Source—Level Execution Time Estimation of C Programs

C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto

Politecnico di Milano
Piazza L. da Vinci, 32
20133 Milano, ltaly

{brandole,fornacia,salice,sciuto}@elet.polimi.it

ABSTRACT

In this paper a comprehensive methodology for software ex-
ecution time estimation is presented. The methodology is
supported by rigorous mathematical models of C statements
in terms of elementary operations. The deterministic con-
tribution is combined with a statistical term accounting for
all those aspects that cannot be quantified exactly. The
methodology has been validated by realizing a complete pro-
totype toolset, used to carry out the experiments.

1. INTRODUCTION

The recent design trend of embedded applications requires
the analysis and optimization of performance and power in
all the components of the system, especially during the first
stages of the design, when alternative solutions are com-
pared. The current pervasiveness of microprocessor-based
architectures, is enforcing the importance of a fast analy-
sis of the software, carried out through the entire develop-
ment/compilation flow, namely from the source level down
to the assembly. To this purpose, in literature several au-
thors explored the problem to determine bounds on the ex-
ecution time of a process running on a microprocessor (e.g.
[4], [7], [6], [5], [1], [9], [8]); unfortunately, this task is becom-
ing more and more complicated with the current CPU fea-
tures. Many investigations attacked the problem at a coarse
grain, focusing mainly on the WCET (Worst Case Execu-
tion Time), because the target application is often real-time
constrained. In general, the problem has two aspects:

e program paths analysis, to determine which sequences
of instructions will be executed and how they influence
the WCET;

o microarchitectural analysis, i.e. the modeling of the
hardware system executing the program.

Efficient estimation of WCET is, however, a hard task: to
be decidible it requires absence of recursive functions, ab-

sence of function pointers and bounded loops [4] and, in ad-
dition, the scope of the path information strongly impacts
the estimation accuracy. To cope with the latter problem,
[7] includes such information by adding loop bounds and
maximum execution bounds for some statements, while [6]
uses path information specifying interactions among differ-
ent program statements through regular expressions and an-
notations. Feasibility analysis of program paths using a set
of linear equations has been considered in [5]. In any case,
the analysis is computationally very hard and thus is not
suitable during design space exploration, when frequently
the proper hw/sw architecture has to be chosen quickly com-
paring alternatives. Microarchitectural-related issues, mod-
eling the timing analysis of the assembly instructions, are
another source of possible estimation errors. Some investi-
gations in this field are reported in [1] and cycle-accurate
performance models have also been presented in [9], while
the problem of annotating C code guessing the compiler be-
havior has been addressed in [8]. Our goal is to provide a
framework, general enough to gather a broad range of spec-
ification formalisms, as well as to take into account the pe-
culiarities of the actual processor on which the software will
be finally mapped. In particular, we focused on the problem
of efficiently estimating the average timing features of the
code, making at the same time the formulation open to eas-
ily incorporate a statistic characterization of the parameters,
if necessary. It constitutes the base for hw/sw partitioning
or simply to analyze the impact of different microprocessors
on the performance. Work is in progress to extend it to-
wards the analysis of the software power at the source level.
The paper is organized as follows. Next section presents the
basic abstractions have been introduced to categorize the
code statements, using C as reference language. The gen-
eral model describing the software timing characteristics is
addressed in Section 3, where the notations for profiling and
timing are also introduced. Interpretation of such a model
and a statistical characterization of the timing estimates are
presented in Section 4 and Section 5, respectively. Finally,
Section 6 describes the experimental environment used to
derive the parameters and to validate the methodology.

2. LANGUAGE MODEL

Our initial effort has been devoted to the definition of a mod-
eling framework to capture in a general manner the struc-
ture of a program. To model a high-level language in a
constructive and hierarchical way it is necessary to define
what an ‘elementary component’ is. In the following, ele-
mentary components will be referred to as atoms.



