

so that:
R = Eff/T

Where the parameters are the project size S (Klines of code), the
coefficients A, A2 considering possible multiplicative factors on
the effort and the scale factors B, B2 accounting for
economy/diseconomy originated in developing projects of
different sizes. It is possible to determine the values of the
parameters, according to the modality of developing the project,
that is also influenced by the severity of the design constraints and
the novelty of the application. The typical values are reported in
table 1, ranging from small and simple projects (organic) to large
size ones (embedded) requiring the fulfillment of stringent
constraints and thus, a careful control of the development process.
More details can be found in [2].

Table 1. Values of the model parameters.

Mode A B A2 B2
Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.2 2.5 0.32

To estimate the project size, suitable metrics and reference

formalism must be considered. Due to its wide diffusion for
hardware projects, we selected VHDL as the representative
language to quantify the size (S).
The modification on S introduced by the presence of reuse and
the impact of the productivity improvements are the focus of the
next section, while section four discusses the strategy to estimate
S.

3. DESIGN REUSE MODELS
The rationale for reusing is that employing an available
component is less expensive than designing it from scratch.
However, its integration in the final design environment requires
introducing some modifications. In general, the cost of reuse will
be not simply proportional to the entity of the modification. In
fact, it is required some extra-effort to select and understand the
component to be integrated, in addition to the adaptation of the
module interfaces. This section introduces some of the figures of
merit and modifications to be considered in presence of reuse,
with respect to the analysis presented in the previous one. Both
static aspects and dynamic aspect of embedding a component in a
project have to be considered.
Concerning the static issues, given a module M to be reused, it is
possible to define the estimation of an equivalent size (SMes) to be
reused, starting from the original value of SM (size of the module
M). For the following three different identified activities, the
parameters and the final comprehensive expression are reported.

• Evaluation and selection. The activities of
Assessment and Assimilation to understand the
suitability of the module, are captured by the
parameter AA. It is a value ranging from 0 to 8,
related with the quality of the available
documentation.

• Undestanding. The parameter CU (Code
Understanding) is a percentage taking into account the

increment of the code size due to the understanding of
the component and the need to adapt the interfaces.
Code with good documentation and high suitability
with the project has CU=10% while in the opposite
case CU can rise up to 50%.
A second parameter (UNFM) captures the
unfamiliarity of the designer with the module to be
reused. The value ranges from 0 (completely familiar)
to 1 (completely unfamiliar).

• Modification. The contribution AAF to the
modification depends on three factors: a) the
percentage of design to be modified (DM) to suit the
new environment; b) the percentage of code to be
modified (CM) for the same reasons of a); and c) the
percentage of integration required for the modified
code (IM). IM depends on the effort to embed and test
the module within the overall system with respect to
the case of a starting from scratch design of another
module of similar size.
AAF = 0.4 DM + 0.3 CM + 0.3 IM

The value of SMes can be computed through the following
formulas, in the case of AAF ≤ 0.5 and AAF > 0.5, respectively
[2].

SMes=0.01 SM[AA+AAF+(1+0.02 CU) UNFM]

SMes=0.01 SM[AA+AAF+CU UNFM]

Using this equivalent project size, it is possible to compute the
value of Eff and T for the reuse of a module M.
Some key factors in the success of a product are the costs
associated with the development cycle and the time to market. An
adaptive economical model should be based on the above
estimations of the effort while taking into account the evolution of
the designer’s productivity. The goal is to predict the design cost
providing quantitative estimates of the their exponential growing,
together with a methodology to keep them under control via
increasing levels of reuse. This dynamic issue cannot be
addressed in this paper due to lack of space, more details can be
found in [4] and [5].

4. PROJECT SIZE ESTIMATION
Unfortunately, the planning of a project requires to cope with
estimated factors, the most important being the project size. Most
of the experts, in fact, tend to underestimate (from 50% to 150%)
the size of the project with catastrophic impacts on the design
management.
To estimates the size of a VHDL-based project, i.e. the parameter
S of the main equation of our model (Eff = A * SB), we split it
into a component related with purely functional aspects and the
test-benches used for simulation:

S = Ssystem + Stest-bench

The first goal is to quantify the effort for coding the system Ssystem
using a high-level formalism. A popular metric among the
designers is the Thousand Lines Of Code (KLOC or LOC) of the
specification. However, many criticism can be raised, since

VHDL is inherently parallel and the different statements vary
dramatically is expressiveness and complexity.
The estimation of LOC requires a well-structured and modular
project to obtain reliable values. The number of lines can be
determined analyzing the different contributions emerging from
the architecture description, which basically are: port (IO), signal,
concurrent statements, package and library.
The analysis can be performed trough direct measurements as
well as by following the proposed high-level estimation strategy,
where the requirement of achieving a fine grain analysis of the
system description can be overcome.

