
Evaluating Register File Size in ASIP Design

Manoj Kumar Jain
�

Lars Wehmeyer � Stefan Steinke � Peter Marwedel � M. Balakrishnan
�

�
Department of Computer Science & Engg., Indian Institute of Technology Delhi, India�

manoj,mbala� @cse.iitd.ernet.in
� Department of Computer Science 12, University of Dortmund, Germany�

wehmeyer,steinke,marwedel� @ls12.cs.uni-dortmund.de

ABSTRACT
Interestin synthesisof ApplicationSpecificInstructionSetProces-
sorsor ASIPshasincreasedconsiderablyanda numberof method-
ologieshavebeenproposedfor ASIPdesign. A key stepin ASIP
synthesisinvolvesdecidingarchitectural featuresbasedon appli-
cation requirementsandconstraints. In this paperweobservethe
effect of changingregister file sizeon the performanceas well as
power and energy consumption.Detailed data is generated and
analyzedfor a numberof applicationprograms. Resultsindicate
that choiceof an appropriatenumberof registers hasa significant
impacton performance.

Keywords
Registerfile, Synthesis,Instructionset, Instructionpower model,
Registerspill, Applicationspecificinstructionsetprocessor

1. INTRODUCTION
An ApplicationSpecificInstructionSetProcessor(ASIP) is a pro-
cessordesignedfor oneparticularapplicationor for asetof specific
applications.An ASIP exploits specialcharacteristicsof applica-
tion(s) to meetthe desiredperformance,costandpower require-
ments. ASIPsare a balancebetweentwo extremes: Application
SpecificIntegratedCircuits(ASICs)andgeneralprogrammablepro-
cessors[7, 10, 4]. ASIPsoffer the requiredflexibility (which is
notprovidedby ASICs)ata lowercostthangeneralprogrammable
processors.ThusASIPscan be efficiently usedin many embed-
dedsystemssuchasdigital signalprocessing,servo-motorcontrol,
automaticcontrolsystems,avionics,cellularphonesetc[10, 4].

A recentsurvey of theapproachessuggestedfor ASIPdesignmethod-
ologiesduringthe90’s [8] identifiedfive key stepsasfollows (fig.
1).
1. ApplicationAnalysis
2. ArchitecturalDesignSpaceExploration
3. InstructionSetGeneration
4. CodeSynthesis
5. HardwareSynthesis

Application Analysis

Architectural Design

Space Exploration

 Instruction Set

Hardware

Synthesis

Code

Synthesis

Object Code

Design Constraints
 Application(s) and

Generation

Processor
Description

Figure 1: Flow diagram of ASIP design methodology

An applicationwritten in a high-level languageis analyzedstat-
ically and dynamically. The analyzedinformation is storedin a
suitableintermediateformat,which is usedin thesubsequentsteps
of ASIP design.Almost all the approachesconsidera parameter-
izedarchitecturemodelfor designspaceexploration. Inputsfrom
theapplicationanalysisstepareusedalongwith therangeof archi-
tecturedesignspaceto selecta suitablearchitecture(s)by a design
spaceexplorer. The selectionprocesstypically canbe viewed to
consistof a searchtechniqueover the designspacedriven by a
performanceestimator. The instructionset is generatedeitherby
synthesisor by aselectionprocess.A retargetablecompileris used
to generatecode.Thehardwareis synthesizedusingtheASIP ar-
chitecturetemplateandinstructionsetarchitecturestartingfrom a
descriptionin VHDL/ VERILOG usingstandardtools.