The most critical point in defining the atoms of a language
is the choice of the granularity at which the language is ana-
lyzed. To this purpose it is helpful to describe the language,
in this case C, using the formalism of grammars.

The starting point is the definition of a set of terminal sym-
bols: these symbols are the basic building blocks of the
atoms of the language and, as a consequence, determine the
granularity of the analysis. It is important to note that some
of the terminal symbols adopted would be non-terminals in
the complete grammar of the language® and would be not
disjoint but rather related by a production.

The essential terminals are, as in usual grammars, opera-
tors, keywords and special symbols such as =, (,), {, }, for,
return and others. In addition, to the purpose of the defini-
tion of atoms, it is useful introducing the following terminals:
var (variables), expr (arithmetic expressions) and cond.
Using this set of terminals a few productions can already be
built. Consider, as an example the productions of figure 1.

st-break break ;
st-return = return expr ;
st-assign = wvar = erpr ;

| wvar [ expr 1 = expr ;

Figure 1: Productions for some simple statements

The partial grammar of figure 1 clarifies how the terminals
combines to give more complex portions of the language.
In a similar manner, it is possible to define more complex
statements, such as while or if. Their grammar is reported
in figure 2.

while ( cond ) stmt
if ( cond ) stmt
| if ( cond ) stmt else stmt

st-while
st-if

Figure 2: Productions for two complex statements

The non-terminal symbol stmt is a generic statement de-
fined by the partial grammar of figure 3.

stmt = simple-stmt
| block-stmt
simple-stmt = st-assign

{ stmt-list }
stmt
| stmit-list stmt

block-stmt
stmt-list

Figure 3: Definition of the generic statement

Proceeding in this way it is possible to define all the state-
ments and constructs of the C language. The outcome is
an incomplete grammar I" that lacks the production for all
the symbols that have been assumed as terminals but allows
defining in a formal way the concept of atom.

'As an example consider the atoms var and ezpr defined
below.

DEFINITION 1. The terminal symbols on the right-hand
side of a production of the grammar ' constitute an atom
whose name is defined in the left-hand side.

According to this definition and referring, as an example,
to the production for the while statement, the atom whose
name is while is constituted by the keyword while and the
couple of parentheses enclosing the conditional expression
cond. The body of the while construct is a generic state-
ment but it is not part of the while atom itself. Based on
the concept of atom, the following definitions and notations
can be introduced.

3. GENERAL MODEL

3.1 Sourcecodenotation

According to the grammar I" and to definition (1), a generic
source code Cs can be described as a list of L couples de-
scribing the atoms and the hierarchical relations between
atoms. The symbols summarized in table 1 and described
in the following are used to formally define this concept.

Table 1: Notation for source code

[ Symbol | Meaning
s source code index
1 atom index
i data set index
Cy s-th source code
As i i-th atom of the s-th source code
Lg number of atoms of the s-th source code
Ds ; j-th data set for the s-th source code

The symbol Ds ;, far from giving details on the type, size
and value of data, is used to refer to a specific run of the
source code. Data is made dependent both from the span-
ning index j and the source code index s since a set of data
must be compatible with the specific source code.

3.2 Profiling notation

When a source code C; is run with data D;; each atom,
observed as a whole at source level, is executed a certain
number of times. The symbols summarized in table 2 are
used to formally express profiling information.

Table 2: Notation for source—level profiling

[ Symbol | Meaning |
[ n() [ returns the number of executions |
Ng ij number of executions of the atom Ay ;

with data Ds ;
N ; number of execution of all atoms of Cg
with data Dy ;

Since the function n() returns a dynamic measure, it must
depend on a set of data. According to the definition and no-
tations previously introduced, the following relations hold:

Ns,i,j = n(As,i, Ds,j) (1)

L,

Ls
Ns,j = Zn(As,iaDs,j) = ZNs,i,j (2)
i=1

i=1



The count returned by the function n() has no explicit rela-

tion with the actual execution time or with the number of

clock cycles.
3.3 Timing notation

In order to account for a real measure of the execution time,
the functions and the symbols of table 3 are introduced.

