communication register and activates the according
ing-System transition. The end of the transition is signalled back to the
controlling state machine by another communication register

re;ﬁt:mglgm;gii;hej;?z gﬁ;&gﬁfgﬁ;ﬁﬁg&c\/ﬁg Sblgr}g:]eand the ISR finishes. The content of the second register is used
P 9sy to calculate the new state of the state machine. Using a proces-

a broad range of processors and target boards. The I|m|tat|onSor with hardware supported context switching like the

E:%ﬁes 'gr?éetﬁzrgfl %”rg\g'g naosftl;]oenve ﬁ]ﬁ)tllgﬁgﬂ?;iggztergén?ézt%? MSPARC described in [12] the execution delay after activa-
relevant SDL. co?wstructs P 9 tion of a transition can be minimized.
) In fig. 6 the state machine is implemented in software and

ev-lz—a? 'nglfmg::tezg iiz'::a rstggca'lgcaart]'%cvgsoaerrzzlr;tm;esfgrs;erpo_the transitions are implemented as application specific hard-
Yy P oo P g sy PrO%yare. The software state machine is activated by a non-empty
cess. Further the communication mechanisms of the real-time

operating system like message queues or asynchronous signala- <o c by means of the scheduler of the operating system. Ac-
P 9sy . 9¢€q ynehror 9 ording to the current state and the received signal a transition
are used for the implementation of the communication model

of SDL. Hence if a waiting process receives a sianal in his code is written into a register implemented in the interface. Af-
: 9p 9 ter decoding the content the appropriate transition is started. At

queue the operating system puts th_e process into the ready Stat&e end of the transition the transition code register is cleared
and schedules it according to its priority and the state of other by the hardware, the code for the next state is placed into a sec-

pr‘?ﬁgsszr?alin of svnchronous communication by using the ond register and an interrupt is generated. The software state
9 Y y 9 machine is activated again by the ISR.

construct continuous signal in conjunction with variables
shared between SDL processes is a weak point of state-of-the- .
art code generators. In a real-time operating system the state of4'4 Connecting External Components

a process can only be changed in an active way triggered by a To integrate ready designed intellectual property (IP) cores
system call or by an interrupt. So for the aforementioned con- for different application areas, e.g. analog line coders or phys-
struct every write access to the shared variable has to be encapical data modems, a hardware component was designed which
sulated by the code generator with a wrapper function. Inside allows asynchronous signal communication with the IP cores.
the wrapper function the kernel is called which itself calls a To instantiate IP cores it is possible to assign them to a gate of
continuous signal handler which was installed by the waiting the SDL specification. The compiler recognizes the instantia-
process. If the condition is fulfilled the waiting process is acti- tion of the IP core and generates an interface component which

vated. is parametrized with attributes of the IP core given in the li-
brary. The sending of a signal to the gate is converted to the ap-
4.3 Hardware/Software Interfaces propriate access of the interface component.

In case an IP core has an addressable memory-like interface

When implementing a SDL process in hardware and soft- . : :
; every signal has its own address in the memory space. For ev-
ware thg RTSS has to be_acc_essmle from both parts. The com ery signal sent to the gate the signal header and parameters are
munication and synchronization between the hardware and the

software entities of the process is implemented by a enericwritten o this memory address. This concept is implementa-
hardware/software interfgce Two altefnative im Ie)rzwen%ations tion independent. It can be used by a software SDL system to

A . R P access a component connected to the processor bus or by a
are discussed: the control flow is implemented in hardware or

the control flow is implemented in software. For sharing the hardware SDL system based on an application-specific com-

variables of the process the interface contains a dual port mem_munication bus. For asynchronous communication based on
ory P P shared variables an IP core can also export register contents.

For the implementation of the state machine in hardware aThe communication interface is performed as shown in fig. 5.

generic structure like the one shown in fig. 5 is used. After
reading a signal from the hardware RTSS the state machine
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5 Results

The two different approaches for the code generation of SDL
processes have been compared for a small typical example
from the application area of real-time communication systems:
The monolithic approach leads to an implementation of the da-
tapath which needs 2306 gates on an ALTERA FLEX10K100
device and a controller with 54 states.

