Evaluating Register File Size in ASIP Design

Manoj Kumar Jaint Lars Wehmeyer*

Stefan Steinke*

Peter Marwedel* M. Balakrishnant

t Department of Computer Science & Engg., Indian Institute of Technology Delhi, India
{manoj,mbald@cse.iitd.ernet.in

* Department of Computer Science 12, University of Dortmund, Germany
{wehmeer,steinle,marweddl@Is12.cs.uni-dortmund.de

ABSTRACT

Interestin synthesi®f ApplicationSpecifidnstructionSetProces-
sorsor ASIPshasincreasedconsideably anda numberof method-
ologies havebeenproposedfor ASIP design. A key stepin ASIP
synthesignvolvesdecidingarchitectuial featuesbasedon appli-
cation requitementsand constaints. In this paperwe observethe
effect of changingregister file sizeon the performanceas well as
power and enegy consumption. Detailed data is genemted and
analyzedfor a numberof application programs. Resultsindicate
that choiceof an appiopriate numberof registeis hasa significant
impacton performance

Keywords
Ragisterfile, Synthesis)nstructionset, Instructionpowver model,
Reagisterspill, Application specificinstructionsetprocessor

1. INTRODUCTION

An Application SpecificlnstructionSetProcesso(ASIP) is a pro-
cessodesignedor oneparticularapplicationor for asetof specific
applications.An ASIP exploits specialcharacteristicef applica-
tion(s) to meetthe desiredperformancegcostand power require-
ments. ASIPs are a balancebetweentwo extremes: Application
SpecificlntegratedCircuits(ASICs)andgeneraprogrammabl@ro-
cessord7, 10, 4]. ASIPsoffer the requiredflexibility (which is
notprovidedby ASICs)atalower costthangeneraprogrammable
processors.Thus ASIPs can be efficiently usedin mary embed-
dedsystemssuchasdigital signalprocessingseno-motorcontrol,
automaticcontrol systemsavionics, cellularphonesetc[10, 4].

A recentsuney of theapproachesuggestetbr ASIP designmethod-
ologiesduringthe 90’s [8] identifiedfive key stepsasfollows (fig.
1).

1. ApplicationAnalysis

2. ArchitecturalDesignSpaceExploration

3. InstructionSetGeneration

4. CodeSynthesis

5. Hardware Synthesis

Application(s) and
Design Constraints

‘ Application Analysis ‘

Space Exploration

|

Instruction Set
Generation

l l

Code
Synthesis

Architectural Design ‘

Hardware
Synthesis

. Processor
Object Code

Figure 1. Flow diagram of ASIP design methodology

An applicationwritten in a high-level languageis analyzedstat-
ically anddynamically The analyzedinformationis storedin a
suitableintermediatdformat, which is usedin the subsequerdteps
of ASIP design. Almost all the approachesonsidera parameter
ized architecturemodelfor designspaceexploration. Inputsfrom

theapplicationanalysisstepareusedalongwith therangeof archi-
tecturedesignspaceo selecta suitablearchitecture(spy a design
spaceexplorer The selectionprocesgypically canbe viewed to

consistof a searchtechniqueover the designspacedriven by a
performanceestimator The instructionsetis generateckither by

synthesir by aselectiorprocessA retagetablecompileris used
to generatecode. The hardwareis synthesizedisingthe ASIP ar-

chitecturetemplateandinstructionsetarchitecturestartingfrom a
descriptionin VHDL/ VERILOG usingstandardools.

