Designing Domain-Specific

Marnix Arnold
Delft University of Technology
Department of Electrical Engineering

marnix@cardit.et.tudelft.nl

ABSTRACT

We present a semi-automated method for the detection and
exploitation of application domain specific instruction set
extensions for embedded (VLIW) processors. It consists of
three steps: the first step detects frequently occurring oper-
ation patterns, in the second step, the patterns are grouped
and implemented in a number of Special Function Units
(SFUs) and the third step incorporates the custom oper-
ations into the code generation process.

Experiments show that the SFUs generated and exploited
with our methodology can result in architectures that per-
form up to 30% better than architectures of the same cost
without SFUs.

Keywords

Instruction Set Synthesis, Design Space Exploration

1. INTRODUCTION

In recent years, the emphasis in the microprocessor mar-
ket has increasingly been shifting from general-purpose CPUs
for personal computers and workstations, to processors that
have to perform only a limited number of tasks, meant to be
embedded in various electronic systems. Examples of these
embedded processors can be found all around us today: in
mobile phones, cars, cameras, toys, etc. It is expected that
the market for these embedded devices will only grow as the
mobile voice and data networks continue to expand.

The research presented in this paper is aimed at tun-
ing (embedded) processors towards their intended applica-
tion domain. Figure 1 shows a number of different hard-
ware/software systems, each with its own advantages and
disadvantages. The systems on the left side of the figure
tend to be more application-specific (efficient but inflexi-
ble), to the right they become more general-purpose (very
flexible but also expensive). By designing an Application
Domain Specific Processor (ADSP), we want to combine
the efficiency of hardware with the flexibility of software.

Permissionto male digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

CODES 2001 Copenhagerenmark

Copyright 2001ACM 0-89791-88-6/97/05.$5.00.

Processor s

Henk Corporaal
IMEC Leuven

heco@imec.be

ASIC ASP ADSP DSP CISC RISC

T T T T T T
Hardware Software

Figure 1: Hardware/software systems.

A popular[1l] processor tuning approach, and also the one
we will take, is to extend the operation repertoire of the
processor to include application domain specific custom op-
erations. Because we believe time-to-market to be a critical
factor in the successful customization of embedded proces-
sors, we strive to automate this process as much as possible.

This paper addresses the problem of automatically find-
ing the proper instruction set extensions for the intended
application domain, as well as the problem of how to make
use of these extensions. We will demonstrate a technique for
the automatic detection of instruction set extensions on the
basis of a set of benchmarks representative of the intended
domain. We will also present a code generation technique
that allows instruction-level parallel (VLIW) processors to
make use of the extensions we found. Using this technique,
we will perform a design space exploration in order to find a
suitable processor configuration for the application domain.

Section 2 gives an overview of related work from the fields
of instruction set synthesis, pattern matching and code gen-
eration with complex operations. In section 3, we describe
our strategy for the automatic detection of opportunities for
application (domain) specific instruction set extensions. A
code generation strategy that combines instruction selection
with scheduling is described in section 4. Experiments with
the pattern construction method and the resulting Special
Function Units are presented in section 5. In section 6, we
present design space exploration results for searches with
and without SFUs. A summary and conclusions are given
in section 7.

2. RELATED WORK

The work presented in this article relates to the fields
of pattern matching, instruction set synthesis and instruc-
tion selection/code generation. Matching and covering al-
gorithms are well-known in the fields of code generation and
logic synthesis. Pattern matchers used in logic synthesis
(121, [3]) and compilers ([4], [5]) generally require the pattern
graphs to be trees (single-output, acyclic, non-reconvergent
graphs).

The study described in [6] involves the search for chain-
able operation sequences, in order to find instruction set
extensions for application-specific instruction set processors

(ASIPs). An earlier version of some of the work presented
in this paper can be found in [7]. In [8], the performance
potential of data dependence collapsing for sequences of op-
erations was studied in the context of a superscalar archi-
tecture.

The work presented in [9] derives the best instruction set
on a fixed data path for a set of benchmarks representa-
tive for an application domain. An integrated instruction
set synthesis and code generation tool was described in [10],
which also focuses on a fixed, single-issue, pipelined proces-
SO
In [11], instruction selection with complex operations is
treated as a binate covering problem. Exact solutions can
be found (for small basic blocks). Liem e.a. [12] use match-
ing and covering techniques to identify recurring instances of
hybrid operation and control flow patterns, in order to per-
form instruction selection for DSP and ASIP architectures.
Another approach [13], aimed at code generation for DSPs,
operates by partially postponing instruction selection until
the compaction phase, in order to exploit pipelined, complex
operations.

