
RS-FDRA: A Register Sensitive Software Pipelining
Algorithm for Embedded VLIW Processors*

Cagdas Akturan and Margarida F. Jacome
Department of Electrical and Computer Engineering

The University of Texas at Austin

E-mail: {akturan, jacome}@ece.utexas.edu
Abstract
The paper proposes a novel software-pipelining algorithm,
Register Sensitive Force Directed Retiming Algorithm (RS-
FDRA), suitable for optimizing compilers targeting embedded
VLIW processors. The key difference between RS-FDRA and
previous approaches is that our algorithm can handle code size
constraints along with latency and resource constraints. This
capability enables the exploration of pareto “optimal” points with
respect to code size and performance. RS-FDRA can also
minimize the increase in “register pressure” typically incurred by
software pipelining. This ability is critical since, the need to insert
spill code may result in significant performance degradation.
Extensive experimental results are presented demonstrating that
the extended set of optimization goals and constraints supported
by RS-FDRA enables a thorough compiler-assisted exploration of
trade–offs among performance, code size, and register
requirements, for time critical segments of embedded software
components.

Keywords
Software pipelining, optimizing compilers, embedded systems,
VLIW processors, retiming.

1. Introduction
Software pipelining is an effective performance enhancing loop
transformation aimed at extracting instruction level parallelism
(ILP) hidden in inner loop bodies. Software pipelining increases
throughput by overlapping the execution of loop body iterations.
Since the time critical segments of embedded digital signal
processing and multimedia applications are typically loops,
software pipelining is very effective in improving the performance
of such applications. Very large instruction word (VLIW)
processors, such as [1] and [2], are particularly suitable for
executing the resulting (optimized) multimedia/DSP code.
Although software pipelining can lead to dramatic increases in
performance, it may also lead to a significant increase in memory
size requirements. Particularly in the context of compilers for
embedded processors, memory size is an important cost factor.
The increase in memory size requirements may arise in two

forms: increase in code size (program memory) and increase in
number of live data objects (registers/data memory). Most
previous research in software pipelining has focused strictly on
minimizing latency under resource constraints, while ignoring
these two important cost factors.
In this paper we propose a novel software-pipelining algorithm,
Register Sensitive Force Directed Retiming Algorithm (RS-
FDRA), suitable for optimizing compilers targeting embedded
VLIW processors. The key difference between RS-FDRA and
previous approaches is that our algorithm can effectively handle
code size constraints along with latency and resource constraints.
We argue that this novel ability to explicitly consider code size
constraints is critical, since it allows embedded system designers
to perform compiler assisted exploration of pareto “optimal”
points with respect to code size and performance, both important
figures of merit for embedded software. Another important
capability of RS-FDRA is that it can also minimize the increase in
number of concurrently live data objects, i.e., “register pressure”,
typically incurred by software pipelining. Note that increase in
register pressure tends occur when ILP (i.e., operation’s
concurrency) increases. This ability is critical since the need to
insert spill code may result in significant performance
degradation. In other words, a maximum throughput schedule may
not be feasible, due to the limited number of registers available on
a machine’s datapath. RS-FDRA poses no restrictions on the
target datapath, i.e., it can handle machine datapaths with multi-
cycle and pipelined functional units.
We will show that, given its unique set of combined capabilities,
the proposed RS-FDRA algorithm can be effectively used by
embedded system designers to explore different code optimization
alternatives, i.e., can assist the generation of customized retiming
solutions for desired program memory size and throughput
requirements, while minimizing register pressure.
RS-FDRA targets inner loop bodies comprised of a single basic
block. A significant percentage of time critical code segments of
signal processing and multimedia applications are indeed single
basic block loops. We note, however, that a hierarchical reduction
technique, such as the one described in [3], can be easily
incorporated in our algorithm, making it completely general.
An extensive set of experiments is presented in the paper,
demonstrating two important facts. First, our results show that the
extended set of optimization goals and constraints -- functional
resources, latency, code size, and register requirements -- is
supported by RS-FDRA without compromising the quality of the
“point solutions”. In other words, when possible to compare, the
vast majority of individual solutions generated by our algorithm
are similar or compare favorably with those produced by the best
state of art algorithms. Second, our experiments show that RS-
FDRA can be used to explore a much larger space of (retiming)
trade-offs than that possible to explore by previous algorithms.
The organization of the paper is as follows. Section 2 gives a brief
background discussion on software pipelining and introduces our