Someapproacheattemptedo establisha relationshipbetweerar-
chitecturalfeaturesandapplicationparameter¢8, 6, 5, 1]. Meth-
odsaresuggestedo find the parametersvhich in turn decidesar
chitecturalfeatures.Satoet al [10] have developedan Application
ProgramAnalyzer (APA) which finds datatypesandtheir access
methodsgexecutioncountsof operatorandfunctionsused thefre-
queng of individual instructionsandsequencesf contiguousin-
structions.Guptaet al [6] andGhazaletal [5] consideredpplica-
tion parameter$ik e averagebasicblock size,numberof Multiply-
Accumulate(MAC) operations ratio of addresscomputationin-
structiongo datacomputatiorinstructionsratio of input/outputin-
structionsto total instructions,averagenumberof cyclesbetween
generatiorof a scalarandits consumptiorin the dataflow graph

etc. Thearchitecturafeaturesconsideredy theseapproachesre
nuniberof operatiorslotsin eachinstruction,concurrentoad/store
operationsandlatengy of functionalunitsandoperationsaddress-
ing support,instruction packing, memory pack/ unpacksupport,
loop vectorization,complex arithmetic patternsetc. Number of
registerswereassumedo beinfinite whenschedulings done.

Thereis a needto considermore architecturaffeaturesaswell as

study the relationshipbetweenapplicationparametersaaind these
featuresin termsof userconstrainton cost, performancepower

andenengy. In this work we considevarying the numberof regis-

tersfor ASIP designspaceexplorationandthe attemptis to study

its effectattheapplicationbehaioral level. A specificarchitecture
(ARM7TDM)|) alongwith a compiler (encg and a simulatorhas

beenusedin this study Theintentis to studythe effect of varying

registerfile sizeonaparticularprocessoandusethisto understand
thetrendfor power andperformancesstimationin a generalASIP

synthesiframenwork.

Section2 describesheexperimentaketup usedandthe procedure
adoptedo make the obserations. Resultsof the obserationsare
presentedn Section3. The lastsectionconcludeghe paperwith
directionsfor future work.

2. EXPERIMENTAL SETUP

Somebenchmarkprogramswere chosenand codegeneratiorand
performancevaluationwasperformedwith varyingnumberof reg-
istersfor theARM7TDMIprocessousingtheparameterizableom-
piler enccheingdevelopedandin useat the University of Dort-
mund,German. The benchmarkprogramswerethenanalyzedo
identify applicationcharacteristiceesponsibldor theobseredbe-
havior.

2.1 The ArRM7TDMI Processor
The ARM7TDMIby ARM Ltd [2] is a 32-bit RISC processoand
offers high performancecombinedwith low power consumption.
This processoemplqys a specialarchitecturalstrategyy known as
THUMB, with thekey ideaof a16-bitreducednstructionset. Thus
the ARM7TDMlIhastwo instructionsets:

1. Thestandard32-bit ARM set
2. The1l6-bit THUMB set

THUMB codeoperate®nthesame32-bitregistersetasARM code
so it achieves better performancecomparedto traditional 16-bit

processorsising16-bitregistersandconsumesesspower thantra-

ditional 32-bitprocessorsVariousportionsof asystencanbeopti-

mizedfor speeddr for codedensityby switchingbetweernTHUMB

andARM executionasappropriate The ARM7TDMIprocessohas
atotal of 37 registers(31 generapurpose32-bitregistersand6 sta-
tusregisters)but thesearenot visible simultaneouslyThe proces-
sorstateandoperatingnodedictatewhichregistersareavailableto

theprogrammerin THUMB modeonly 8 generapurposeregisters
are availableto the user requiring 3 bits for register coding, thus
reducingtheinstructionsize.

2.2 Benchmark Suite

Thefollowing applicationsvereselectecasbhenchmarkprograms.
Theseapplicationsare either from the domainof mediaapplica-
tions, DSP or implementation®f standardsortingalgorithms.An

attempthasbeenmadeto study applicationsrequiringtypical ar

ray accesyatterns. Thesebenchmarkprogramsare available at

http://wwwecseiitd.ernet.in/manoj/eseach/bentimarks.htmi

1. biquad N_sections(DSPdomain)

2. lattice.init (DSPdomain)

3. matrix-mult (multiplicationof two m x n matrices)
4. meivlin (mediaapplication)

5. bubble sort

6. heapsort

7.insertionsort

8. selectionsort

2.3 Theencc Compiler

The encccompilerwasusedfor codegeneratiorandperformance
evaluation.enccwasdevelopedfor the RISC classof architectures
and generatesodefor reducedenegy consumption. It features
a built-in power modelwhich is usedto take decisionsduring the
compilationprocess.Configurationof the compileris possibleby
changinga parametefile which containsseveral constantdeclara-
tions andprocessospecificinformation. Using this configuration
file for thetargetprocessqra customizeccompileris generatedin
our casewe took theconfiguratiorfile for the ARM7TDMIproces-
sor andchangedhe numberof registersin the rangefrom 3 to 8.
For eachcaseacompilerwasgeneratedvhichwasusedto compile
andevaluatethe performancef thebenchmarlprograms.