The methodology we present in this paper distinguishes
itself from the related work in several ways. The matching
algorithm we will use [14] is different from existing methods
(12, [3], [4], [5], [11]) in that it allows both the subject and
pattern graphs to be DAGs with any number of outputs.
This allows us to match operation patterns of any shape as
long as they are acyclic. The algorithm constructs its own
pattern library, rather than requiring a predefined one [12],
by combining existing patterns as they are encountered in
the subject graph. It is able to construct operation pat-
terns of any (acyclic) shape, rather than just sequences [6].
Our instruction selection and scheduling algorithm is aimed
at exploiting custom operations for instruction-level parallel
architectures, whereas current efforts ([11], [12], [13]) focus
primarily on single issue DSP architectures.

3. FINDING INSTRUCTION SET EXTEN-
SIONS

We will describe an automated technique to identify fre-
quently occurring operation patterns in a set of applications.
By implementing these patterns in hardware, as special op-
erations, we hope to be able to increase the efficiency with
which the embedded processor can execute these applica-
tions. The general approach we will take is as follows:

1. Generate execution traces for a set of benchmarks rep-
resentative of the application domain we are designing
the embedded processor for.

2. In these traces, identify and isolate frequently occur-
ring patterns of operations.

3. Evaluate the most frequently occurring operation pat-
terns in terms of how useful it would be to implement
them in hardware (as custom operations).

The execution traces are generated using the simulator
from the Move compiler suite [15], which simulates the exe-
cution of (sequential) code as it is generated by the compiler
front-end. The operations that the simulator executes are
used to generate a (dynamic) execution trace in the form of
a data-dependence graph to expose a large amount of avail-
able instruction level parallelism. This way, we can also

detect patterns and their frequency counts across control
flow boundaries.

For the second step, the automatic detection of recur-
ring patterns of operations, a new matching algorithm was
developed. This was necessary in order to overcome several
limitations posed by existing matching algorithms, most no-
tably the restriction that pattern graphs are only allowed to
have one output. This restriction would make it impossible
to detect opportunities for multi-output custom operations.
In addition, the algorithm has been extended to allow on-
the-fly construction of the pattern library, adding operation
patterns as they are found in the trace. Conventional meth-
ods such as the one used in [12] require the designer to sup-
ply a predefined library of operation patterns, which means
that the designer must know beforehand which patterns to
expect.

An in-depth description of our pattern detection and con-
struction algorithm is beyond the scope of this paper. In-
stead, we will illustrate the basic concepts by means of two
examples in sections 3.1 and 3.2. A detailed description of
the algorithm can be found in [14].

The third step involves gaining an understanding of how
often a custom operation would be used during code gener-
ation. This is described briefly in section 3.3.

3.1 The Matching Algorithm

Given a subject graph Gup, consisting of the operations
and operands in an execution trace, we must find all matches
of pattern graph Gpa: in Gsyp. Our matching algorithm op-
erates by finding partial matches between individual subject
and pattern operations, and then merging these until com-
plete pattern matches are found. Figure 2 illustrates the
concept of partial matches. Operation I matches operation
n1 and a partial match m; is created. This match consists of
a vector of references to subject graph nodes, where the po-
sition in the vector of each reference indicates which pattern
graph node it corresponds to. The rest of the entries in the
match vector remain empty. In a similar fashion, partial
match mg is constructed for operation IT and my. Com-
bining partial matches m; and my around a shared pivot
operand yields a complete match ms for pattern Gpqt.

Gpa} ,,,,,,,, Gsub
J{ ;] : d a b
' ol[lo2| i ops operands
i ! nl2 012345 R F
n > m[l . J[ablcl .] |
dee= [l][. ed €]
partial matches . (. c

o 04
‘ 1y

1 reference vector pivot operand

I

1 >mB[l Il][a b c de] I
| complete match e

Figure 2: Partial matches merged into a complete
match.

3.2 Pattern Library Construction

We start pattern library construction with a subject graph
Gsup and a collection of single-operation patterns PatLib =
{Gpat; }, as shown in figure 3. Each time we finish detecting
matches on an operation node, we start looking for oppor-
tunities to create new patterns.

After we finish matching on operations I and IT of Gsys,

PatLib
Gpatl Gpat2 Gsub

RARE %w%

3@3 @ mi(Gat1)[1][a b c]
in Pin :
o3 [| nm2(Gpat2)[I1][c d e]

R TOR m8(..)[1 llabcdel C
ool ! I
"""""" e
Figure 3: DPattern construction by combining
matches.

we see that two matches m; and ms both contain a reference
to operand node c. Note that now the matches refer to
different patterns, which was not the case in the example
of figure 2. If we combine the matches m: and ma into
a new match mg, we have a recipe for constructing a new
pattern! By copying all the nodes (operations and operands)
referenced in mg into a new pattern and adding it to the
library, we will be able to log all future occurrences of this
pattern.