Someapproachesattemptedto establisha relationshipbetweenar-
chitecturalfeaturesandapplicationparameters[8, 6, 5, 1]. Meth-
odsaresuggestedto find theparameterswhich in turn decidesar-
chitecturalfeatures.Satoet al [10] have developedanApplication
ProgramAnalyzer(APA) which finds datatypesandtheir access
methods,executioncountsof operatorsandfunctionsused,thefre-
quency of individual instructionsandsequencesof contiguousin-
structions.Guptaet al [6] andGhazalet al [5] consideredapplica-
tion parameterslike averagebasicblock size,numberof Multiply-
Accumulate(MAC) operations,ratio of addresscomputationin-
structionsto datacomputationinstructions,ratioof input/outputin-
structionsto total instructions,averagenumberof cyclesbetween
generationof a scalarandits consumptionin the dataflow graph

etc. Thearchitecturalfeaturesconsideredby theseapproachesare
number� of operationslotsin eachinstruction,concurrentload/store
operationsandlatency of functionalunitsandoperations,address-
ing support,instructionpacking,memorypack/ unpacksupport,
loop vectorization,complex arithmeticpatternsetc. Numberof
registerswereassumedto beinfinite whenschedulingis done.

Thereis a needto considermorearchitecturalfeaturesaswell as
study the relationshipbetweenapplicationparametersand these
featuresin termsof userconstraintson cost,performance,power
andenergy. In this work we considervaryingthenumberof regis-
tersfor ASIP designspaceexplorationandtheattemptis to study
its effectat theapplicationbehavioral level. A specificarchitecture
(ARM7TDMI) along with a compiler (encc) and a simulatorhas
beenusedin this study. Theintent is to studytheeffect of varying
registerfile sizeonaparticularprocessorandusethisto understand
thetrendfor power andperformanceestimationin a generalASIP
synthesisframework.

Section2 describestheexperimentalsetupusedandtheprocedure
adoptedto make theobservations. Resultsof theobservationsare
presentedin Section3. The last sectionconcludesthe paperwith
directionsfor futurework.

2. EXPERIMENTAL SETUP
Somebenchmarkprogramswerechosenandcodegenerationand
performanceevaluationwasperformedwith varyingnumberof reg-
istersfor theARM7TDMIprocessorusingtheparameterizablecom-
piler enccbeingdevelopedand in useat the University of Dort-
mund,Germany. Thebenchmarkprogramswerethenanalyzedto
identify applicationcharacteristicsresponsiblefor theobservedbe-
havior.

2.1 The ARM7TDMI Processor
TheARM7TDMIby ARM Ltd [2] is a 32-bit RISCprocessorand
offers high performancecombinedwith low power consumption.
This processoremploys a specialarchitecturalstrategy known as
THUMB, with thekey ideaof a16-bit reducedinstructionset.Thus
theARM7TDMIhastwo instructionsets:

1. Thestandard32-bitARM set
2. The16-bit THUMB set

THUMBcodeoperatesonthesame32-bitregistersetasARM code
so it achieves betterperformancecomparedto traditional 16-bit
processorsusing16-bit registersandconsumeslesspower thantra-
ditional32-bitprocessors.Variousportionsof asystemcanbeopti-
mizedfor speedor for codedensityby switchingbetweenTHUMB
andARMexecutionasappropriate.TheARM7TDMIprocessorhas
atotalof 37registers(31generalpurpose32-bit registersand6 sta-
tusregisters)but thesearenot visible simultaneously. Theproces-
sorstateandoperatingmodedictatewhichregistersareavailableto
theprogrammer. In THUMBmodeonly 8 generalpurposeregisters
areavailableto the user, requiring3 bits for registercoding,thus
reducingtheinstructionsize.

2.2 Benchmark Suite
Thefollowing applicationswereselectedasbenchmarkprograms.
Theseapplicationsare either from the domainof mediaapplica-
tions,DSPor implementationsof standardsortingalgorithms.An
attempthasbeenmadeto studyapplicationsrequiringtypical ar-
ray accesspatterns. Thesebenchmarkprogramsare available at

http://www.cse.iitd.ernet.in/manoj/research/benchmarks.html.