Taking anapplicationprogramwrittenin C anintermediateepre-
sentation(IR) file is generatedisingLANCE[9]. Somestandard
optimizationsare performedon this IR file using LANCE library

functions. The optimizationsperformedby LANCE on the IR in-

cludeconstantpropagationcopy propagationdeadcodeelimina-
tion, constanfolding, jump optimizationsandcommonsubepres-
sionelimination.

TakinganIR file asinput, the codegeneratoigenerates forestof
dataflow treesfor eachfunction. A cover is obtainedfor eachtree
basedon tree patternmatching. At this stage,the internal power
modelis usedto generatea valid cover with minimal power con-
sumption. A low level intermediaterepresentationis generated.
Register allocation, instruction scheduling,spill code generation
andpeepholeptimizationsareperformedusingthis representation
to generateassemblycode. An assembleanda linker are usedto
createthe objectcode. An instructionsetsimulatorproducesout-
putsrequiredfor validation. A traceof instructionds alsoproduced
whichis analyzedoy atraceanalyzer The enccprovidesinforma-
tion onspilledregistersaswell. Theoptimizationoptionsavailable
aretime, enepy, sizeandpower. Oneoptimizationcanbeselected
atatime.

2.4 Power Model

The power modelusedin the compileris basedon the processor
power modeldevelopedby Tiwari et al [11], which distinguishes
betweerbasiccostsandinterinstructioneffects. Basiccostscon-
sistof themeasuredurrentduringexecutionof asingleinstruction
in aloop. An approximateamountis addedfor stallsand cache
misses. The changeof circuit statefor a differentinstructionand
resourceconstraintaresummedup in theinterinstructioneffects.
For computingthe basicpower costsandinterinstructioneffects,
actualmeasurementsave beendonefor the THUMB instructions.

Changen theregisterfile sizenotonly changeshenumberof data
accessebut alsothe associatedhstructionaccesseslo isolatethe
effectson power consumptiordueto dataandprogramwith chang-
ing registerfile size,two configurationsverestudied.

1. Both dataandinstructionin externalor off-chip memory
2. Datain off-chip andinstructionin on-chipmemory

The off-chip dataandon-chipinstructionis aninterestingpossibil-
ity asin mary embeddedystemsmplementations “fix edsynthe-
sizedcode”couldbe storedin anon-chipmemory(usuallyROM).

The power consumptiormodelsof the two memorieswere again
generatedrom actualcurrentmeasurements:or off-chip memory
measurementwere carriedout on the four 128KX8 SRAM chips

(IDT71V124SA)usedn theATMEL evaluationboard(AT91M40400).

For on-chipinstructionmemorytheprocessocurrentmeasurements
for instructionswere carriedout with andwithout the use of on-
chip memoryfor programs.In effect the processoinstructionset
power modelmentionedearlieris basedon measurementsarried
out without the useof on-chipmemory Basedon thesemeasure-
ments the power consumptiorof eachof thetwo memoriedor dif-
ferentpossibleaccesit-widths andfor readandwrite operations
wascomputedwvhich constitutedhe memorypower models.

Thuseffectively, theresultspresentedn thenext sectionutilize the
following power modelsassociatedvith eachinstructionfor the
two configurations.