4.1 Direct Analysis
Processes and Components are the cornerstone of the analysis, we
assume that in a well structured project, the set of entities
correspond to a graph where components are nodes and processes
are leaves.
The processes typically contain the algorithmic part of the project
and their sizes are strongly influenced by the number of
considered signals (not only those of the sensitivity list); the type
of data (structured, scalar, …) also influences the estimates. From
our analysis, the estimated trend of LOC for a process is a
parabolic function of the number of input/output signals, called
grade of the process (more formally, the sum between the
outdegree and the indegree of the process graph). Vectors and
signals account for one, while for the records only the fields
effectively manipulated by the process are considered.

Figure 1. LOC against grade of a process: interpolation curve.
The fitting parabolic function, obtained via the least square
method applied on the data computed on the LEON-1 VHDL
description [3], is reported in figure 1.
Concerning the components, the number of lines will be of the
some order of magnitude of the number of considered signal,
listed in the component interface.

4.2 Function Point VHDL
The second strategy is to indirectly measure the LOC. This
approach can be applied to the case of the analysis of new
projects. The original idea is borrowed from the Software
Engineering area [6], we properly interpreted, extended and tuned
the methodology to cope with the characteristics of hardware

designs. It is based on a structured, but not necessarily, detailed
view of the project. From the description, some functional classes
will be identified and associated with a weight depending on their
complexity. In a second phase, these weights are converted in
KLOC, that is the value chosen to quantify S.
At a conceptual level, in particular, the representation of
functionality is not unique. We assume to deal with specifications
that are complete, consistent, rigorous and feasible.
The elements to be developed during the project to implement the
desired functionality are related to the activity of acquisition of
information, processing (sequential or combinatory), memory
access, and emitting of information. For the VHDL, each element
of the specification falls in one of these functional categories:
primary inputs, primary outputs, basic blocks and internal
signals. For each of them, a contribution (FPVHDL) is assigned
depending on the complexity, according to the categorization of
table 2.
Table 2. The weights associated with the functional categories.

Functional Category Very
Low

Low Avg High Very
High

Ultra
High

primary inputs 1 3 4 6 10 14

primary outputs 2 4 5 7 11 15

basic blocks 2 8 20 35 52 76

internal signals 2 8 20 35 52 76

The analysis of an element of the description is composed of two
steps. Initially, according to table 2, a weight is associated with
each of the elements composing a given unit. The weights are
function of characteristics and parameters deriving from the
specification. Hence, given a functional unit k containing mk
elements whose weight is wk,i, it is possible to compute:

 FPk =

∑
i=1

mk
 wk,i

 mk
 (eq. 1)

In other terms, the contribution is the average of those of its
components. Finally, for the entire system, the associated FPVHDL
becomes:

 FPVHDL = ∑
i=1

4
 FPk (eq. 2)

Let us describe in more detail how to analyze the different
functional categories.
The Primary Inputs category contains the inputs from the
specification surroundings the system, both for control (e.g. reset,
clock) and data acquisition. The complexity (see table 3) depends
on the:

• Homogeneity of data constituting the input, i.e. their
nature (record, vector, scalar) and size.

• Number of involved blocks, i.e. its contribution to the
internal communication of the systems after an event
implying an updating of signals.

Table 3. Complexity of the Primary Inputs.
Involved

Components
Homogeneity of data

 1-2 3-4 5-11 12-19 20-44 45-84 84-

1 VL VL L L A H H

2 VL L A A H H VH

3-4 L A A A H H VH

5-6 L A A H H VH VH

7- A H H VH VH VH UH

In a similar way, although with different values with respect to
those of table 3, the complexity of Primary Outputs is calculated.
The functional class Internal Signals, involves the homogeneity
of data and the control information exchanged between
components and subsystems. The correspondence between the
number of homogeneous data constituting an internal signal and
its complexity is depicted in table 4.

Table 4. Complexity of the Internal Signals.

Homogeneity of data
1-3 4-6 7-16 17-35 36-73 74-

VL L A H VH UH

Eventually, the Basic Blocks are instances of blocks identifiable
from the specification. It is important to identify all the
functionalities of the system to be mapped, during the final
VHDL coding phase, into entities with component and/or
processes. Moreover, it has to be considered as a basic block also
the functionality corresponding to the test-benches. The
complexity of a basic block depends on the number of
homogeneous data involved. In particular, if an identified basic
block will be realized as a component, the estimated number of
lines is equal to the number of homogeneous data processes by
the component; if the basic block will be implemented as a
process, the value of FP is computed by using the eq.1. Table 5
summarizes the level of complexity with respect to the number of
homogeneous data arriving to the process.
Concerning the relation existing between FPVHDL and LOC, some
literature studies [6] suggest the coefficients to convert the LOC
for different languages.