*This work is supported by an NSF CAREER Award MIP-9624231, an
NSF Grant CCR-9901255 and by Grant ATP-003658-0649 of the
Texas Higher Education Coordinating Board

notation. Section 3 defines the two optimization problems
addressed in this paper. Section 4 presents our proposed software-
pipelining algorithm. Section 5 reviews previous work. Section 6
discusses experimental results and section 7 presents conclusions.

2. Background
A retiming graph, GR(N,E,w), is a data-flow graph representation
of a basic block loop body, where N denotes the set of the loop
body operations and E denotes the data dependencies between
those operations. For each edge, an iteration distance (delay) is
defined as the difference between the loop index at which the data
object is consumed and the loop index at which it is produced, and
represented by the weight function w:ek Z+; ek E.
In Figure 1(a) we show a simple loop body with 3 (single cycle)
instructions. In Figure 1(b) and (c) we show the retiming graph
and a schedule for this loop body, and the corresponding data
object lifetime layout, respectively. This example will be used to
illustrate the discussion.

 for i=1 to n do
instr1: x[i]= t[i] * c1;
instr2: y[i]=x[i] + z[i-2];
instr3: z[i]=y[i] * c2;
 end

i j i jn N f F, , ,1 ,

(a) Input loop body

 0*

 1+

 2*
2D

(b)Retiming graph
and schedule

0

1

22

(c) Data object
life time layout

Figure 1
We model the datapath of a VLIW processor as follows. The set
of functional unit types is denoted by F={fj; j=0,1,..,nres}. The
execution time of an operation ni on a functional unit type fj is
denoted by i,j. For pipelined functional units, the corresponding
data introduction interval is denoted by i,j.
Retiming is a transformation performed on the original retiming
graph, GR, aimed at pipelining several loop body iterations within
the same execution cycle. Formally, given a retiming function
r:ni Z; ni N, weights (delays) on the original retiming graph
are transformed into a new set of weights (wr

), given by ([4]):

w e w e r n r nr k k i j() () () () (1)

Before retiming is performed, all nodes/operations in the retiming
graph belong to the same iteration, i.e., pipe-stage. After retiming,
several iterations may be pipelined on the same execution cycle.
The total number of pipe stages (iterations executing
concurrently) is denoted by P. The number of execution steps
required by any such (balanced) pipe-stage corresponds to the
initiation interval (lb) of the retimed loop body, i.e., the latency of
one execution cycle of the loop [5]. The total number of
scheduling steps (), obtained by “flattening” the pipe stages, is
given by:

lb P (2)
An important point is that, after retiming, the total code size is
equal to P times the size of the original loop body. This is so due
to the prolog and epilog needed to start and conclude the set of
iterations that will execute simultaneously in the retimed loop.
A schedule function, nk)=i,0 , is used to assign each
operation nk to a step i of the flattened schedule. Similarly, the
function x(nk)= nk)mod lb, assigns operation nk to step x(nk) of
the folded schedule.
We compute the lifetime of a data object associated with edge ei

using EQ3 below. In this computation, we assume that the lifetime
starts at step ns)+ s,j, and lasts through step nd), also
considering the retimed delay ei) on the edge ei.

() () () * (), ,()
() () () ()

e n n lb e e E n n
where e r n r n w e

i d s i i s
e

d

i s d i

i

 (3)

Consequently, the lifetime of the data object produced by
operation ns is equal to the “maximum length edge” among all
edges originated from ns, and is given by:

() max(()); , , ,do e e E n n n n Nn i i s
e

k s kS

i (4)

We can thus compute the number of live copies of a data object
produced by operation ni, at time t, using EQ5 below.