3.3 Trace Covering

It is misleading to use the number of detected matches for
each pattern as a measure of its usefulness as an instruction
set extension. It has been observed [14] that some classes
of patterns result in an enormous number of overlapping
matches, from which only a few can be chosen for a cover.
For this reason, we want to make a selection of matches,
such that all subject operations are covered by one match.
Selecting such a set of matches is called covering. In this
paper we attempt to minimize the number of matches cho-
sen for the cover, since that may give an indication which
patterns could be useful in minimizing the code size when
we are generating code.

The algorithm we use to select a cover is a variation on
dynamic programming[16], an approach often used in com-
pilers. It operates by recursively walking each path in the
subject graph from its outputs upwards, until it meets ei-
ther an already covered node, or a subject graph input. On
each operand node it comes across, it determines the lowest
implementation cost in much the same way that dynamic
programming handles the minimum-cost covering problem
on trees. Since we have to deal with non-tree graphs, how-
ever, some modifications have been made.

The calculation of the implementation cost of a match
happens relative to the current subject operand node. In
figure 2, the cost of a single operation match on operation
III, relative to f, would be the cost of the match itself, plus
the implementation cost at the input d. However, a pat-
tern supporting a post-increment load (II and III) would be
much more expensive since it is both larger and has a larger
fan-in. Instead, we only consider the part of the match that
is relevant to f. The implementation cost of the II-1II match
itself is divided across its outputs, meaning that for f only
half the match cost is considered. Similarly, we divide the
cost at its inputs by the number of uses of that input, so
that for d, only half the implementation cost is considered.

4. CODE GENERATION WITH INSTRUC-
TION SET EXTENSIONS

Now that we have a method for finding a set of candidates
for instruction set extensions, we also need a way to take ad-
vantage of these custom operations in the code that is gen-
erated for our target applications. The context in which we
will generate code is an instruction-level parallel list sched-
uler, based on the Move compiler tools [15]. This scheduler
is operation-based (as opposed to cycle-based): operations
are scheduled in sequence, each time the ready (i.e, without
unscheduled predecessors) operation with the highest prior-
ity is chosen for scheduling. As one of the priority measures,
the slack of an operation is taken, that is, the difference be-
tween the last (ALAP) and first (ASAP) cycle in which it can
be scheduled, taking only data dependency constraints into
account (ignoring resource constraints). The lower the slack,
the higher the operation’s scheduling priority.

There are several strategies we can use to introduce cus-
tom operations into the scheduling process. The one we
will use, described in this section, is based on the trace cov-
ering method introduced in section 3.3 and injects custom
operations into the code before it is scheduled. Other strate-
gies (described in [14]) introduce custom operations into the
code during scheduling. However, research has shown that
within the basic block scheduling scope that we will use,
the method described in the following paragraphs yields the
best results.

The most straightforward way to include the use of cus-
tom operations in the code generation process is to modify
the data dependence graph (DDG) before presenting it to
the scheduler. The DDG is in some ways similar to the
execution traces we performed trace covering on. It con-
tains operations (nodes) that use the result values of other
operations as operands and are thus dependent (connected
by data dependence edges). If we represent our custom op-
erations in terms of patterns of basic! operations, we can
use the matching algorithm from section 3.1 to detect all
instantiation possibilities of our custom operations in the
DDG. Each operation node will be contained in at least one
match (the default match, with the basic operation itself).
Any other matches containing the operation node provide an
implementation of the operation node as part of a custom
operation. We can then use the trace covering algorithm
to perform instruction selection, i.e, to make a selection of
matches, covering the DDG, such that each operation node
is contained in exactly one match. The matches chosen for
the cover are subsequently implemented by replacing the
basic operations contained in each complex pattern match
with the corresponding custom operation. Figure 4 illus-
trates this: in 4(a), all matches mi...5 on the DDG fragment
are shown, in (b) a selection of matches (cover) is made,
containing only msy and my, and in (c) the custom opera-
tions corresponding to the matches from the cover are im-
plemented in the graph.

Our code generation strategy attempts to find the optimal
cover within each basic block that minimizes the number of
selected matches. Fewer matches translates to fewer opera-
tions for the schedule, and it is expected that the increased
scheduling freedom leads to better (i.e, shorter) schedules.