1. Off-chip dataandinstruction:

Ptot(inst) = Pcpu(inst)+Poffchip(read,16)+Poffchip(7“ead/write,width)

2. On-chipinstructionandoff-chip data:

Ptat(inst) = Pcpu(inst)+Ponchip(7‘ead,16) +Poffchip(7"ead/write,width)

The Py, (insty includesthe interinstructioneffects. The instruc-
tionsbeingTHUMB instructionsare 16 bits wide andarereadfrom
off-chip or on-chipmemoryrespectiely. Thethird termin boththe
equationss optionalasonly someinstructionsrequiredataaccess.
Also the datawidth couldbedifferentfor differentinstructionsand
thatis accountedor. This power modelhasbeenintegratedin the
encccompiler

2.5 Observations

The numberof physicalregisterswasvariedin the rangefrom 3

to 8 for the ARM7TDMI processar The numberof registerswas
increasedbeyond 8 aswell, but in that caseonly assemblycode
could be generatedas no instruction set simulatorwas available
to executethe code. However, we were able to get information
aboutspilling andstaticcodesizein suchcasesFor eachdifferent
numberof physicalregisters,enccwascompiledto generatea cus-
tomizedcompilerwhich wasthenusedto generateodeandother
traceinformationfor our benchmarkprograms.In a similar way,

we have generatedpilling informationfor the LEON processons
well. LEON is a RISCtype of processohaving SFARC architec-
ture.

3. RESULTS

We presentthe resultsobtainedfor numberof executedinstruc-
tions,numberof cycles,ratio of spill instructiongo total staticcode
size,poverandenegy consumptionTheresultsandits analysiss
basedn thefollowing two assumptions.

1. Processocycle time doesnot changewith thechangen the
numberof registers.This impliesthatchangen the number
of cyclesis directly relatedto performance.

o
@

o
3

— biquad (x 500)

-~ lattice_init (x 2)
matrix-mult (x 250)

--=-me_ivlin (x 1)

---~bubble_sort (x 4)

——heap_sort (x 14)

— —insertion_sort (x 6)

- - - selection_sort (x 3)

o
o

o
2

o
'S

o
w

o
N

umber of Instructions (millions)

Ni
o
i

3 4 5 6 7 8
Number of Registers

Figure2: Number of Executed Instructions

w
o

w

— biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)

--=-me_ivlin (x 1)

-~ bubble_sort (x 3)

—heap_sort (x 12)

— —insertion_sort (x 5)

- - - selection_sort (x 6)

N
@

N

B
@

-

Number of Cycles (millions)

o
2

o

Number of Registers

Figure3: Number of Cycles

2. Power consumedy eachinstructiondoesnot changesignif-
icantly with the changan the numberof registers.

3.1 Number of Executed Instructions
Theresultsobtainedior numberof executednstructionsareshavn
in figure 2. Valuesfor differentprogramsarescaledto producethe
resultson a singleplot. Scalefactorsareshawvn in thefigure. This
is acceptablsincethe generatrendscanstill be obsered. We can
obsere onesharpcunature(knee)in somecurves. The Cune for
the programbiquad N_sectionshasits kneeat 4 registers whereas
the programsbubblesort andinsertionsort both have their knee
at 5 registers. The curvesfor someof the otherprogramsdo not
containsuchaknee. In the programbiquad N_sectionsthereare
two for loopswith high iterationcount. Eachcontainsa statement
like somearray[loop_counter] = value; which needs4 registers
for its executionwithout spilling. Oneeachfor storingthe value
of loop_counter baseaddres®f thearraysomearray, offsetvalue
andthe valueto be written into the array Thusthe numberof in-
structionsshootsup significantly when we lower the numberof
physicalregistersfrom 4 to 3, sinceadditionalspill codehasto be
insertedwithin theloop. Looking at the programsbubble sort and
insertionsort, we obsere thateachcontainsa 2-level nestedoop.
The statementin theinnermostioop in boththe caseseed5 reg-
istersfor execution,thatis why we obsere akneeat 5 registersin
the curvesfor theseprograms.