R q t k where
k if t k lb

k otherwisen
k n n

n n do

i
s s

s s nS

Re () ()
() , (mod)

() ,() ()

() () () 1

0
 (5)

Consider, for example, the schedule in Figure 1(b), and the
corresponding data object lifetime layout shown in Figure 1(c).
Since there are two delays on the edge from operation 2 to 1, the
data object produced by node 2 stays alive for two iterations,
hence these two copies overlap on execution steps 1 and 2.
The minimum number of registers required at each execution step
t of the folded schedule can be computed by adding up the register
requirements posed by each data object (i.e., result produced by
an operation), as shown in EQ6 below.

RReq (t) RReq (t)n
i 1

N

iSCH
 (6)

The minimum register requirements of a schedule is given by the
maximum number of live data objects on any given step of the
folded schedule:
M RR t lbCH SCH_ eq max(RReg (t)) ; 0..S 1 (7)

Consider the loop body given in Figure 1(a) and its corresponding
retiming graph shown in Figure 1(b). The throughput of this loop
can be tripled, i.e., its initiation interval can be reduced from 3 to
1 execution steps if, for example, nodes 0 and 1 are retimed by 2
and 1, respectively. As shown in Figure 2(b), the corresponding
loop body schedule would then have 3 pipe-stages and, thus, the
code required by the retimed loop would be three times longer
than the original code (that is Prolog+Steady State+Epilog, as
shown in Figure 2a). Note also that, although for this small
example the original schedule (Figure 1) and the schedule of the
retimed loop have the same register requirements (i.e. 3 registers),
quite frequently that is not the case.

for i=1 to n-2 do
 x[i+2]= t[i+2] * c1;
 y[i+1]=x[i+1] + z[i-1];
 z[i]=y[i] * c2;
end
z[n-1]=y[n-1]* c2;
y[n]=x[n] + z[n-2];
z[n]=y[n]* c2;

x[1]= t[1] * c1;
x[2]= t[2] * c1;
y[1]=x[1] + z[-1];

(a) Pipelined loop body

P. Stage2

(b) Pipelined loop body,
r(0)=2, r(1)=1, r(2)=0

 0* 1+ 2*

P.Stage 1P.Stage 0

 1D
 1D

 1D 0
Data objects

(c) Life time
of data
objects

1 2

Prolog

Epilog

St
ea

dy
 S

ta
te

Figure 2
3. Problem Definition
The two optimization problems handled by RS-FDRA are defined
as follows:
Problem 1: Find a retiming that minimizes register requirements
and initiation interval (latency) subject to constraints on number
of pipe stages (code size) and on datapath resources (functional
units).
Problem 2: Find a retiming that minimizes register requirements
and number of pipe stages (code size) subject to constraints on
initiation interval (latency) and on datapath resources (functional
units).
The objective in Problem 2 is to derive a software-pipelining
solution that meets the latency constraint and leads to a minimum
increase in code size and register requirements.

The objective in Problem 1 is to find a software pipelining
solution with minimum latency and register pressure that meets
the maximum allowed code size, for a given VLIW datapath
configuration. The ability to handle this problem is one of the key
differentiating characteristics of RS-FDRA with respect to
previous work reported in the literature. To the best of our
knowledge no other algorithm can address this problem. A
preliminary version of our algorithm, without register
minimization capabilities, was presented in [6],[7].
In the following sections, we describe our proposed optimization
framework, and an algorithm that can effectively handle the two
problems defined above.

4. RS-FDRA
In this section, we describe the main modules and execution flow
of our algorithm. As shown in Figure 3, RS-FDRA starts with an
initialization step, and then iteratively considers candidate
solutions to the problem at hand. At each iteration, a new
(promising) retiming graph is generated by the solutions manager
module, and handed to the scheduler. The main optimization
module then analyses the results produced by the scheduler and,
based on the problem being solved (Problem 1 or 2), decides on
what to do next. Details on the algorithms and strategies utilized
on each of the modules of RS-FDRA are given below.