1. biquad N sections(DSPdomain)
2. lattice init (DSPdomain)
3. matrix-mult (multiplicationof two ���	� matrices)
4. meivlin (mediaapplication)
5. bubblesort
6. heapsort
7. insertion sort
8. selectionsort

2.3 The encc Compiler
Theencccompilerwasusedfor codegenerationandperformance
evaluation.enccwasdevelopedfor theRISCclassof architectures
and generatescodefor reducedenergy consumption. It features
a built-in power modelwhich is usedto take decisionsduring the
compilationprocess.Configurationof thecompileris possibleby
changinga parameterfile which containsseveralconstantdeclara-
tionsandprocessorspecificinformation. Using this configuration
file for thetargetprocessor, a customizedcompileris generated.In
ourcase,wetooktheconfigurationfile for theARM7TDMIproces-
sorandchangedthenumberof registersin the rangefrom 3 to 8.
For eachcase,acompilerwasgeneratedwhichwasusedto compile
andevaluatetheperformanceof thebenchmarkprograms.

Takinganapplicationprogramwritten in C an intermediaterepre-
sentation(IR) file is generatedusingLANCE [9]. Somestandard
optimizationsareperformedon this IR file usingLANCE library
functions. The optimizationsperformedby LANCEon the IR in-
cludeconstantpropagation,copy propagation,deadcodeelimina-
tion, constantfolding, jumpoptimizationsandcommonsubexpres-
sionelimination.

TakinganIR file asinput, thecodegeneratorgeneratesa forestof
dataflow treesfor eachfunction. A cover is obtainedfor eachtree
basedon treepatternmatching. At this stage,the internalpower
model is usedto generatea valid cover with minimal power con-
sumption. A low level intermediaterepresentationis generated.
Register allocation, instructionscheduling,spill codegeneration
andpeepholeoptimizationsareperformedusingthisrepresentation
to generateassemblycode.An assembleranda linker areusedto
createtheobjectcode. An instructionsetsimulatorproducesout-
putsrequiredfor validation.A traceof instructionsis alsoproduced
which is analyzedby a traceanalyzer. Theenccprovidesinforma-
tion onspilledregistersaswell. Theoptimizationoptionsavailable
aretime,energy, sizeandpower. Oneoptimizationcanbeselected
at a time.

2.4 Power Model
The power modelusedin the compiler is basedon the processor
power modeldevelopedby Tiwari et al [11], which distinguishes
betweenbasiccostsandinter-instructioneffects. Basiccostscon-
sistof themeasuredcurrentduringexecutionof asingleinstruction
in a loop. An approximateamountis addedfor stallsandcache
misses.The changeof circuit statefor a different instructionand
resourceconstraintsaresummedup in theinter-instructioneffects.
For computingthe basicpower costsandinter-instructioneffects,
actualmeasurementshave beendonefor theTHUMB instructions.

Changein theregisterfile sizenotonly changesthenumberof data
accessesbut alsotheassociatedinstructionaccesses.To isolatethe
effectsonpowerconsumptiondueto dataandprogramwith chang-
ing registerfile size,two configurationswerestudied.

1. Both
 dataandinstructionin externalor off-chip memory
2. Datain off-chip andinstructionin on-chipmemory

Theoff-chip dataandon-chipinstructionis aninterestingpossibil-
ity asin many embeddedsystemsimplementationsa“fix edsynthe-
sizedcode”couldbestoredin anon-chipmemory(usuallyROM).

The power consumptionmodelsof the two memorieswereagain
generatedfrom actualcurrentmeasurements.For off-chip memory,
measurementswerecarriedout on the four 128KX8 SRAM chips
(IDT71V124SA)usedin theATMEL evaluationboard(AT91M40400).
Foron-chipinstructionmemorytheprocessorcurrentmeasurements
for instructionswerecarriedout with andwithout the useof on-
chip memoryfor programs.In effect theprocessorinstructionset
power modelmentionedearlieris basedon measurementscarried
out without theuseof on-chipmemory. Basedon thesemeasure-
ments,thepowerconsumptionof eachof thetwo memoriesfor dif-
ferentpossibleaccessbit-widthsandfor readandwrite operations
wascomputedwhichconstitutedthememorypower models.