3.2 Number of Cycles

The resultsobtainedfor numberof cyclesare shavn in figure 3.
Again, the valuesfor differentprogramsarescaledto producethe
resultson a single plot and scalefactorsare shavn. Generalbe-
havior of the curvesfor the numberof cyclesis similar to that for
thenumberof instructions.Thoughaswe lower thenumberof reg-

— biquad
-~ lattice_init

matrix-mult
- me_ivlin
---~bubble_sort
——heap_sort
— —insertion_sort
- - - selection_sort

Number of Registers

Figure 4: Ratio of Number of Spill Instructionsto Total Num-
ber of Static Instructions

isters,more spill instructionsareinserted. Sincespill instructions
consistmainly of multi-cycle load andstoreinstructions the aver-
agenumberof cyclesperinstructionincreasesnorethannumber
of instructions. Still, the generalshapeof the curesis the same.
Thus,the sameapplicationcharacteristicgreresponsibldor simi-
lar behaior in bothnumberof instructionsandnumberof cycles.

3.3 Ratio of Spill Instructionsto Total Static
Code Size

Theresultsobtainedor ratio of spill instructiongto total staticcode
sizeis shawvn in figure4. Thevaluesfor the programlattice_init are
high becausef high register pressure.A 2-level nestedfor loop
is there. The inner loop containstwo statementsvhich needs6
registersfor execution. An interestingfeatureis obsered for this
program: the presenceof commonsub-epressionsn two state-
mentsof the inner loop. Three additional registersare required

to avoid repetitionof addressalculationsand memoryaccesses.

Valuesfor programmeivlin are high dueto the large numberof
variablesrequiredto belive for alongtime, sospilling is high, but
it is continuouslydecreasingvith increasingnumberof registers.
To eliminateall spill codefrom this program,19 registersarere-
quired. Thevaluesaredrasticallydecreasingat 7 registersfor the
programmatrix-mult because registersare sufficient to execute
the statemenin theinnermostfor loop (3-level nesting).

3.4 Average Power Consumption

We have usedtwo differentmemoryconfigurationsin our study
Oneconsidernly off-chip memory while the otherconsiderson-
chip instructionmemoryandoff-chip datamemory

3.4.1 Off-chip memory

Theresultsobtainedfor averagepower consumptiorwhile consid-
ering only off-chip memoryareshawvn in figure5. The power val-

uesarehighestfor thematrix-multprogram becaus¢heinnermost
loop (3-level nestedooping) containghe statement

cfilj] = clii] + afillk] * bIK][l;

which accesseswo 2-D array elementsfor readingand one 2-D

array elementfor readingaswell aswriting. Sinceall the arrays
are2-D arrays,the addressalculationrequiresan arithmeticshift

left (insteadof anotherexpensve multiplication) andan addition.
Sinceonepower-hungrymultiplicationis still requiredfor perform-
ing the actualarithmeticoperationbetweenthe two matrices,the
power consumptions high. Thevaluesfor the programlattice_init

arealsohighdueto thefactthatit is alsoamemoryaccessntensie

application. A 2-level nestedfor loop canbe found andthe inner
loopbodycontainsstatementsccessingwo 2-D matricesandone

520

510

N — biquad
w0 — Secomon 7——|anlcg,lnll

< SN matrix-mult

N e --—-me_ivlin
490 ""
N = ----bubble_sort

— heap_sort
— -insertion_sort
- - - selection_sort

480

Average Power Consumption (mW)

Number of Registers

Figure5: Average Power Consumption based on only Off-chip
Memory

400 =
380 o
360 ~

tion (MW)

— biquad
lattice_init
matrix-mult

--=-me_ivlin

-~ bubble_sort

—heap_sort

— —insertion_sort

- - - selection_sort

P!
W
£
S

onsum

W W
S N
S o

wer Ct

3 280
S 260
& 240
&

3 220
2

< 200

Number of Registers

Figure 6: Average Power Consumption based on On-chip In-
struction Memory and Off-chip Data Memory

1-D matrix. Thevaluesfor theprogramme.ivlin arequitehigh due
to high register pressurewhich leadsto more spilling to memory

Sincepower consumptionof the external datamemoryis signif-

icantly higherthanthe power consumedvithin the processqrthe
applications pawer demandsrehigh. Thevaluesfor theprograms
bubble sort andheapsort aresimilar becausenemoryaccessem

both are of similar extent. The valuesfor programselectionsort

arethe lowest, becausen selectionsort datamovementin mem-
ory is minimum. For the programinsertionsorttheamountof data
movementin memoryis morethanthat of selectionsort but less
thanthatof bubblesort, which justifiesits positionin theplot.