Figure 3. Execution flow of RS-FDRA
4.1. Preprocessor
The strongly connected components (SCC’s) of a graph impose
restrictions on the number of retimings that can be applied to each
node belonging to these components [8]. In Figure 4(a), we show
an example loop body, with one SCC (marked in gray). When
retiming cyclic graphs, the most common approach followed by
current state of the art algorithms is to schedule first the strongly
connected components, and then contract these components in a
node (considering their aggregate resource usage and total delay).
These approaches clearly fail to explore the space of possible
retiming solutions for these components. Unlike previous
approaches, we schedule all nodes of the graph uniformly; and
consider a selected set of retiming solutions for these strongly
connected components.
The first initialization task performed by the preprocessor module
is preparing the strongly connected components of the graph for
retiming, as described below. First it identifies all of the nontrivial
strongly connected components (SCC’s) of the input graph [9].
Next, using the Algorithm IE in [8], an interval or equality
constraint is generated for each edge. Later, using these
constraints, the solutions manager module will generate
alternative retiming solutions, as needed.
The second initialization task is the computation of the lower
bounds on the initiation interval and number of pipe stages, as
described in [3].

4.2. Solutions Manager
The solutions manager is responsible for supplying “good”
(promising) retiming solutions for the SCC’s previously
identified. Specifically, this module handles the SCC’s solution
generation, ranking/selection, and their reinsertion on the overall
retiming graph, at each iteration started by the main optimization
module.
The alternative retiming solutions for each SCC are first ranked
for minimum code size (see section 4.2.1), and then they are
ranked for minimum register requirements (see section 4.2.2).

Based on this ranking, the next set of candidate solutions is
selected. The solutions manager then inserts those solutions in the
retiming graph, by placing constraints on the relative retiming
distances between the nodes of the corresponding strongly
connected components.
4.2.1 Ranking 1: Minimizing Increase in Code Size
Our extensive experiments have shown that, in general,
considering first the retiming solutions (for the SCC’s) that have
the least number of pipe-stages and the smallest initiation
interval, improves the efficiency (speed) of the algorithm. Thus,
we start our search with the retiming solutions (in the solution
repository for the SCC’s) that require minimum number of pipe
stages and shortest critical path (CP). Specifically, we order these
solutions using the ranking function given in EQ8.
Rank Solution P SCC SCC Solution()= ((, Solution)+)* CP(,)1 (8)

4.2.2. Ranking 2: Minimizing Register Pressure
In our context, an SCC can be defined as a group of recurrence
circuits that have one ore more nodes in common. Whenever a
given node (operation) ni on the SCC appears in more than one
recurrence circuit, we can say that the data object produced by ni

is shared among those recurrence circuits. Accordingly, a data
object shared by more than one recurrence circuits is called a
shared data object (SDO). We denote a shared data object
produced by operation ni by SDOi.

 0

 1

 3

 6

 4D

 3D

5

 4
 11

 9

 9

 9

(b) Schedule (c) Data Objects (d) RReq(a) Retiming solution-1

 4D

 4 4 4 3 3 2 2 2

 0

 2

 6 5

 0

 1

 3

 4

 3

SDO1

SDO0 SD05

 4D

 3

 1
 4 4

 5

 2

Figure 4
Consider, for example, the SCC in Figure 4. It has 3 SDO’s,
highlighted with bold arrows. SDO0 has a single edge (data
dependency) shared by 3 recurrence circuits. Similarly, SDO5 is
shared by 2 recurrence circuits. SDO1, on the other hand, has 3
edges, shared by 3 different recurrence circuits.
In order to reduce register pressure in an SCC’s schedule, we
favor the retiming solutions that have larger delays on the edges
associated with shared data objects, thus reducing the delays on
the remaining edges of the SCC. This heuristic is based on the fact
that each recurrence circuit has a fixed total delay. Therefore, only
by overlapping the delays on the recurrence circuits, can one
reduce the minimum register requirements of an SCC.