'T.e, only operations from the set that was used by the com-
piler front-end to generate the unscheduled, sequential code.

mi

m2

(@) (b) ©)

Figure 4: Matching, covering and match implemen-
tation on a DDG fragment.

5. EXPERIMENTS

In the previous sections, we presented a method for finding
frequently occurring patterns of operations. We have used
this method to find a set of custom operations for a set of
benchmark applications from the digital signal processing
domain. The approach taken has two steps:

1. We determine a set of frequently occurring operation
patterns from the execution traces of all of the bench-
marks.

2. Using the library of detected patterns and their match-
ing and covering contributions as a guide, we construct
Special Function Units (SFUs) and a testbed architec-
ture.

An overview of the benchmark applications we will use
throughout the experiments is given in section 5.1. The
results for the pattern library construction experiment are
presented and analyzed in section 5.2, The formation of
SFUs is described in section 5.3.

5.1 Benchmark Applications

For our experiments, we use a number of common bench-
marks from the digital signal processing domain. Frequently
used for multimedia processing, these algorithms are good
candidates for implementation on an embedded processor.
It must be noted, however, that our method is not limited
to finding processor optimizations for this set of benchmarks
only. They are merely used to illustrate the generally appli-
cable methodology for embedded processor customization
described in this paper. An overview of the benchmarks,
with their static and dynamic operation counts, is given in
table 1.

Name Description #ops (stat) Fops (dyn)
bspline FIR Filter 31 6149
compress ~ Compression (dct 2d) 611 163513
dft Discrete FFT 39 6666
edge Edge detection 440 268717
expand Decompression (idet 2d) 464 151083
fir 35 pt. Lowpass FIR 119 30459
flatten Level histogram of image 148 33960
foewf 5th Order Elliptic Wave 43 13067
iir TIR highpass filter 134 10794
intfft Interpolate with FFT/IFFT 571 188421
pse Sehwa’s FIR filter 30 6917
smooth Convolution w. 3x3 kernel 135 83365

Table 1: DSP benchmarks.

5.2 Pattern Construction Results

For the purposes of this paper, we have limited the number
of operations per constructed pattern to three, mainly in
order to reduce execution time and memory requirements,

and because it is expected that larger patterns would be less
generally applicable (as was shown in [14]).

The total number of (unique) new patterns found for all
the benchmarks is 656. Figure 5 shows the contribution to
the total number of matches vs. the contribution to the
(trace)cover for each of the new patterns. All numbers are
averages across all applications.

% of all matches in cover
»
T
I

Lo + N ++ +

g AR ‘ ‘

0 1 2 3 4 5 6
% of all matches

Figure 5: Match contribution vs. cover contribution
for all patterns.

The first thing to observe about figure 5 is that most of
the new patterns are not that often encountered or used in
covers. A few patterns account for most of the matches and
most of the matches chosen for covers. This indicates that a
few, well-chosen custom operations can already yield large
benefits.

We can now sort the library with the new patterns ac-
cording to the sum of their matching contribution (position
on the horizontal axis of figure 5) and their cover contribu-
tion (vertical axis). Looking only at the match contribution
would be misleading, since not all matches are equally likely
to be chosen for the cover. This explains why a pattern that
was matched often (a high value on the horizontal axis of
figure 5) is not necessarily chosen for the cover as frequently.
Looking only at the cover contributions of patterns would
be misleading as well: the choice of matches for the cover
is made by an algorithm based on dynamic programming,
and these tend to have a preference for chain-like patterns
(i.e, sequential rather than parallel). By sorting by the sum
of the matching and covering contributions, we get a mix of
patterns with a high covering contribution (which are likely
to have a good matching contribution, too) and patterns
that have a high match count but were somehow not chosen
by the covering algorithm.

5.3 SpecialFunction Unit Construction

Since it is impossible to implement all patterns as cus-
tom operations, we have selected 40 patterns from the top-
100 in order to create five Special Function Units (SFUs).
No detailed hardware was designed, but the patterns were
grouped into categories that are likely to map well onto the
same hardware. Because this is difficult to do automatically
it was done by hand.

The ADDSFU executes 12 patterns of up to three integer
addition or compare operations. In this respect it is an
extension of the 3-1 interlock collapsing ALU [17], which

executes two chained integer operations as one. The most
important difference, apart from the pattern size, is that
our SFU also executes patterns with operations executing
in parallel (with a shared operand).

The MEMSFU is a load/store unit that also performs ad-
dress computations. It supports patterns of up to two inte-
ger additions and one memory operation.