Thuseffectively, theresultspresentedin thenext sectionutilize the
following power modelsassociatedwith eachinstructionfor the
two configurations.
1. Off-chip dataandinstruction:�
�����������������
�����! #"$�������%���%&'�
�)(*(#�,+-� ���.0/%13254 6!70��&'�
�)(*(-��+-�8 9��.0/%1#23:�;<.0���=/)4 ;<��2)��+*�
2. On-chipinstructionandoff-chip data:�
�����������������
�����! #"$�������%���%&'�
���5�,+-�8 9��.0/%1#2*4 6!70��&'���3(*(#�,+-� ��8.�/�1#2#:0;<.0�>��/)4 ;<��23��+*�
The

�
�? -"@���������=�
includesthe inter-instructioneffects. The instruc-

tionsbeingTHUMB instructionsare16bitswideandarereadfrom
off-chip or on-chipmemoryrespectively. Thethird termin boththe
equationsis optionalasonly someinstructionsrequiredataaccess.
Also thedatawidth couldbedifferentfor differentinstructionsand
that is accountedfor. This power modelhasbeenintegratedin the
encccompiler.

2.5 Observations
The numberof physicalregisterswasvaried in the rangefrom 3
to 8 for the ARM7TDMI processor. The numberof registerswas
increasedbeyond 8 aswell, but in that caseonly assemblycode
could be generatedas no instructionset simulatorwas available
to executethe code. However, we were able to get information
aboutspilling andstaticcodesizein suchcases.For eachdifferent
numberof physicalregisters,enccwascompiledto generateacus-
tomizedcompilerwhich wasthenusedto generatecodeandother
traceinformationfor our benchmarkprograms.In a similar way,
we have generatedspilling informationfor theLEON processoras
well. LEON is a RISCtypeof processorhaving SPARC architec-
ture.

3. RESULTS
We presentthe resultsobtainedfor numberof executedinstruc-
tions,numberof cycles,ratioof spill instructionsto totalstaticcode
size,powerandenergy consumption.Theresultsandits analysisis
basedon thefollowing two assumptions.

1. Processorcycle time doesnot changewith thechangein the
numberof registers.This impliesthatchangein thenumber
of cyclesis directly relatedto performance.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

N
um

be
r

of
 I

ns
tr

uc
tio

ns

 (
m

ill
io

ns
)

biquad (x 500)
lattice_init (x 2)
matrix-mult (x 250)
me_ivlin (x 1)
bubble_sort (x 4)
heap_sort (x 14)
insertion_sort (x 6)
selection_sort (x 3)

Figure 2: Number of Executed Instructions

0

0.5

1

1.5

2

2.5

3

3.5

3 4 5 6 7 8

Number of Registers

N
um

be
r o

f C
yc

le
s

(m
ill

io
ns

)

biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 3: Number of Cycles

2. Powerconsumedby eachinstructiondoesnotchangesignif-
icantlywith thechangein thenumberof registers.

3.1 Number of Executed Instructions
Theresultsobtainedfor numberof executedinstructionsareshown
in figure2. Valuesfor differentprogramsarescaledto producethe
resultson a singleplot. Scalefactorsareshown in thefigure. This
is acceptablesincethegeneraltrendscanstill beobserved.Wecan
observe onesharpcurvature(knee)in somecurves.TheCurve for
theprogrambiquad N sectionshasits kneeat 4 registers,whereas
the programsbubblesort and insertion sort both have their knee
at 5 registers. The curves for someof the otherprogramsdo not
containsucha knee. In theprogrambiquadN sections, thereare
two for loopswith high iterationcount.Eachcontainsa statement
like somearray[loop counter] = value; which needs4 registers
for its executionwithout spilling. Oneeachfor storingthe value
of loop counter, baseaddressof thearraysomearray, offsetvalue
andthevalueto bewritten into thearray. Thusthenumberof in-
structionsshootsup significantly when we lower the numberof
physicalregistersfrom 4 to 3, sinceadditionalspill codehasto be
insertedwithin theloop. Looking at theprogramsbubblesort and
insertion sort, we observe thateachcontainsa 2-level nestedloop.
Thestatementsin theinnermostloop in boththecasesneed5 reg-
istersfor execution,that is why we observe a kneeat 5 registersin
thecurvesfor theseprograms.