(a) Retiming solution-2

 0

 2 4

 5 6

 1

 3

 0

 4

 6

 4

(b) Schedule (c) Data Objects (d) RReq

 1 1 1

2 3 4

 5

5

 0

 3
 4

 6

 3D
 3D

 1D

3D

 4

 1

 2
 3

 5

Figure 5
In Figure 4(a), we show a retiming solution for the SCC in gray.
In Figure 4(b) and (c), we show a schedule for that solution, and
the corresponding lifetime of the data objects. Finally, in Figure
4(d) we show the number of live data objects at each step of the
folded schedule. In Figure 5 we provide the same information, for
an alternative retiming solution. Note that the solution in Figure 5
requires 6 registers while the solution in Figure 4 requires 11

registers. This result is consistent with our previous discussion,
since the solution in Figure 5 redistributes the edge delays on the
recurrence circuits so as to maximize the number of delays on the
shared edges.

4.3. Scheduler
The mission of the scheduler is to derive a schedule under
resource and code size (Problem 1) or latency (Problem 2)
constraints, for the complete retiming graph generated by the
solutions manager, at each iteration of the algorithm. The
scheduler uses a modified form of the Force Directed Scheduling
Algorithm, described in detail below.
Similar to the extension algorithm described in [10], the time-
space dimensions of our modified force directed scheduling
algorithm are sliced into a number of pipe-stages, and we
schedule one operation at a time, as follows. We start by
performing a modified ASAP (ASAPM) and a modified ALAP
(ALAPM) schedule of the retiming graph, in order to find the
earliest and the latest scheduling steps for each (unscheduled)
node in the retiming graph. There are three main differences
between our modified and the conventional ASAP and ALAP
algorithms. The first difference is that our ASAPM and ALAPM

identify unfeasible execution steps for the nodes belonging to
SCC’s, by taking into consideration the precedence relationships
defined in the retiming graph. The second difference is that our
ASAPM and ALAPM algorithms also identify scheduling steps
with zero available resources, and remove them from the
operation's time frame. Finally, the third difference is that, when
the input graph is feed-forward (i.e., contains no SCC’s), we use
the TASAP algorithm proposed in [11], in order to obtain tighter
bounds on the ASAP and ALAP scheduling times of the nodes.
The use of the TASAP algorithm reduces the execution time of
RS-FDRA by eliminating impossible execution steps from the
operations’ time frames. It also improves the quality of the final
solutions, by allowing the generation of more precise load
distribution (resource demand) profiles.
Similarly to the standard Force Directed Scheduling Algorithm
[10], we then associate each operation with a uniform probability
function. After computing the probability function for each
operation, a pipelined distribution graph for each resource type is
derived. (Note that the distribution graph of a resource type gives
a profile of the demand for that resource at each execution step.).
Since, all pipe-stages execute simultaneously, the pipelined
distribution graph is the summation of operations’ probabilities at
each execution step of the folded schedule. Using the pipelined
distribution graphs, we then compute the self-forces and
predecessor and successor forces for each operation, at each
feasible scheduling step [10]. Note that the self force of operation
ni at a scheduling step t measures the change in concurrency
resulting from scheduling ni at step t. The predecessor and
successor forces for operation ni, on the other hand, account for
the change in the predecessor and successor operations’
concurrency, resulting from scheduling ni at step t. After this
process is completed, a sum force is computed for each operation,
over all its scheduling steps.
Then, unlike the standard Force Directed Scheduling Algorithm,
the operation with the maximum sum force (over its time frame) is
selected to be scheduled next. The idea is to consider first those
operations that target the most congested steps.
The selected operation is then scheduled to the “best” time step
within its time frame, using a two-phase process. In the first
phase, all time steps that are within a minimum force threshold are
marked as high priority scheduling steps. In order to do that, the

algorithm starts by sorting the scheduling steps in the operation’s
time frame by increasing force. Then, it selects the time steps
whose associated forces are within percent of the maximum
force in the operation’s time frame.
In the second phase of the scheduling process, for each of these
high priority scheduling steps, we compute the register
requirements of the data object produced by the operation
(selected for scheduling), with respect to its already scheduled
successor operations, using EQ4. We then schedule the operation
to the time step with minimum register requirements.
After updating the set of feasible time steps for the unscheduled
operations, the calculation of forces is repeated, until all nodes are
scheduled (success), or no node can be scheduled (failure).

