


so that: 
R = Eff/T 

Where the parameters are the project size S (Klines of code), the 
coefficients A, A2 considering possible multiplicative factors on 
the effort and the scale factors B, B2 accounting for 
economy/diseconomy originated in developing projects of 
different sizes. It is possible to determine the values of the 
parameters, according to the modality of developing the project, 
that is also influenced by the severity of the design constraints and 
the novelty of the application. The typical values are reported in 
table 1, ranging from small and simple projects (organic) to large 
size ones (embedded) requiring the fulfillment of stringent 
constraints and thus, a careful control of the development process. 
More details can be found in [2]. 

Table 1. Values of the model parameters. 

Mode A B A2 B2 
Organic 2.4 1.05 2.5 0.38 

Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.2 2.5 0.32 

 
To estimate the project size, suitable metrics and reference 

formalism must be considered. Due to its wide diffusion for 
hardware projects, we selected VHDL as the representative 
language to quantify the size (S).  
The modification on S introduced by the presence of reuse and 
the impact of the productivity improvements are the focus of the 
next section, while section four discusses the strategy to estimate 
S. 

3. DESIGN REUSE MODELS 
The rationale for reusing is that employing an available 
component is less expensive than designing it from scratch. 
However, its integration in the final design environment requires 
introducing some modifications. In general, the cost of reuse will 
be not simply proportional to the entity of the modification. In 
fact, it is required some extra-effort to select and understand the 
component to be integrated, in addition to the adaptation of the 
module interfaces. This section introduces some of the figures of 
merit and modifications to be considered in presence of reuse, 
with respect to the analysis presented in the previous one. Both 
static aspects and dynamic aspect of embedding a component in a 
project have to be considered.  
Concerning the static issues, given a module M to be reused, it is 
possible to define the estimation of an equivalent size (SMes) to be 
reused, starting from the original value of SM (size of the module 
M). For the following three different identified activities, the 
parameters and the final comprehensive expression are reported. 

• Evaluation and selection. The activities of 
Assessment and Assimilation to understand the 
suitability of the module, are captured by the 
parameter AA. It is a value ranging from 0 to 8, 
related with the quality of the available 
documentation. 

• Undestanding. The parameter CU (Code 
Understanding) is a percentage taking into account the 

increment of the code size due to the understanding of 
the component and the need to adapt the interfaces. 
Code with good documentation and high suitability 
with the project has CU=10% while in the opposite 
case CU can rise up to 50%.  
A second parameter (UNFM) captures the 
unfamiliarity of the designer with the module to be 
reused. The value ranges from 0 (completely familiar) 
to 1 (completely unfamiliar). 

• Modification. The contribution AAF to the 
modification depends on three factors: a) the 
percentage of design to be modified (DM) to suit the 
new environment; b) the percentage of code to be 
modified (CM) for the same reasons of a); and c) the 
percentage of integration required for the modified 
code (IM). IM depends on the effort to embed and test 
the module within the overall system with respect to 
the case of a starting from scratch design of another 
module of similar size.   
AAF = 0.4 DM + 0.3 CM + 0.3 IM 

The value of SMes can be computed through the following 
formulas, in the case of AAF ≤ 0.5 and AAF > 0.5, respectively 
[2]. 

SMes=0.01 SM[AA+AAF+(1+0.02 CU) UNFM] 

SMes=0.01 SM[AA+AAF+CU UNFM] 

Using this equivalent project size, it is possible to compute the 
value of Eff and T for the reuse of a module M. 
Some key factors in the success of a product are the costs 
associated with the development cycle and the time to market. An 
adaptive economical model should be based on the above 
estimations of the effort while taking into account the evolution of 
the designer’s productivity. The goal is to predict the design cost 
providing quantitative estimates of the their exponential growing, 
together with a methodology to keep them under control via 
increasing levels of reuse. This dynamic issue cannot be 
addressed in this paper due to lack of space, more details can be 
found in [4] and [5]. 

4. PROJECT SIZE ESTIMATION 
Unfortunately, the planning of a project requires to cope with 
estimated factors, the most important being the project size. Most 
of the experts, in fact, tend to underestimate (from 50% to 150%) 
the size of the project with catastrophic impacts on the design 
management.  
To estimates the size of a VHDL-based project, i.e. the parameter 
S of the main equation of our model (Eff = A * SB), we split it 
into a component related with purely functional aspects and the 
test-benches used for simulation: 

S = Ssystem + Stest-bench 

The first goal is to quantify the effort for coding the system Ssystem 
using a high-level formalism. A popular metric among the 
designers is the Thousand Lines Of Code (KLOC or LOC) of the 
specification. However, many criticism can be raised, since 



VHDL is inherently parallel and the different statements vary 
dramatically is expressiveness and complexity. 
The estimation of LOC requires a well-structured and modular 
project to obtain reliable values. The number of lines can be 
determined analyzing the different contributions emerging from 
the architecture description, which basically are: port (IO), signal, 
concurrent statements, package and library.  
The analysis can be performed trough direct measurements as 
well as by following the proposed high-level estimation strategy, 
where the requirement of achieving a fine grain analysis of the 
system description can be overcome. 