Our analysisshavs thatusingmoreregistersdoesnot help signif-
icantly in saving power consumptionespeciallyfor memoryin-
tensie applications(e.g. programsmatrix-mult and lattice_init).
Thoughwe obsenre thatnumberof instructionsexecutedandnum-
berof cyclestakenfor executionarebeingsavedconsiderablyvith
increasinghumberof registersin our obserationrange.Theseap-
plicationshave higherpower consumptionsindeven providing ad-
ditionalregisterscouldnothelpin saving it. For otherapplications,
thesaving in power consumptions mamginalandthatgetssaturated
afterafew registers.

3.4.2 On-chip InstructionMemoryand Off-chip Data

Memory
The resultsobtainedfor averagepower consumptionwhile con-
sideringon-chipinstructionand off-chip datamemoryare shavn
in figure 6. We obsere a significantchangein power consump-
tion by the applicationswhich are not memoryintensie but have
high registerpressurde.g.the programme.ivlin). In suchapplica-

0.03

Energy Consumption (WS)

— biquad (x 650)

-~ lattice_init (x 1)
matrix-mult (x 100)

--—-me_ivlin (x 1)

----bubble_sort (x 3)

— heap_sort (x 12)

— —insertion_sort (x 5)

- - - selection_sort (x 6)

Number of Registers

Figure 7. Energy Consumption based on only Off-chip Mem-

ory

0.035

0.03

0.025

0.02

0.015

0.01

Energy Consumption (WS)

— biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)

--=-me_ivlin (x 1)

----bubble_sort (x 3)

— heap_sort (x 12)

— —insertion_sort (x 5)

- - - selection_sort (x 6)

it

s for lattice,

ed valu

aliz

 ini

°© o o o
o o N

e
o
IS

o o
Nw

2 01

~—# Instructions (2.5
lakh)

--- # Cycles (millions)

- - - Energy (20 milli WS)

— Power (W)

-~ # Spill Instructions

(thousands)

4 5 6 7
Number of Registers

Figure 9: Resultsfor the program latticeinit

o

me_ivli

3

values f

o

lize

lor|

0.8

= 0.7

0.6

0.5

0.4

0.3

T
£ 02

—— # Instructions

(millions)
-~ # Cycles (5 millions)

- - - Energy (62.5 milli WS)

— Power (W)

~---# Spill Instructions

(thousands)

201 S S

0.005

3 4 5 6 7 8
Number of Registers

Figure 8: Energy Consumption based on On-chip Instruction
Memory and Off-chip Data Memory

tionssignificantspilling is saved by providing additionalregisters.
Onchipinstructionmemoryconsumesesspower comparedo off-

chipmemoryusedfor dataaccessesThisis dueto severalreasons:

on chip memoryis usually smaller the bus lines that needto be
drivenareshortersincethe boundarie®f thechip arenotleft. The
averagepawer consumptions lessfor all thebenchmarkprograms
comparedo the power consumptiorfor othermemoryconfigura-
tion (i.e. consideringonly off-chip memory).

3.5 Energy Consumption

Enegy is computedasproductof averagepowver consumptiorand
executiontime E = P x t. Executiontime is calculatedn terms
of numberof cyclesandconstantycle timeis assumedAgain, we
presentesultsfor bothmemoryconfigurations.

3.5.1 Off-chip memory

Theresultsobtainedor enegy consumptionwhile consideringonly
off-chip memoryareshavn in figure7. For thismemoryconfigura-
tion theaveragepower consumptioris almostconstantTheenegy
is beingcomputedasproductof paver andtime. Thus,the curves
follow the sametrendasnumberof cyclesrequiredfor execution.