3.2 Number of Cycles
The resultsobtainedfor numberof cyclesareshown in figure 3.
Again, thevaluesfor differentprogramsarescaledto producethe
resultson a singleplot andscalefactorsareshown. Generalbe-
havior of thecurvesfor thenumberof cyclesis similar to that for
thenumberof instructions.Thoughaswe lower thenumberof reg-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Number of Registers

R
at

io
 o

f S
pi

ll
In

st
ru

ct
io

ns
 to

 T
ot

al

C
od

e
(s

ta
tic

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 4: Ratio of Number of Spill Instructions to Total Num-
ber of Static Instructions

isters,morespill instructionsareinserted.Sincespill instructions
consistmainly of multi-cycle loadandstoreinstructions,theaver-
agenumberof cyclesper instructionincreasesmorethannumber
of instructions.Still, the generalshapeof the curvesis the same.
Thus,thesameapplicationcharacteristicsareresponsiblefor simi-
lar behavior in bothnumberof instructionsandnumberof cycles.

3.3 Ratio of Spill Instructions to Total Static
Code Size

Theresultsobtainedfor ratioof spill instructionsto totalstaticcode
sizeis shown in figure4. Thevaluesfor theprogramlattice init are
high becauseof high registerpressure.A 2-level nestedfor loop
is there. The inner loop containstwo statementswhich needs6
registersfor execution. An interestingfeatureis observed for this
program: the presenceof commonsub-expressionsin two state-
mentsof the inner loop. Threeadditional registersare required
to avoid repetitionof addresscalculationsandmemoryaccesses.
Valuesfor programmeivlin arehigh due to the large numberof
variablesrequiredto belive for a long time,sospilling is high,but
it is continuouslydecreasingwith increasingnumberof registers.
To eliminateall spill codefrom this program,19 registersarere-
quired. Thevaluesaredrasticallydecreasingat 7 registersfor the
programmatrix-mult, because7 registersaresufficient to execute
thestatementin theinnermostfor loop (3-level nesting).

3.4 Average Power Consumption
We have usedtwo differentmemoryconfigurationsin our study.
Oneconsidersonly off-chip memory, while theotherconsiderson-
chip instructionmemoryandoff-chip datamemory.

3.4.1 Off-chip memory
Theresultsobtainedfor averagepower consumptionwhile consid-
eringonly off-chip memoryareshown in figure5. Thepower val-
uesarehighestfor thematrix-multprogram,becausetheinnermost
loop (3-level nestedlooping)containsthestatement
c[i][j] = c[i][j] + a[i][k] * b[k][j];
which accessestwo 2-D array elementsfor readingandone2-D
arrayelementfor readingaswell aswriting. Sinceall the arrays
are2-D arrays,theaddresscalculationrequiresanarithmeticshift
left (insteadof anotherexpensive multiplication) andan addition.
Sinceonepower-hungrymultiplicationis still requiredfor perform-
ing the actualarithmeticoperationbetweenthe two matrices,the
power consumptionis high. Thevaluesfor theprogramlattice init
arealsohighdueto thefactthatit is alsoamemoryaccessintensive
application.A 2-level nestedfor loop canbe found andthe inner
loopbodycontainsstatements,accessingtwo 2-D matricesandone

460

470

480

490

500

510

520

3 4 5 6 7 8

Number of Registers

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 5: Average Power Consumption based on only Off-chip
Memory

200

220

240

260

280

300

320

340

360

380

400

3 4 5 6 7 8

Number of Registers

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 6: Average Power Consumption based on On-chip In-
struction Memory and Off-chip Data Memory