4.1 Direct Analysis 
Processes and Components are the cornerstone of the analysis, we 
assume that in a well structured project, the set of entities 
correspond to a graph where components are nodes and processes 
are leaves. 
The processes typically contain the algorithmic part of the project 
and their sizes are strongly influenced by the number of 
considered signals (not only those of the sensitivity list); the type 
of data (structured, scalar, …) also influences the estimates. From 
our analysis, the estimated trend of LOC for a process is a 
parabolic function of the number of input/output signals, called 
grade of the process (more formally, the sum between the 
outdegree and the indegree of the process graph). Vectors and 
signals account for one, while for the records only the fields 
effectively manipulated by the process are considered. 

 
Figure 1. LOC against grade of a process: interpolation curve. 
The fitting parabolic function, obtained via the least square 
method applied on the data computed on the LEON-1 VHDL 
description [3], is reported in figure 1. 
Concerning the components, the number of lines will be of the 
some order of magnitude of the number of considered signal, 
listed in the component interface. 

4.2 Function Point VHDL 
The second strategy is to indirectly measure the LOC. This 
approach can be applied to the case of the analysis of new 
projects. The original idea is borrowed from the Software 
Engineering area [6], we properly interpreted, extended and tuned 
the methodology to cope with the characteristics of hardware 

designs. It is based on a structured, but not necessarily, detailed 
view of the project. From the description, some functional classes 
will be identified and associated with a weight depending on their 
complexity. In a second phase, these weights are converted in 
KLOC, that is the value chosen to quantify S. 
At a conceptual level, in particular, the representation of 
functionality is not unique. We assume to deal with specifications 
that are complete, consistent, rigorous and feasible.  
The elements to be developed during the project to implement the 
desired functionality are related to the activity of acquisition of 
information, processing (sequential or combinatory), memory 
access, and emitting of information. For the VHDL, each element 
of the specification falls in one of these functional categories: 
primary inputs, primary outputs, basic blocks and internal 
signals. For each of them, a contribution (FPVHDL) is assigned 
depending on the complexity, according to the categorization of 
table 2. 
Table 2. The weights associated with the functional categories. 

Functional Category Very 
Low

Low Avg High Very 
High 

Ultra 
High 

primary inputs 1 3 4 6 10 14 

primary outputs 2 4 5 7 11 15 

basic blocks 2 8 20 35 52 76 

internal signals 2 8 20 35 52 76 

 

The analysis of an element of the description is composed of two 
steps. Initially, according to table 2, a weight is associated with 
each of the elements composing a given unit. The weights are 
function of characteristics and parameters deriving from the 
specification. Hence, given a functional unit k containing mk 
elements whose weight is wk,i, it is possible to compute: 

  FPk = 

∑
i=1

mk
 wk,i

 mk
  (eq. 1) 

In other terms, the contribution is the average of those of its 
components. Finally, for the entire system, the associated FPVHDL 
becomes: 

 FPVHDL = ∑
i=1

4
 FPk (eq. 2) 

Let us describe in more detail how to analyze the different 
functional categories.  
The Primary Inputs category contains the inputs from the 
specification surroundings the system, both for control (e.g. reset, 
clock) and data acquisition. The complexity (see table 3) depends 
on the: 

• Homogeneity of data constituting the input, i.e. their 
nature (record, vector, scalar) and size. 

• Number of involved blocks, i.e. its contribution to the 
internal communication of the systems after an event 
implying an updating of signals. 



Table 3. Complexity of the Primary Inputs. 
Involved 

Components 
Homogeneity of data 

 1-2 3-4 5-11 12-19 20-44 45-84 84- 

1 VL VL L L A H H 

2 VL L A A H H VH 

3-4 L A A A H H VH 

5-6 L A A H H VH VH 

7- A H H VH VH VH UH 

 
In a similar way, although with different values with respect to 
those of table 3, the complexity of Primary Outputs is calculated. 
The functional class Internal Signals, involves the homogeneity 
of data and the control information exchanged between 
components and subsystems. The correspondence between the 
number of homogeneous data constituting an internal signal and 
its complexity is depicted in table 4. 

Table 4. Complexity of the Internal Signals. 