4.4.Main Optimization Module
When the scheduler is unable to find a retiming solution meeting
the constraints (lb or P), one of two actions can be taken, by the
main optimization module depending on the problem being
solved. Specifically, if the algorithm is solving optimization
Problem 1, lb is incremented by 1, and the scheduler is re-
executed, until a solution is found. Otherwise, if the algorithm is
solving optimization Problem 2, P is incremented by 1, and the
scheduling algorithm is repeated.
Otherwise, if a solution meeting the constraints was found, the
main optimization module requests the re-execution of the
scheduler, but now with an increased value, in an attempt to
find a solution with less register requirements.

5. Previous Work
This section briefly surveys previous work in retiming and
software pipelining. Examples of software pipelining algorithms
that are based on some variation of list scheduling include [12],
[3], [13] and [14]. In [15] a resource-constrained software-
pipelining algorithm that can handle conditionals on the loop body
is proposed. The retiming algorithm proposed in [16] compacts a
given valid schedule by applying a phased iterative retiming and
scheduling. The method proposed in [17] uses a probabilistic
rejectionless algorithm, aiming at achieving high resource
utilization. Algorithms in [15], [16], and [17] are similar, in the
sense that when the running time is sufficiently large, they are
likely to converge to an optimum solution.
Note that none of the algorithms referenced above handles
minimization of register pressure. Perhaps even more important,
none of the algorithms handles code size constraints. To the best
of our knowledge, the only exception is our fast heuristic
algorithm in [18]. This algorithm uses list scheduling and gives
higher priority to the nodes in the strongly connected components
of the input graph. Since in the context of embedded systems the
quality of the generated solutions is of major importance, RS-
FDRA was designed to efficiently handle the high-quality
requirements of such applications, as well as to enable explicit
trade-off exploration by embedded system designers.
We conclude our discussion by briefly considering algorithms that
can handle minimization of register pressure. Slack Scheduling
[19] follows a bi-directional scheduling strategy, i.e., using an
heuristic priority function schedules some operations early while
delaying others, in order to reduce register pressure. In [20], a
Linear Programming based approach is proposed to schedule loop
operations for minimum register requirements, for a given modulo
reservation table. Also, in [21], an exact methodology to minimize
register requirements for an optimum rate schedule is presented.
In [22], a set of low computational complexity stage-scheduling
heuristics are presented, aiming at reducing the register

requirements of a given modulo schedule solution. Swing Modulo
Scheduling [23] schedules the operations of the input graph using
a predetermined heuristic order in order to reduce register
pressure.

6.Experimental Results
In this section we compare the performance of our algorithm with
two state of art software pipelining algorithms.
Rotation scheduling [16] was chosen to be one of the comparison
algorithms because it is one of the best software pipelining
algorithms proposed to date -- our experiments show that it
consistently finds optimal (or near optimal) solutions, i.e.,
minimum latency schedules under resource constraints, with a
corresponding minimum depth retiming function (i.e., minimum
number of pipe stages). Although this algorithm does not handle
code size constraints or register minimization, the results of this
experiment are still informative, since they empirically
demonstrate that FDRA handles code size minimization under
latency and resource constraints at least as effectively as previous
state-of-the-art approaches. Swing Modulo Scheduling (SMS)
[23] was selected to be the second comparison algorithm for RS-
FDRA because, according to results presented in [23], this
algorithm performs almost as well as the exact method in [24].
Recall that SMS directly aims at reducing register pressure during
the software pipelining optimization, using an elegant node