1-D matrix. Thevaluesfor theprogrammeivlin arequitehighdue
to high registerpressurewhich leadsto morespilling to memory.
Sincepower consumptionof the external datamemoryis signif-
icantly higherthanthe power consumedwithin the processor, the
application’spowerdemandsarehigh. Thevaluesfor theprograms
bubblesort andheapsort aresimilar becausememoryaccessesin
both areof similar extent. The valuesfor programselectionsort
are the lowest,becausein selectionsort datamovementin mem-
ory is minimum.For theprograminsertionsort theamountof data
movementin memoryis morethanthat of selectionsort but less
thanthatof bubblesort, which justifiesits positionin theplot.

Our analysisshows thatusingmoreregistersdoesnot helpsignif-
icantly in saving power consumption,especiallyfor memory in-
tensive applications(e.g. programsmatrix-mult and lattice init).
Thoughwe observe thatnumberof instructionsexecutedandnum-
berof cyclestakenfor executionarebeingsavedconsiderablywith
increasingnumberof registersin our observationrange.Theseap-
plicationshave higherpower consumptionsandevenproviding ad-
ditional registerscouldnothelpin saving it. For otherapplications,
thesaving in powerconsumptionis marginalandthatgetssaturated
aftera few registers.

3.4.2 On-chip InstructionMemoryandOff-chip Data
Memory

The resultsobtainedfor averagepower consumptionwhile con-
sideringon-chip instructionandoff-chip datamemoryareshown
in figure 6. We observe a significantchangein power consump-
tion by the applicationswhich arenot memoryintensive but have
high registerpressure(e.g.theprogrammeivlin). In suchapplica-

0

0.01

0.02

0.03

0.04

0.05

0.06

3 4 5 6 7 8

Number of Registers

En
er

gy
 C

on
su

m
pt

io
n

(W
S)

biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 7: Energy Consumption based on only Off-chip Mem-
ory

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

3 4 5 6 7 8

Number of Registers

En
er

gy
 C

on
su

m
pt

io
n

(W
S)

biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 8: Energy Consumption based on On-chip Instruction
Memory and Off-chip Data Memory

tionssignificantspilling is savedby providing additionalregisters.
Onchip instructionmemoryconsumeslesspowercomparedto off-
chipmemoryusedfor dataaccesses.This is dueto severalreasons:
on chip memoryis usually smaller, the bus lines that needto be
drivenareshortersincetheboundariesof thechip arenot left. The
averagepower consumptionis lessfor all thebenchmarkprograms
comparedto thepower consumptionfor othermemoryconfigura-
tion (i.e. consideringonly off-chip memory).

3.5 Energy Consumption
Energy is computedasproductof averagepower consumptionand
executiontime A �B� �DC . Executiontime is calculatedin terms
of numberof cyclesandconstantcycle time is assumed.Again,we
presentresultsfor bothmemoryconfigurations.

3.5.1 Off-chip memory
Theresultsobtainedfor energyconsumptionwhileconsideringonly
off-chip memoryareshown in figure7. For thismemoryconfigura-
tion theaveragepowerconsumptionis almostconstant.Theenergy
is beingcomputedasproductof power andtime. Thus,thecurves
follow thesametrendasnumberof cyclesrequiredfor execution.

3.5.2 On-chip InstructionMemoryandOff-chip Data
Memory

Theresultsobtainedfor energy consumptionwhile consideringon-
chip instructionmemoryandoff-chip datamemoryareshown in
figure 8. For this configurationthe averagepower consumption
is lower in general,and thereis significantsaving in power con-
sumptionwhile reducingspilling by providing additionalregisters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

No
rm

al
iz

ed
 v

al
ue

s
fo

r l
at

tic
e_

in
it

Instructions (2.5
lakh)
Cycles (millions)

Energy (20 milli WS)

Power (W)

Spill Instructions
(thousands)

Figure 9: Results for the program lattice init

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

No
rm

al
iz

ed
 v

al
ue

s
fo

r m
e_

iv
lin

Instructions
(millions)
Cycles (5 millions)

Energy (62.5 milli WS)

Power (W)

Spill Instructions
(thousands)

Figure 10: Results for the program me ivlin

This resultsin a significantreductionin energy consumptionwith
larger numberof registers.Thisdifferenceis visible especiallyfor
the applicationswhich are not too memoryintensive and having
high registerpressuresuchasme-ivlin.