Homogeneity of data 
1-3 4-6 7-16 17-35 36-73 74- 

VL L A H VH UH 

 
Eventually, the Basic Blocks are instances of blocks identifiable 
from the specification. It is important to identify all the 
functionalities of the system to be mapped, during the final 
VHDL coding phase, into entities with component and/or 
processes. Moreover, it has to be considered as a basic block also 
the functionality corresponding to the test-benches. The 
complexity of a basic block depends on the number of 
homogeneous data involved. In particular, if an identified basic 
block will be realized as a component, the estimated number of 
lines is equal to the number of homogeneous data processes by 
the component; if the basic block will be implemented as a 
process, the value of FP is computed by using the eq.1. Table 5 
summarizes the level of complexity with respect to the number of 
homogeneous data arriving to the process. 
Concerning the relation existing between FPVHDL and LOC, some 
literature studies [6] suggest the coefficients to convert the LOC 
for different languages. 

Table 5. Complexity of Basic Blocks to be implemented as 
processes (leaves of the hierarchy). 

homogeneous data entering into the basic block 
1-29 30-56 57-85 85-105 105-125 125- 

VL L A H VH UH 

 
For VHDL we found sound the following conversion factors, 
used for local and global estimations. For a single node: 

LOC= 19 * FPVHDL 
If the detail of the lower levels of the hierarchy are not 
accessible (or are unknown), the number of lines of code 

for a given node is estimated by introducing a tuning factor 
(Lev), that is the level where the node is located: 

LOC= 19 * FPVHDL  * Lev 
The value Lev is computed by considering a "levelized" procedure 
where the bottom entity assumes the minimum value “1” while 
the top level assumes the maximum estimated value. Hence, the 
value of LOC is function of the considered level used to estimate 
the global cost of a given module (or sub-module) when its final 
decomposition is unknown but its level is at least predictable. As 
an example, let us consider figure 2 where C can be further 
decomposed in sub-modules. The estimated cost of the entire 
project (in term of LOC) is obtained by summing up the local cost 
of module A, the local cost of module B and the global cost of 
module C, that is: 

LOC=19*(FPVHDL-A + FPVHDL-B + FPVHDL-C * 3) 
 

A (LEVEL 4)

B (LEVEL3)

C (LEVEL 3)

(?) (LEVEL 2)

(?) (LEVEL 2)

(?) (LEVEL 1)

A

C B

Level 1

Level 2

Level 3

Level 4

 
Figure 2. Example of Lev estimation and LOC computation. 

5. Experimental Results 
To provide a reliable validation of our methodology for metric 
estimation, we considered a real-world complex VHDL 
benchmark: the LEON-1 microprocessor. It implements a 32-bits 
SPARC V8 architecture, designed for embedded applications, 
with separate data and instruction caches, 32 bits memory bus, 
interrupt controller, two 24-bits timers, two UARTs, a power 
down function and a watchdog. The block diagram is reported in 
figure 3, the corresponding specification, composed of 20 VHDL 
files, can be found in [3] together with a detailed description of 
the functional behavior. 
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Figure 3. Block diagram of the LEON-1 microprocessor (gray 

box). 
Part of this specification files have been used to validate the direct 
estimation of the LOCVHDL and for the tuning of the interpolation 
function reported in figure 1. Concerning the FP analysis, let us 
consider, as an illustrative example, the UART subsystem 
depicted in Figure 4. 
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Figure 4. Block diagram of the UART. 

 
Four primary inputs involve UARTOP while one primary input is 
connected to both subcomponents. All primary outputs but pbi 
have complexity VL; the primary input pbi is composed by 6 
homogeneous data, so that its complexity is L. The Primary 
Outputs include pbo (2 homogeneous data) and uarto (6 
homogeneous data); the complexity is VL for both signals. 
Internal Signals contains r and rin; both are composed by 34 
homogeneous data so that their complexity is H. Concerning the 
basic blocks UARTOP and REGS, they are at the bottom level of 
the hierarchy and they are implemented as processes; UARTOP 
involves 45 homogeneous data (complexity L) while REGS 
involves 3 homogeneous data (complexity VL).  See Table 6 for a 
quantitative computation of the UART FP. 
The predictive analysis to estimate S, has been carried out for the 
entire LEON-1 description, whose hierarchical structure is 
depicted in figure 5. 

Table 6 Complexity, FPVHDL and its conversion to LOCVHDL 
for the UART of figure 3. 