3.5.2 On-chip InstructionMemoryand Off-chip Data

Memory
Theresultsobtainedfor enegy consumptiorwhile consideringon-
chip instructionmemoryand off-chip datamemoryare shavn in
figure 8. For this configurationthe averagepower consumption
is lower in general,andthereis significantsaving in power con-
sumptionwhile reducingspilling by providing additionalregisters.

3 4 5 6 7 8
Number of Registers

Figure 10: Resultsfor the program me.ivlin

This resultsin a significantreductionin enegy consumptiorwith
larger numberof registers.Thidifferenceis visible especiallyfor
the applicationswhich are not too memoryintensive and having
high registerpressuresuchasme-ivlin

3.6 Analysisof Results

We have analyzedhe resultsfor numberof instructionsexecuted,
numberof cyclestaken for execution,numberof spilling instruc-
tionsinsertedn code powerandenegy consumptiorfor eachpro-
gramseparately Here we analyzethe resultsfor two application
programs:lattice_init andme.ivlin. We usedon-chipinstruction
memoryandoff-chip datamemorywhile generatingheseresults.

Resultsobtainedfor programlattice_init are shawvn in figure 9.

Pleasenotethatthey-axisis normalizedor eachparameteasindi-

catedin thefigureto gettheir valuesin the samerange.Theintent
is to comparetheir shapeon the sameplot. We find thatin this

application,the pawer consumptiordoesnot changesignificantly
with changein numberof registers,thoughthereis somechange
in numberof spilling instructions. This is dueto the fact that this

applicationis memoryintensive. The enegy consumptiorshavs

a steadydrop dominatedby the reductionin the numberof cycles
withoutary pronouncedknee.

Resultsobtainedfor programme.ivlin areshown in figure 10. We
canseethe changein powver consumptiorfor this programaswe
vary the numberof registers.This is becausehe applicationis not
memoryintensie but it hashigh register pressure so additional
registershelpsin saving the spilling andthusreducingthe memory
accessesA carefulanalysisshavs two kneesin the enegy cune,
theoneatregistervalue4 is dueto the kneein thecycle countand
thekneeatregistervalue6 is dueto thekneein the power cune.

Application Performance Power Enegy
program Reg. size | %inc. | Rey. size | %red. | Rey. size | %red.
biguadN_sections| 3 — 4 57.5 34 12.6 34 62.9
lattice init 45 20.5 6—7 1.0 4—5 21.0
matrix-mult 3—-4 29.7 7—8 7.4 3—-4 334
me.ivlin 34 53.4 556 15.3 34 59.3
buublesort 45 46.3 4—5 17.3 4—5 55.6
heapsort 67 25.6 6—7 10.3 6—7 33.2
insertionsort 45 44.8 4—5 22.3 4—5 57.1
selectionsort 3—-4 22.2 556 14.0 556 30.1
Average 37.5 12.5 44.1

Table 1: Maximum variation in resultsfor various benchmark programs

Table 1 shavs the maximumpercentagéncreasein performance
andreductionin pawer andenegy dueto anincreaseof oneregis-
terin eachof theapplicationprogramsWe alsoindicatewherethis
takes place. This table establisheshe importanceof registerfile
sizeasan architecturafeatureasa singleregisterincreaseesults
in a performancamprovementof up to 57.5%andenegy reduc-
tion of 62.9%. The power is relatively insensitve to the changes
in the numberof registers. Furthermorethereis a high degreeof
correlationbetweertheregisterfile sizewhich givesoptimumper
formanceandoptimumenegy consumption.