Using the new approach the design was split in processes for
the data transitions and a separate RTL description for the state
machine. The synthesized datapath results in 2153 gates plus
28 additional gates for the controller of the data path while the {mﬁ%m%&% preLonDe }
state machine has 30 states. X

6 Co-Design of a DECT MAC-Layer Chip .
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To demonstrate the usability of the approach for the specifi- oot o]

cation, design, implementation, and validation of a real co-de- Bcs:(oq [::;:2 ©2)

sign problem we consider a burst mode controller chip for the

wireless communication system DECT. The DECT example lov ] s srezona]
was used because the system behavior is well known and we [pL Txrea)|  [oPL_Txreq) [speecried]
already have experience developing DECT systems. Addition- RADIO RADIO  RADIO  LINE

ally DECT is very similar to GSM or UMTS so the case study Figure 7: DECT MAC: SDL specification
covers most problems which will appear during the develop-

ment of future mobile communication systems. The case study
only considers the main functions of a DECT fixed part to
demonstrate how the approach works. Functions like connec-
tion management, measurement of radio signal strength, an
handover algorithms are not considered yet. The main focus of
the case study is to show how hardware and software for real-
time systems can be developed keeping a single description for®
the whole system and how the implementation can be generat-
ed automatically.
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layer. Handover and broadcast management are performed by
the process Multi Bearer Controller (MBC) and the process
Broadcast Message Controller (BMC). The control of the radio
inks is performed by the cell site function processes (CSF).

he process A_CSF performs the setup of the so called bearer
- the radio links - while the other two CSF processes perform
peech data transmission.

6.3 Implementation

) The SDL specification was validated by a functional simula-

6.1 DECT system architecture tion using the commercial SDL tool TAU [16]. Afterwards the
PP ; specification was implemented on the rapid prototyping plat-

The DECT protocol specification describes layer one, two form Phoenix [17]. Phoenix contains four Altera

and three of the OSI reference model for wireless speech and . . .
: . : ; : FLEX10K100 FPGAs which are used for the implementation
data services and supports high traffic loads. It is designed to of the DECT burst mode controller and is linked to a Motorola

provide large cordless private branch exchange (PBX) instal- .
lations or wireless LANs and is also available for domestic MC68060. microprocessor. The V.HDL' and C-Code were gen-
rated using the concepts described.

consumers. The radio fixed parts (base stations) of the syster® .
P ( ) 4 A small manually developed IP core connects a Tenovis

are connected to a PBX via a standard telephone line interface . . .
- : DECT transceiver with the hardware RTSS. This VHDL mod-
(analog or digital). Portable parts, mobile phones or laptops ule contains a CRC generator, a digital PLL and a small radio

with a DECT interface are communicating with the telephone control logic. The hardware RTSS was fully developed in

system via the air interface. DECT supports seamless hando . ;
ver to change the radio fixed part being connected to a portabIeVHDL and the software RTSS is based on the real time oper-

part, or to switch the radio channel, if the quality of a connec-

tion gets worse. This may occur when the user leaves the are

of the current radio fixed part or the radio channel is interfered
by other radio signals. To support high traffic load, the air in-
terface is realized with time division multiplex access (TD-
MA) where each 10 ms frame is subdivided into 24 time slots.
Using 12 time slots for the uplink and 12 time slots for the
downlink, DECT supports 120 logical channels on 10 radio
frequencies.

6.2 SDL Design Specification

The design of the DECT fixed part burst mode controller
starts with an abstract specification using SDL which de-
scribes the DECT MAC layer [7] shown in fig. 7. The design
is splitin six different SDL processes. The process Lower Lay-
er Management Entity (LLME) manages the complete MAC

ating system RTEMS. The RTSS implements the complete

acomputational model of SDL in the application. For a manual

design space exploration each SDL substructure was imple-
mented in hardware as well as in software. A possible parti-
tioning of the system is shown in fig. 8. All time critical
modules of the DECT specification have been implemented on
the FPGAs in hardware. The protocol automata for the bearer
(MTCtrl) and the connection management (MBC), the LLME
and the BMC processes are implemented in software on the
Motorola microprocessor. The MAC application does not con-
tain large data operations, so the hardware/software partition-
ing was performed for the CSF processes. Only the A_CSF
was partitioned along the border between its synchronous
communicating services AMUX and MTCtrl. The other CSF
processes were completely implemented in hardware. The ar-
chitecture shown in the figure supports the setup of up to four
bearer. Larger base stations are easily implemented with this
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approach because only more instances of the SDL processes
A_CSF, B_CSF1 and B_CSF2 have to be implemented.

7 Conclusion [14]

The paper presents a new approach for the code generation
of SDL specifications. The solution allows a fine grain hard-
ware/software partitioning of SDL processes by separating the
control flow from the data flow. As a result of this approach [15]
high-level synthesis yields better results than the monolithic
approach presented in earlier work. Different interface tech- [16]
niques for the communication of the hardware/software parts [17]
and the communication with the environment are discussed.
Finally the specification and implementation architecture of a
typical application was discussed.
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