3.6 Analysis of Results
We have analyzedtheresultsfor numberof instructionsexecuted,
numberof cyclestaken for execution,numberof spilling instruc-
tionsinsertedin code,powerandenergy consumptionfor eachpro-
gramseparately. Herewe analyzethe resultsfor two application
programs:lattice init andmeivlin. We usedon-chipinstruction
memoryandoff-chip datamemorywhile generatingtheseresults.

Resultsobtainedfor program lattice init are shown in figure 9.
Pleasenotethatthey-axisis normalizedfor eachparameterasindi-
catedin thefigureto gettheir valuesin thesamerange.Theintent
is to comparetheir shapeson the sameplot. We find that in this
application,thepower consumptiondoesnot changesignificantly
with changein numberof registers,thoughthereis somechange
in numberof spilling instructions.This is dueto the fact that this
applicationis memoryintensive. The energy consumptionshows
a steadydropdominatedby the reductionin thenumberof cycles
withoutany pronouncedknee.

Resultsobtainedfor programmeivlin areshown in figure10. We
canseethe changein power consumptionfor this programaswe
vary thenumberof registers.This is becausetheapplicationis not
memoryintensive but it hashigh register pressure,so additional
registershelpsin saving thespilling andthusreducingthememory
accesses.A carefulanalysisshows two kneesin theenergy curve,
theoneat registervalue4 is dueto thekneein thecycle countand
thekneeat registervalue6 is dueto thekneein thepower curve.

Application Performance Power Energy
program Reg. size % inc. Reg. size % red. Reg. size % red.

biquadN sections 3 E 4 57.5 3 E 4 12.6 3 E 4 62.9
lattice init 4 E 5 20.5 6 E 7 1.0 4 E 5 21.0

matrix-mult 3 E 4 29.7 7 E 8 7.4 3 E 4 33.4
me ivlin 3 E 4 53.4 5 E 6 15.3 3 E 4 59.3

buublesort 4 E 5 46.3 4 E 5 17.3 4 E 5 55.6
heapsort 6 E 7 25.6 6 E 7 10.3 6 E 7 33.2

insertionsort 4 E 5 44.8 4 E 5 22.3 4 E 5 57.1
selectionsort 3 E 4 22.2 5 E 6 14.0 5 E 6 30.1

Average 37.5 12.5 44.1

Table 1: Maximum variation in results for various benchmark programs

Table1 shows the maximumpercentageincreasein performance
andreductionin power andenergy dueto anincreaseof oneregis-
ter in eachof theapplicationprograms.Wealsoindicatewherethis
takesplace. This tableestablishesthe importanceof registerfile
sizeasanarchitecturalfeatureasa singleregisterincreaseresults
in a performanceimprovementof up to 57.5%andenergy reduc-
tion of 62.9%. The power is relatively insensitive to the changes
in thenumberof registers.Furthermore,thereis a high degreeof
correlationbetweentheregisterfile sizewhichgivesoptimumper-
formanceandoptimumenergy consumption.

4. CONCLUSION AND FUTURE WORK
We changedthe numberof registersfor the ARM7TDMI proces-
sor. A new instanceof the encccompilerwasgeneratedwith the
specificnumberof registers. This generatedcompiler was used
for compilingthebenchmarkprograms.We studiedtheresultsob-
tainedfor numberof instructionsexecuted,cycle timetakenfor ex-
ecution,spilling information,power andenergy consumption.An
increasein thenumberof registersby onecanresultin up to 57.5
% of performanceimprovementandup to 62.9% reductionin en-
ergy consumption. Further there is a high degreeof correlation
betweenperformanceimprovementandenergy reduction. In the
processwefoundthatpower doesnotstronglydependonthenum-
ber of registers.We have generatedspilling informationfor these
applicationprogramsin thesamerangeof numberof registerson
LEON processoraswell. Thereis a reasonablecorrelationin the
datagenerated.