4. CONCLUSION AND FUTURE WORK

We changedthe numberof registersfor the ARM7TDMI proces-
sor A new instanceof the encccompilerwasgeneratedvith the
specificnumberof registers. This generateccompiler was used
for compilingthebenchmarkprograms We studiedthe resultsob-

tainedfor numberof instructionsexecutedcycle time takenfor ex-

ecution,spilling information, ponver andenegy consumption.An

increasan the numberof registersby onecanresultin upto 57.5
% of performancemprovementandup to 62.9% reductionin en-
ergy consumption. Furtherthereis a high degree of correlation
betweenperformanceamprovementand enegy reduction. In the
processve foundthatpower doesnot stronglydependnthe num-
ber of registers. We have generatedpilling informationfor these
applicationprogramsin the samerangeof numberof registerson

LEON processomswell. Thereis a reasonableorrelationin the
datagenerated.

The costof varyingregisterfile sizein anASIP is notlineardueto
its effectoninstructionencodingjnstructionbit-width andrequired
chip area.For aneffective area-time-pwer tradeof, we proposeo
develop an areamodel aswell. Futurework will be to identify
andextractapplicationcharacteristicsothatanearlyestimationof
numberof ‘optimal’ registersmaybepossible.

5. ACKNOWLEDGEMENTS

We acknavledge the guidelinesand help provided by Professor
Anshul Kumar and Dr. RainerLeupers. This researchwork is
supportedby DST-DAAD cooperatiorproject(ProjectcodeMCS-
216).

6. REFERENCES
[1] Aditya, S.;Rau,B.R.: “Automaticarchitecturakynthesis
andcompilerretagettingfor VLIW andEPIC processors,
TechnicalreportNo. HPL-1999-93 Hewlett-Packard
Laboratories.

[2] AdvanceRISCMachines.td.

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

http://www.arm.com/

Binh, N.N.; Imai, M.; Shiomi,A.; Hikichi, N. : “A
hardware/softvarepartitioningalgorithmfor pipelined
instructionsetprocessof, Proceedingsf the Design
AutomationConference1995,with EURO-VHDL,
EURO-DAC '95, 18-22Sept.1995,pp. 176-181.

Childers,B.R.; DavidsonJ.W. : “ApplicationSpecific
Pipelinesfor Exploiting Instruction-Leel Parallelism”,
University of VirginiaTechnicalReportNo. CS-98-14May
1,1998.

GhazalN.; Newton, R.; JanRabag. : “Retagetable
estimationschemeor DSParchitectureselectior’,
Proceedingsf the Asia andSouthPacific Design
AutomationConferenc&000(ASP-DAC 2000),25-28Jan.
2000,pp. 485-489.

Gupta,T.V.K.; SharmaP,; BalakrishnanM.; Malik, S.:
“Processoevaluationin anembeddedystemslesign
ervironment”, Proceedingsf Thirteenthinternational
Conferencen VLSI Design2000,3-7 Jan.2000,pp.
98-103.

Hoon Choi; In-CheolPark; SeungHo Hwang;Chong-Min
Kyung: “Synthesisof applicationspecificinstructionsfor
embeddedSPsoftware”, Proceedingsf the[EEE/ACM
InternationalConferenceon ComputerAided Design,
1998.ICCAD 98. Digestof TechnicalPapers1998,8-12
Nov. 1998,pp.665- 671.

JainM.K.; BalakrishnanM.; AnshulKumar: “ASIP
DesignMethodologies Surwey andissues’, Proceedings
of fourteenthinternationalConferenceon VLSI Design,
2001,3-7Jan.2001,pp. 76-81.

LANCE System.
http://Is12-wwwcs.uni-dortmund.de/leupers/lanceV2/

Sato,J.;Imai, M.; Hakata,T.; Alomary, A.Y.; Hikichi, N. :
“An integrateddesignervironmentfor applicationspecific
integratedprocessot, Proceedingsf the [EEE
InternationalConferenceon ComputerDesign:VLSI in
ComputerandProcessord991,ICCD '91, 14-160ct.
1991,pp.414-417.

Tiwari, V.; Malik, S.;Wolfe A. : “Power AnalysisOf
Embeddedoftware: A First StepTowardsSoftwarePowver
Minimization”, Proceedingsf theIEEE/ACM
InternationalConferenceon ComputerAided Design,
1994,ICCAD '94, 6-10Nov. 1994,pp. 384-390.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