Table 3: Notation for timing

[ Symbol | Meaning
t() returns the actual execution time
() returns the reference execution time
t() returns the estimated execution time
Ts,j actual execution time of Cs with data D ;
Ts,j reference execution time Cs with data D, ;
Ts,i estimated execution time of Cs with data D; ;

The measure of unit of time, in this context, needs to be
independent of the operating frequency of a microprocessor
and thus the concept of clock—cycles per instruction (CPI)
is used.

In the construction of the mathematical form the upper—
case, shorthand forms will be used more often. Their mean-
ing is clarified by the three following simple relations:

Toj =t(Cs, Ds ;) ®3)
Ts,j =t(Cs, Ds,5) (4)
Ty = #(Cs, Ds.j) (5)

The total actual execution time T ; of the source code C,
with data D, ; can be expressed as the sum of the execution
time of each atom A, ;, counted Ny ;, ; times, that is:

L

Ts,]’ = Zt(As,iy Ds,j) . ’fl(As,i, Ds,j) =
i=1
- ©)
= Zt(As,i, Ds ;) Nsij
i=1

The reference and estimated times can be also expressed
with similar relations, but their discussion is deferred to the
next section.

3.4 Mathematical formulation

In this section a general mathematical model that can be
used to describe the timing of a software, starting from its
high-level source description is presented. The hypotheses
on which the model is based are explained and partly justi-
fied on the basis of some preliminary experimental results.

As indicated in the concluding part of the previous section,
the execution time of a source code Cs with input data Ds,;
can be expressed as:

L,
Ty = Nuuj-t(Ass Ds ) (M
=1

where the dependence of the real execution time of an atom
is explicitly indicated by the second argument of the func-
tion ¢(). This equation defines what is called actual time
throughout the rest of the paper.

To afford the complexity of the problem it is useful to con-
sider the ideal conditions defined by these assumptions:

o the target architecture has an unlimited number reg-
isters and all the variables of the code are allocated to
a fixed register;

e the initial value of the variables is pre—loaded in the
corresponding register and thus no explicit initializa-
tion is required;

e inter—atom compiler optimizations are neglected;

e intra—atom compiler optimizations are neglected.

The first two bullets of this list lead to an underestimate of
the real execution time while the last two tend to produce
an overestimate.

Let #() denote the function returning the execution time
in these ideal conditions. The time in ideal conditions is
referred to as reference time.

The aim of the model is to determine a function () return-
ing an estimate of the actual execution time such that the
estimation error is minimum. The relation that express the
total estimated timing of a source code is similar to the one
for the real timing:

Ls

Ty =) Neuj-t(Asi, Cs) (8)

i=1

It is worth noting that the function £() does not depend on
the actual data fed as input to the source code: this depen-
dence is completely accounted for in the execution count
coefficient N, ; ;. This is essential in order to allow an a—
priori characterization of the atoms. On the other hand, an
explicit dependence on the source code Cs, considered as a
whole, is present: this point is clarified later on. The error
to be minimized over a number of source codes and input
data sets is thus:

&= (Ts,j - Ts,j)2 9)

The basic idea behind the model is that the estimated timing
of each atom can be expressed as the sum of two contribu-
tion: the reference timing, that accounts for all the deter-
ministic aspects in ideal conditions, and a statistical devia-
tion that depends on complex factors such as the structure
of the source code, the characteristics of the compiler, the
actual architecture etc. This idea is formally expressed by
the following relation:

t(Asi,Cs) = 1(As ;) + 0(Cs, As ) (10)

where the form of the function §() can be arbitrarily defined.