Table 5. Complexity of Basic Blocks to be implemented as
processes (leaves of the hierarchy).

homogeneous data entering into the basic block
1-29 30-56 57-85 85-105 105-125 125-

VL L A H VH UH

For VHDL we found sound the following conversion factors,
used for local and global estimations. For a single node:

LOC= 19 * FPVHDL
If the detail of the lower levels of the hierarchy are not
accessible (or are unknown), the number of lines of code

for a given node is estimated by introducing a tuning factor
(Lev), that is the level where the node is located:

LOC= 19 * FPVHDL * Lev
The value Lev is computed by considering a "levelized" procedure
where the bottom entity assumes the minimum value “1” while
the top level assumes the maximum estimated value. Hence, the
value of LOC is function of the considered level used to estimate
the global cost of a given module (or sub-module) when its final
decomposition is unknown but its level is at least predictable. As
an example, let us consider figure 2 where C can be further
decomposed in sub-modules. The estimated cost of the entire
project (in term of LOC) is obtained by summing up the local cost
of module A, the local cost of module B and the global cost of
module C, that is:

LOC=19*(FPVHDL-A + FPVHDL-B + FPVHDL-C * 3)

A (LEVEL 4)

B (LEVEL3)

C (LEVEL 3)

(?) (LEVEL 2)

(?) (LEVEL 2)

(?) (LEVEL 1)

A

C B

Level 1

Level 2

Level 3

Level 4

Figure 2. Example of Lev estimation and LOC computation.

5. Experimental Results
To provide a reliable validation of our methodology for metric
estimation, we considered a real-world complex VHDL
benchmark: the LEON-1 microprocessor. It implements a 32-bits
SPARC V8 architecture, designed for embedded applications,
with separate data and instruction caches, 32 bits memory bus,
interrupt controller, two 24-bits timers, two UARTs, a power
down function and a watchdog. The block diagram is reported in
figure 3, the corresponding specification, composed of 20 VHDL
files, can be found in [3] together with a detailed description of
the functional behavior.

MEIKO FPU

LEON IU

ICACHE DCACHE

DMA

BUS I/F

EDAC

SRAM PROM I/O

I/O PORT

WDOG

UART

TIMERS

IRQCTRL
Reset

Clk

I/O

WDOG
Rx

Tx

Figure 3. Block diagram of the LEON-1 microprocessor (gray

box).
Part of this specification files have been used to validate the direct
estimation of the LOCVHDL and for the tuning of the interpolation
function reported in figure 1. Concerning the FP analysis, let us
consider, as an illustrative example, the UART subsystem
depicted in Figure 4.

UARTOP

pbo

uarto

uarti

REGS

rst
ck
id
pbi

UART

rin r

Figure 4. Block diagram of the UART.

Four primary inputs involve UARTOP while one primary input is
connected to both subcomponents. All primary outputs but pbi
have complexity VL; the primary input pbi is composed by 6
homogeneous data, so that its complexity is L. The Primary
Outputs include pbo (2 homogeneous data) and uarto (6
homogeneous data); the complexity is VL for both signals.
Internal Signals contains r and rin; both are composed by 34
homogeneous data so that their complexity is H. Concerning the
basic blocks UARTOP and REGS, they are at the bottom level of
the hierarchy and they are implemented as processes; UARTOP
involves 45 homogeneous data (complexity L) while REGS
involves 3 homogeneous data (complexity VL). See Table 6 for a
quantitative computation of the UART FP.
The predictive analysis to estimate S, has been carried out for the
entire LEON-1 description, whose hierarchical structure is
depicted in figure 5.

Table 6 Complexity, FPVHDL and its conversion to LOCVHDL
for the UART of figure 3.

Category Complexity Weight

Primary inputs 1(VL=3)+1(VL)+1(VL)+1(L=3) +1(A)
5

1.4

Primary
outputs

1(VL=2)+1(VL)
2

2

Internal signals 1(H=10)+1H
2

10

Basic
Blocks

2 block (processes)
1(L=8) + 1(VL=2)

10

 Total number of FPVHDL 23,4

LEON (local cost actual: 219; estimated: 190)

MCORE (local cost actual: 241; estimated: 145)

PERI (local cost 162)

PROC (local cost actual: 166; estimated: 183)

CACHE (local cost actual: 112; estimated: 235)

Dcache (local cost actual: 508; estim.: 376)

Icache (local cost actual: 341; estim.: 399)

Cachemem (local cost actual: 228; estim.: 304)

IU (local cost actual: 2255; estimated: 2390)

REGFILE (local cost actual: 204; estimated: 183)

UART (local cost actual: 395; estimated: 445)

TIMER (local cost actual: 227; estimated: 155)

IOPORT (local cost actual: 180; estimated: 203)

IRQCTRL (local cost actual: 143; estimated: 161)

MCTRL (local cost actual: 1103; estimated: 912)

DMA (local cost actual: 138; estimated: 275)

RSTGEN (local cost actual: 61; estimated: 57)

MPCIIF (local cost actual: 104, estimated: 106)

PCI (local cost actual: 53, estimated: 91)

PADS (local cost 840) Library

CLOCKGEN (local cost 75) Library

Figure 5. LEON-1 Hierarchical decomposition.