ordering strategy. Experimental data was collected for various
digital signal-processing benchmarks widely referenced in the
retiming/software pipelining literature, considering various VLIW
datapath configurations.
Two sets of experiments are presented in the paper. The first is
summarized in Table 1 and the second is summarized in Table 2.
The first set of (102) experiments aims at comparing the quality of
the results produced by RS-FDRA when solving Problem 2 with
those produced by our implementations of Rotation Scheduling
and SMS. Each entry in Table 1 represents a different experiment.
Columns 1 and 2 specify the DSP benchmark and the VLIW
datapath configuration considered in the particular experiment,
respectively. The following four columns (labeled lb P, R, and t)
show the initiation interval, number of pipe stages, minimum
register requirements, and execution times (in seconds for an Intel
Pentium II XEON Processor), considering three alternative
multipliers (execution delay and data introduction intervals are
indicated by and respectively). As mentioned above, RS-
FDRA was executed in Problem-2 optimization mode for these
experiments—in this mode, the objective is to minimize latency
and register requirements under resource constraints, and
simultaneously derive the minimum number of pipe stages
required by the solution.

Table 1 Experimental Results (Problem 2)

Table 2 Experimental Results (Problem1)

Our algorithm found a minimum latency solution in 98% of the
cases (sub-optimal solutions are marked in gray). Rotation
scheduling and SMS generated minimum latency solutions in
88.2% and 77.45% of the cases, respectively. In 87.25% of the
cases our algorithm was able to generate a solution with minimum
register requirements whereas SMS obtains a minimum register
solution only in 50% of the cases. Since Rotation scheduling is
not designed for register pressure minimization, we do not present
the high register requirements of its solutions. In 89% of the cases
RS-FDRA obtains minimum code size solution. Rotation
scheduling and SMS can obtain minimum code size solution in
69.6% and 51.96% of the cases, respectively.
This empirical evidence strongly suggests that RS-FDRA, when
handling latency and register pressure minimization under
resource constraints, compares favorably with previous state-of-
the-art approaches.
The second set of experiments, shown in Table 2, are aimed at
demonstrating that RS-FDRA is capable of exploring a much
larger set of pareto optimal points (trade-offs), as compared to the
reference algorithms. Accordingly, Table 2 presents experimental
results obtained with RS-FDRA executing in Problem-1 mode,
i.e., minimization of latency and register requirements, under
resource and code size (maximum number of pipe stages)
constraints. By varying the constraint on number of pipe stages,
several pareto “optimal” points, exhibiting different latency and
register requirements vs. code size trade-offs, were generated by
RS-FDRA. Naturally, none of the two other algorithms, designed
to minimize latency at “whatever cost”, is capable of identifying
such “trade-off solutions”. For example, for the 4-cascaded FIR
Filter with 8 adders and 8 multipliers shown in Table 2, the
rotation scheduling algorithm is capable only of generating a
solution with 10 pipe-stages and a latency of 2 steps. SMS, on the
other hand, can generate a retiming solution with 7 pipe stages,
with a latency of 3 cycles and this schedule requires minimum 26
registers. Our algorithm is capable of generating solutions with 9
pipe-stages and latency of 2 steps (24 registers), 6 pipe-stages and
latency of 3 steps (20 registers), 5 pipe-stages and latency of 4 (17
registers), etc. Naturally, deciding on which solution is the “best”
depends on the performance, register, and code size
requirements/budgets, defined for each specific embedded
application.

7.Conclusions
The paper proposes a novel software-pipelining algorithm,
Register Sensitive Force Directed Retiming Algorithm (RS-
FDRA), suitable for optimizing compilers targeting embedded
VLIW processors. Experimental results demonstrate that the
extended set of optimization goals and constraints is supported by
RS-FDRA without compromising the quality of the individual
“point solutions”. In other words, when possible to compare,
individual solutions generated by our algorithm compare
favorably with those produced by some of the best state of art
algorithms. The proposed RS-FDRA enables a thorough compiler-
assisted exploration of trade–offs among performance, code size,
and register requirements, for time critical segments of embedded
software components.

References
[1] http://dspvillage.ti.com/docs/dspvillagehome.jhtml
[2] http://www.semiconductors.philips.com/trimedia/
[3] M. Lam, “A systolic array optimizing compiler”, Ph.D. Thesis,
Carnegie Mellon University, 1987.