An analysis of some preliminary timing measurement re-
sults, suggests that & should depend on the specific atom
As,; as well as on the source code considered as a whole.
For the sake of generality, it might be useful and interest-
ing to consider a dependence not only on the atom A, ; but
rather on a range of adjacent atoms, thus:

6:J(As,i—kl,---,As,i,---As,i+k2,Cs) (].].)



where k1 and k2 determine the extension of the range around
Asi. The dependence on the source code and the range of
atoms defined thus far is only symbolic, since atoms and
source code are neither numbers nor functions, and does
not specify the explicit mathematical form. To refine the
expression of the function it is necessary to define some mea-
sures to be performed statically on an arbitrary range of
atoms and on the entire source code. As examples consider
measurements such as the number of consecutive sequential
statements, the maximum nesting level of the whole source,
the number of variable used and so on. For the sake of con-
ciseness, let q() and Q() be two vector functions operating
on a range of atoms and on the tree representing the entire
source code, respectively. Formally:

q:q(As,i—kp---,As,i;---As,H—kg) (12)

Q= Q(Cs) (13)
According to the definitions and hypotheses discussed thus
far, and combining equations (8), (10), (11), (12) and (13)
the estimated time can be expressed as:

foj=Y Neis [ +5@Q)]  (14)

This last equation expresses a very general and flexible model
but involves a number of scalar, vectorial and functional un-
knowns that render it almost mathematically untreatable.

The next paragraph proposes some simplifications that lead
to an affordable mathematical problem.

4. SIMPLIFIED MODEL

At this point it is useful to summarize what, in the model, is
to be considered known and what is unknown. The following
components are known:

e The reference time of each atom #(As ;). The value can
be derived using the analytical models of the atoms,
combined with the timings of elementary operations.
Both the atom mathematical models and the set of
operation that are considered elementary are defined
by refinement of those presented in [2].

e The execution count of atoms N,;;. These values
can be derived from source-level profiling of the code.
A preliminary solution to this problem has been im-
plemented by instrumenting the original source code,
compiling and running it on a generic platform.

On the other hand, the components listed below are still
undefined:

e The mathematical form of the function § with respect
to the vector functions q and Q.

e The meaning of the vector functions q and q. They
should be applied to lists of atoms, and return numeric
values corresponding to some sort of measure on the
source code. Though it is possible to suggest a number
of such measurement functions, it is all but straight-
forward to determine whether the adopted functions
are meaningful for the problem or not.

The problem concerning the form of the function § can be
faced assuming a multilinear dependence on the two vector
functions: this leads to a significant mathematical simplifi-
cation with an acceptable loss of generality. This assumption
leads to the expression:

d=axq+bxQ+c (15)

that, expanding the vectors and denoting with n, and ng
the number of elements of the two vectors q and Q, respec-
tively, becomes:

s=[a1 - bo, ] xQ+c  (16)

In this equation ai,...,b1,... and ¢ are the parameters of
the model and their values have to be determined statisti-
cally in order to minimize the square error, while g1, ... and
Q1, - .. are the results of the measures performed on ranges
of atoms and the whole source code, respectively.

anq]xq+[b1

5. STATISTICAL CHARACTERIZATION
Consider now a source code Cs and a compatible set of data
D, ;. According to equations (15) and (14) and noting that
the reference times #(A;;) and the vectors q and Q are
known, the estimated time can be expressed as:

L,
Ts,]‘ ZZNS’i’j . [E(As,q;)+a><q+bx Q+C] (17)
i=1

Distributing the summation an noting that a and b are in-
tended to be independent of the atom, this relation can be
rewritten as:

Ts,]’ = Ts,j +ax Qtot,j +b x Qtot,j +c- Ns,j (18)

where:

Ls

Ty = Y Neij-H(Ass) (19)
i=1
Ls

Qoti = Y Neij-d (20)
i=1
Ls

Qioty = Y Neij-Q (21)
i=1
Ls

N,; = ZNs,i,j (22)
i=1

Let now C; be fixed and let the data set D, ; vary with the
index j = [1,...,nq]. For each data set, the actual timing
is given by T, ; while the estimated timing can be derived
by using the relations above. With these data it is possible
to build the linear system:

Ts=Ts +AxX (23)
where the matrix A is:
qz;t,l th;m N1

A= : : (24)
qﬁt,nd Qﬂt,nd Ns ny
and the column vector X has the form:
aT
X=|bT (25)
c



Equation (23) can be rewitten as:

Y=AxX (26)
where the vector Y has been defined as:

Y=T,-T; (27)

In the linear form of equation (26), Y is a ng X 1 column
vector, A is a ng X (ng + ng + 1) matrix and X is a (ng +
ng +1) x 1 column vector. Since the matrix A is not square
and the experimental setup is such that ng > (ng+ng+1),
the linear system can only be solved in a statistical sense.
A simple and well known statistical estimator is the least
square method that leads to the solution:

X=(ATxA)_1><AT><Y (28)

Equation (28) allows deriving the parameters of the simpli-
fied model for any number of metric functions q and Q.

6. RESULTS

Performing experiments in order to derive actual data to
be used to obtain the model parameters is a lengthy op-
eration since it requires executing the code under analysis
in single-step mode® and collecting large amounts of data.
Furthermore, the original source code must be suitably in-
strumented and elaborated in a non—trivial manner. These
preparation phases, unfortunately, can be automated only
partly and thus a significant human intervention is required.

At the time this thesis is being written, only a few exper-
imental data are available. These data has been used to
derive the preliminary results reported in the following.

6.1 Experimental setup

The experiments performed to derive the data reported in
the next paragraph have been set up as described below.

The code to be analyzed is stored in a separate file named
after the function name: <function>.c. This source file is
then processed manually to obtain the two modified versions
<function>.prof.c and <function>.spix.c to be used to
generate two executables: main.prof and main.spix. The
former is used for assembly—level timing measure while the
latter is used for source-level estimation.

By running the executable main.prof a file containing the
atoms execution count and a file containing the number of
clock cycles taken by each atom are generated. Combin-
ing these results, the overall estimated time can be easily
obtained.

The executable main.spix is run to generate a binary data
file that is then interpreted by the utilities of the Spix toolset.
The outcome is the assembly code of the executable, anno-
tated with the execution count of each assembly instruction.
The timing of each instruction is then derived parsing the

2The single-step mode causes the execution of a child pro-
cess, under the control of its parent, one assembly instruc-
tion at a time. In most machines, this is done via signals
(software interrupts), introducing a considerable overhead
that leads to run times 100-300 times longer than the origi-
nal code.

assembly code and looking up the clock cycles counts in a
library file. Combining the counts with the instructions tim-
ings, the overall exact® timing can be derived.

The model used to derive these preliminary results assumes
for the function § the simplest linear form: § = c¢. The
dependence on ranges of atoms and on the complete source
code is dropped. As a consequence of this simplification,
the values of the constant ¢ are expected to depend on the
source code being considered. A more complex model, that
is going to be verified, might account for the different source
codes including some measures on the entire code, i.e. some
elements of the vector Q.

6.2 Validation

The methodology has been validated considering a bench-
mark set composed of a dozen of programs written in C
(RLE Encoding, 16-bit CRC, sorting algorithms, GCD, re-
cursive functions like Fibonacci, ...). The model has been
applied to the data obtained from 50 runs of each function of
the benchmark set with different, randomly generated data.
The resulting value for the parameter is ¢ = —0.0441. This
value has been used to estimate the execution time of the
quick sort algorithm® whose code is reported in figure 4.

void gsort(int ilo, int ihi, int a[] ) {
int pivot, ulo, uhi, ieq, temp;

if( ilo >= ihi )

return;
pivot = a[(ilo + ihi)/2];
ieq = ilo;
ulo = ilo;
uhi = ihi;

while( ulo <= uhi )
if( aluhi] > pivot )
uhi--;
else {
temp = alulo];
alulo] = aluhil;
aluhi] = temp;
if( alule] < pivot ) {

temp = alieq];
alieq] = alulo];
alulo] = temp;
ieq++;

T

ulo++;

}

gsort(ilo, ieq - 1, a);
gsort(uhi + 1, ihi, a);

Figure 4: The source code of the function gsort

The obtained results show an average error of 3—4 %. The
estimates and relative errors are plotted in figures 5 and 6.