Thecostof varyingregisterfile sizein anASIP is not lineardueto
itseffectoninstructionencoding,instructionbit-width andrequired
chiparea.For aneffectivearea-time-power tradeoff, weproposeto
develop an areamodel as well. Futurework will be to identify
andextractapplicationcharacteristicssothatanearlyestimationof
numberof ‘optimal’ registersmaybepossible.

5. ACKNOWLEDGEMENTS
We acknowledge the guidelinesand help provided by Professor
Anshul Kumar and Dr. RainerLeupers. This researchwork is
supportedby DST-DAAD cooperationproject(ProjectcodeMCS-
216).

6. REFERENCES
[1] Aditya, S.;Rau,B.R. : “Automaticarchitecturalsynthesis

andcompilerretargettingfor VLIW andEPICprocessors”,
TechnicalreportNo. HPL-1999-93,Hewlett-Packard
Laboratories.

[2] AdvanceRISCMachinesLtd.

http://www.arm.com/

[3] Binh, N.N.; Imai, M.; Shiomi,A.; Hikichi, N. : “A
hardware/softwarepartitioningalgorithmfor pipelined
instructionsetprocessor”, Proceedingsof theDesign
AutomationConference,1995,with EURO-VHDL,
EURO-DAC ’95, 18-22Sept.1995,pp.176-181.

[4] Childers,B.R.;DavidsonJ.W. : “ApplicationSpecific
Pipelinesfor Exploiting Instruction-Level Parallelism”,
Universityof VirginiaTechnicalReportNo. CS-98-14,May
1, 1998.

[5] Ghazal,N.; Newton,R.; JanRabaey. : “Retargetable
estimationschemefor DSParchitectureselection”,
Proceedingsof theAsia andSouthPacificDesign
AutomationConference2000(ASP-DAC 2000),25-28Jan.
2000,pp.485-489.

[6] Gupta,T.V.K.; Sharma,P.; Balakrishnan,M.; Malik, S. :
“Processorevaluationin anembeddedsystemsdesign
environment”, Proceedingsof ThirteenthInternational
Conferenceon VLSI Design2000,3-7Jan.2000,pp.
98-103.

[7] HoonChoi; In-CheolPark;SeungHo Hwang;Chong-Min
Kyung: “Synthesisof applicationspecificinstructionsfor
embeddedDSPsoftware”, Proceedingsof theIEEE/ACM
InternationalConferenceonComputer-Aided Design,
1998.ICCAD 98.Digestof TechnicalPapers1998,8-12
Nov. 1998,pp.665- 671.

[8] JainM.K.; Balakrishnan,M.; AnshulKumar: “ASIP
DesignMethodologies: Survey andIssues”, Proceedings
of fourteenthInternationalConferenceonVLSI Design,
2001,3-7Jan.2001,pp.76-81.

[9] LANCE System.
http://ls12-www.cs.uni-dortmund.de/F leupers/lanceV2/

[10] Sato,J.; Imai, M.; Hakata,T.; Alomary, A.Y.; Hikichi, N. :
“An integrateddesignenvironmentfor applicationspecific
integratedprocessor”, Proceedingsof theIEEE
InternationalConferenceonComputerDesign:VLSI in
ComputersandProcessors1991,ICCD ’91, 14-16Oct.
1991,pp.414-417.

[11] Tiwari, V.; Malik, S.;Wolfe A. : “Power AnalysisOf
EmbeddedSoftware:A First StepTowardsSoftwarePower
Minimization ”, Proceedingsof theIEEE/ACM
InternationalConferenceonComputer-Aided Design,
1994,ICCAD ’94, 6-10Nov. 1994,pp.384-390.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