[4] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, pp. 5-35, 1991.
[5]B.R. Rau, “Iterative modulo scheduling: an algorithm for
software pipelining loops”, MICRO-27, 1994.
[6] C. Akturan, M. F. Jacome, "FDRA: A Software Pipelining
Algorithm for Embedded VLIWProcessors", in Proc. of Int. Sym.
on System Synthesis, Sept. 2000.
[7]http://horizon.ece.utexas.edu/~jacome/nova
[8] T. C. Denk, K. K. Parhi, “Exhaustive Scheduling and
Retiming of Digital Signal Processing Systems”, in IEEE
Transactions on Circuits and Systems-II: Analog and Digital
Signal Processing, pp. 821-837, Vol. 45, No. 7, July 1998.
[9] E. M. Reingold, J.Nievergelt, N. Deo, “Combinatorial
Algorithms: Theory and Practice”, Englewood Cliffs, New Jersey:
Prectice-Hall Inc., 1977.
[10] P. G. Paulin, J. P. Knight, “Force Directed Scheduling for the
Behavioral Synthesis of ASIC’s”, IEEE Transactions on
Computer-Aided Design, Vol. 8, No. 6 June 1989.
[11] H. P. Peixoto, M. F. Jacome, "A New technique for
Estimating Lower Bounds on Latency for High Level Synthesis",
in Proc. of IEEE Great Lakes Symposium, March 2000.
[12] C. Wang, K. K. Parhi, “High Level DSP Synthesis Using
MARS Design System”, Proc. of the Intl. Symposium on Circuits
and Systems, pp. 164-167, 1992.
[13] T. Lee, A. C. Wu, D. D. Gajski, Y. Lin, “An effective
methodology for functional pipelining”, Proc. of the Intl.
Conference on Computer Aided Design, pp. 230-233, Dec 1992.
[14] G. Goossens, J. Vandewalle, H. De Man, “Loop optimization
in register-transfer scheduling for DSP-systems”, Proc. of the
ACM/IEEE Design Automation Conference, pp. 826-831, 1989.
[15] A. Aiken, A. Nicolau, S. Novack, “Resource-Constrainted
Software Pipelining”, IEEE Transactions on Parallel and
Distributed Systems Vol.6, No. 12, Dec. 1995.
[16] L. Chao, A. LaPaugh, E.H. Sha, “Rotation Scheduling: A
loop Pipelining Algorithm”, IEEE Transactions on Computer
Aided Design”, Vol. 16, No. 3, pp. 229-239, March 1997.
[17] M. Potkonjak, J. Rabaey, “Retiming For Scheduling”, VLSI
Signal Processing IV, pp. 23-32, Nov 1990.
[18] M. F. Jacome, G. de Veciana and C. Akturan, "Resource
Constrained Dataflow Retiming Heuristics for VLIW ASIPs",
Proc. of IEEE/ACM 7th Intl. Workshop on Hardware/Software
Codesign, Apr 99.
[19] R. A. Huff, “Lifetime-Sensitive Modulo Scheduling”, in
Proc. of the ACM SIGPLAN’93 Conference on Programming
Language, Design and Implementation, pp. 258-267, 1993.
[20] A. E. Eichenberger, E.S. Davidson, S.G. Abraham,
“Minimizing Register Requirements of a Modulo Schedule via
Optimum Stage Scheduling”, Intl. Journal of Parallel
Programming, Feb. 1996.
[21] R. Govindarajan, E.R. Altman, G. R. Gao, “Minimizing
Register Requirements under Resource-Constrained Rate–Optimal
Software Pipelining”, MICRO-27, San Jose CA, 1994.
[22] A. E. Eichenberger, E.S. Davidson, “Stage Scheduling: A
Technique to Reduce the Register Requirements of a Modulo
Schedule”, MICRO-28, pp. 338-349, Nov. 1995.
[23] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero, “Swing
Modulo Scheduling: A Lifetime Sensitive Approach”, in Pact96,
Oct. 1996.
[24] J. Cortadella, R.M. Badia, F. Sanchez, “A mathematical
formulation of the loop pipelining problem”, in Proc. of XIth
Design of Integrated Circuits and Systems Conf., Nov. 1996.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