Category Complexity Weight

Primary inputs 1(VL=3)+1(VL)+1(VL)+1(L=3) +1(A)
5  

1.4 

Primary 
outputs 

1(VL=2)+1(VL)
2   

2 

Internal signals 1(H=10)+1H
2   

10 

Basic 
Blocks 

2 block (processes) 
1(L=8) + 1(VL=2) 

10 

 Total number of FPVHDL 23,4 
 
 

LEON (local cost actual: 219; estimated: 190)

MCORE (local cost actual: 241; estimated: 145)

PERI (local cost 162)

PROC (local cost actual: 166; estimated: 183)

CACHE (local cost actual: 112; estimated: 235)

Dcache (local cost actual: 508; estim.: 376)

Icache (local cost actual: 341; estim.: 399)

Cachemem (local cost actual: 228; estim.: 304)

IU (local cost actual: 2255; estimated: 2390)

REGFILE (local cost actual: 204; estimated: 183)

UART (local cost actual: 395; estimated: 445)

TIMER (local cost actual: 227; estimated: 155 )

IOPORT (local cost actual: 180; estimated: 203)

IRQCTRL (local cost actual: 143; estimated: 161)

MCTRL (local cost actual: 1103; estimated: 912)

DMA (local cost actual: 138; estimated: 275)

RSTGEN (local cost actual: 61; estimated: 57)

MPCIIF (local cost actual: 104, estimated: 106)

PCI (local cost actual: 53, estimated: 91)

PADS (local cost 840) Library

CLOCKGEN (local cost 75) Library
 

Figure 5. LEON-1 Hierarchical decomposition. 
 



The results and a comparison between estimated and actual 
values, for all the LEON-1 files, are summarized in table 7 (local) 
and table 8 (global). The data in the former one are single actual 
cost (KLOCs) including both BODY and ARCHITECTURE 
without comments and with a single statement per line. 

Table 7. Experimental data obtained analyzing the LEON-1 
description: local costs. 

Architecture Local cost 
(actual) 

Local cost 
(estimated) 

Local 
error 

LEON 219 190 -13% 
MCORE 241 145 -39% 
PROC 166 183 10% 
CACHE 112 235 110% 
Dcache 508 376 38% 
Icache 341 399 15% 
Cachemem 228 304 5% 
IU 2255 2390 0.5% 
REGFILE 204 183 -6% 
PERI 162 125 23% 
UART 395 445 13% 
TIMER 227 155 -31% 
IOPORT 180 203 12% 
IRQCTRL 143 161 12% 
MCTRL 1103 912 17% 
DMA 138 275 99% 
RSTGEN 61 57 6% 
MPCIIF 104 106 2% 
PCI 53 91 71% 
CLOCKGEN 75 114 52% 
TOTAL 6915 7049 2% 
PADS 840 library  

 

Table 8 contains the global estimated costs, expressed in 
LOC, representing the prediction of the number of lines of 
VHDL constituting the portion of the project included in 
the considered module, having the knowledge on the 
presumed hierarchical level but no details on the inner 
levels.  

Table 8. Experimental data obtained analyzing the LEON-1 
description: global costs. 

 
Architecture 

Level 
(estim.) 

Global cost 
(actual) 

Global cost 
(estim.) 

Global Error

LEON 5 7755 11030 42% 
MCORE 4 6621 6384 3.5% 
PROC 3 3814 3738 2% 
CACHE 2 1189 1530 28.5% 
PERI 3 1107 969 -12% 

6. CONCLUDING REMARKS 
The paper addressed the problem modeling the development 
effort and time of hardware projects, to be used possibly to 
tradeoff between designing from scratch or reusing existing IP 
cells. 
The analysis considered two cross-related aspects of the problem: 

• The definition of a model to estimate the total effort 
and, thus, the required amount of resources. 

• The possibility to predict in a reliable manner, 
possibly at the system-level, the size of the project 
assuming a VHDL-based realization. 

The latter point is particularly important since it is the cornerstone 
of any planning analysis and its accuracy is very critical. 
The methodology has been stressed considering a real large-size 
benchmark, the LEON-1 microprocessor. The obtained results are 
encouraging, since the average accuracy of the local estimates is 
around 20% with a variance of 15%. Note that the summation of 
local costs gives an estimated value with accuracy only around 
2%, since errors tend to compensate. 
Furthermore, trying to predict the size starting only from the top-
level view of the project, hence with a reasonable uncertain, the 
estimated cost differs from the actual one of less than 40%. 
For the considered LEON-1 system, the obtained effort, 
considering the top-level estimated cost is 255 pm, the 
development time T evaluates 14 months with an equivalent team 
composed of 17 designers. T includes all the front-end activities 
like simulation, testing, documentation, etc. The industrial 
designers we interviewed have considered these values 
reasonable. 
Work is in progress to integrate the proposed financial analysis 
methodology with the metrics we developed to quantify the level 
of reusability of VHDL specifications, preliminarily described in 
[7]. 
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