The results and a comparison between estimated and actual
values, for all the LEON-1 files, are summarized in table 7 (local)
and table 8 (global). The data in the former one are single actual
cost (KLOCs) including both BODY and ARCHITECTURE
without comments and with a single statement per line.

Table 7. Experimental data obtained analyzing the LEON-1
description: local costs.

Architecture Local cost
(actual)

Local cost
(estimated)

Local
error

LEON 219 190 -13%
MCORE 241 145 -39%
PROC 166 183 10%
CACHE 112 235 110%
Dcache 508 376 38%
Icache 341 399 15%
Cachemem 228 304 5%
IU 2255 2390 0.5%
REGFILE 204 183 -6%
PERI 162 125 23%
UART 395 445 13%
TIMER 227 155 -31%
IOPORT 180 203 12%
IRQCTRL 143 161 12%
MCTRL 1103 912 17%
DMA 138 275 99%
RSTGEN 61 57 6%
MPCIIF 104 106 2%
PCI 53 91 71%
CLOCKGEN 75 114 52%
TOTAL 6915 7049 2%
PADS 840 library

Table 8 contains the global estimated costs, expressed in
LOC, representing the prediction of the number of lines of
VHDL constituting the portion of the project included in
the considered module, having the knowledge on the
presumed hierarchical level but no details on the inner
levels.

Table 8. Experimental data obtained analyzing the LEON-1
description: global costs.

Architecture

Level
(estim.)

Global cost
(actual)

Global cost
(estim.)

Global Error

LEON 5 7755 11030 42%
MCORE 4 6621 6384 3.5%
PROC 3 3814 3738 2%
CACHE 2 1189 1530 28.5%
PERI 3 1107 969 -12%

6. CONCLUDING REMARKS
The paper addressed the problem modeling the development
effort and time of hardware projects, to be used possibly to
tradeoff between designing from scratch or reusing existing IP
cells.
The analysis considered two cross-related aspects of the problem:

• The definition of a model to estimate the total effort
and, thus, the required amount of resources.

• The possibility to predict in a reliable manner,
possibly at the system-level, the size of the project
assuming a VHDL-based realization.

The latter point is particularly important since it is the cornerstone
of any planning analysis and its accuracy is very critical.
The methodology has been stressed considering a real large-size
benchmark, the LEON-1 microprocessor. The obtained results are
encouraging, since the average accuracy of the local estimates is
around 20% with a variance of 15%. Note that the summation of
local costs gives an estimated value with accuracy only around
2%, since errors tend to compensate.
Furthermore, trying to predict the size starting only from the top-
level view of the project, hence with a reasonable uncertain, the
estimated cost differs from the actual one of less than 40%.
For the considered LEON-1 system, the obtained effort,
considering the top-level estimated cost is 255 pm, the
development time T evaluates 14 months with an equivalent team
composed of 17 designers. T includes all the front-end activities
like simulation, testing, documentation, etc. The industrial
designers we interviewed have considered these values
reasonable.
Work is in progress to integrate the proposed financial analysis
methodology with the metrics we developed to quantify the level
of reusability of VHDL specifications, preliminarily described in
[7].

7. REFERENCES
[1] Virtual Socket Interface Alliance, http://www.vsia.org.
[2] COCOMO 2.0 Model Definition man., ver 1.2, 1997.
[3] J.Gaisler, LEON-1 VHDL Model Description, TOS-

ESD/JG/501, N.2.1, European Space Agency, May
2000.

[4] M.Keating, A financial model for design reuse,
http://www.synopsys.com, 1998.

[5] W.Fornaciari, F.Salice, Modeling the Effectiveness of
Reuse in SoC Design, FDL2000, Tubingen, Germany,
Sept. 2000.

[6] Experiece Function Point Analysis,
http:// www.sttf.fi/htnl/ant_expefpa.html, 1999.

[7] W.Fornaciari, S.Minonne, F.Salice, M.Vincenzi,
Lambda-Block Analysis of VHDL for Design Reuse,
In Virtual Components Design Reuse, Kluwer
Acadamic Publisher, 2000. Chapter 8, pp 111-121.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