3This procedure produces the timing in ideal conditions i.e.
when no stalls are introduced and no cache misses occur.
“The algorithm was not part of the set of testbenches used
to derive the constant c.



1400 ;
o Actual ©
—— Estimated i
2 12000 | .
Q a Q
3
B L i
o
3 \ ) g ¢ \a
S 10000/ °\ g , T
8000 : :
Data sets
Figure 5: Actual and estimated timing
0.1

Relative error
N e R AR

Data sets

Figure 6: Relative errors

The distribution of the relative errors, shown in figure 7,
is approximately Gaussian with average pe = —0.030 and
standard deviation o2 = 0.048. This suggests that the least
square estimator is correct and unpolarized. An analytical
proof of this properties is beyond the scope of this paper.

12

10

Frequency

i

Bl

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
Instructions

S N b O ®

Figure 7: Distribution of relative errors

7. CONCLUSIONS

This paper presented an approach to characterize the tim-
ing features of a program at the source-level. The proposed
strategy is based on a formal hierarchical analysis of the
code structure and gathers a mathematical model of the
timing issues with profiling/statistical information. The en-
tire analysis flow has been implemented within a prototype
toolset that we are currently using for validating and tuning
the model parameters. In particular, the obtained estimates
on timing fits very well actual values, for a broad range of
benchmarks with a Gaussian distribution of the absolute rel-
ative errors, whose magnitude is around 3-4%.

Work is in progress to:

e extend the analysis strategies in order to include en-
ergy estimation at the source-level, based on the low-
level processor characterization described in [3];

e include this fast and flexible timing estimation strategy
within the TOSCA hw/sw codesign framework.

8. REFERENCES
[1] J. R. Bammi, W. Kruijtzer, and L. Lavagno. Software

2]

[5]

[7]

(8]

performance estimation strategies in a system-level
design tool. In Proceedings of the Hardware Software
Codesign Workshop, pages 82-86, December 2000.

C. Brandolese, W. Fornaciari, L. Pomante, F. Salice,
and D. Sciuto. A multi-level strategy for software
power estimation. In Proceedings of the 13th Int.
Symposium on System Synthesis, pages 187-192,
September 2000.

C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto.
An instruction-level functionality—based energy
estimation model for 32-bits microprocessors. In
Proceedings of the 37th Design Automation Conference,
pages 346-351, June 2000.

E. Klingerman and A. D. S. 2ex. Real-time euclid: A
language for reliable real-time systems. IEEE
Transactions on Software Engineering, 12(9):795-825,
November 1993.

S. Malik, M. Martonosi, and Y. T. S. Li. Static timing
analysis of embedded software. In Proceedings of the
Design Automation Conference, pages 147-152, June
1997.

C. Y. Park. Predicting deterministing execution time of
real-time programs. In PhD Thesis, Seattle, August
1992. University of Whashington.

P. Puschner and C. Koza. Calculating the maximum
execution time of real-time programs. The Journal of
Real-Time Systems, 1(2):160-176, September 1989.

K. Suzuki and A. Sangiovanni-Vincentelli. Efficient
software performance estimation methods for
hardware/software codesign. In Proceedings of the
Design Automation Conference, June 1996.

V. Zivojnovic and H. Meyr. Compiled hw/sw
co-simulation. In Proceedings of the Design Automation
Conference, June 1996.



	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index