The FPSFU supports patterns of up to three floating oper-
ations, at most one multiplication and up to two additions.

The MULSFU supports patterns of one integer multiplica-
tion followed by up to two integer additions.

The ASHSFU supports one integer addition or compare in
sequence with, or parallel to a left shift operation.

In addition to the complex operations, all SFUs also sup-
port the individual, atomic operations that make up their
respective patterns, as well as related atomic operations that
do not appear in the patterns (e.g, although the floating-
point subtract operation did not appear in any pattern, it
is supported by the Fpsru). This is required in order to
maintain full instruction set compatibility, or in the terms
of section 4, to always allow implementation of any default
match.

The latencies of the SFU are, as a first approximation,
taken to be equal to the latencies of related basic FUs. Lit-
erature suggest this is a reasonable assumption in many
cases. For instance, a chain of two integer additions can
be collapsed into a single-cycle operation [17], an integer
multiply-add takes the same time as an integer multiply in
most DSP architectures and floating point multiply-add im-
plementations (e.g, [18]) have been designed that have the
same latency as a floating-point multiplication. In [19], the
SAM or Sum-Addressed Memory technique is described. It
performs base+offset (load address) calculations using the
decoder of the RAM array, with very low latency, effectively
combining the address calculation and the actual load in a
single operation. The technique has been successfully im-
plemented in the Ultrasparc III microprocessor.

In some other cases, however, the equal-latency assump-
tion is bound to be overly optimistic. Unfortunately, the
current Move software generation tools do not allow this la-
tency to be specified on a per-operation basis: each FU has
a single, fixed latency which applies to all the operations
it supports. This may cause some distortion in the results
presented in the next section, particularly where execution
times are concerned.

6. DESIGN SPACE EXPLORATION

Now that a set of SFUs has been defined, we want to apply
the automatic design space exploration method, described
in chapter 7 of [15], to the problem of finding a suitable pro-
cessor architecture for our application domain. In addition,
the design space exploration process will let us analyze the
added value of SFUs, relative to regular FUs. The initial,
oversized architecture, which is used as the starting point of
the design space exploration, contains both SFUs and regu-
lar FUs, and a number of transport buses. In the first phase
of the design space exploration, all buses are connected to
all (S)FUs.

The design space exploration process was performed twice,
once with and once without making use of SFUs. Figure 6
shows the Pareto curves[16] for the abovementioned bench-
mark set. On the horizontal axis, the architectures’ cost is
shown (in pm?), the vertical axis shows the total execution

1.1e+07

T T
no SFUs —+—
with SFUs ---x---

1e+07

9e+06

8e+06

7e+06

6e+06 -

5e+06

Execution time (ns)

4e+06 -

3e+06

ok
2e+06 |- A T)
B T I MY

1e+06 I I I I I I I
0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08

Cost (um”"2)

Figure 6: Design space exploration results.

time (in ms) of the benchmarks for the various architecture
design points.

It can be seen in figure 6 that for higher architecture cost,
the design points that include the SFUs are much more effi-
cient than those with only the basic FUs (about 30% fewer
cycles for the same cost). In the steepest part of the curve,
the architectures consist of only the smallest set of (S)FUs
necessary to execute the benchmarks. The only variation
is in the number and type (width) of transport buses that
are in the architectures. It can be seen here that the “with
SFU” architectures have a slightly better performance vs.
cost ratio that the “no SFU” architectures. This is due to
the fact that the program storage requirements are lower for
the code generated when making use of SFUs.

From the Pareto curve resulting from a design space explo-
ration, the designer can choose an architecture configuration
to perform connectivity reduction on. Connections between
(S)FUs and transport buses are iteratively removed, which
initially results in better results since the architecture’s area
and cycle time become smaller. This continues until the
transport resources are limited to a degree where they con-
strain the scheduler too much and performance deteriorates.

6.5e+06

6e+06 1

5.5e+06 1

5e+06 q

4.5e+06 - q

Execution Time (ns)

4e+06 1

3.5e+06 - 1
3e+06 1 1 L f f t 1 1
0 20 40 60 80 100 120 140 160 180
Connections Removed (of 210)

Figure 7: Connectivity reduction on a Pareto-point
from figure 6.

Figure 7 shows the results for a connectivity reduction ex-

periment performed on the architecture point marked with
an arrow in figure 6. During the removal of the first 137
connections, the execution time (the product of the number
of executed cycles and the cycle time) steadily decreases.
This is due to the fact that the cycle time improves as the
buses get shorter and have fewer connections (it changes
from 27 to 25 ns during the removal of the first 137 connec-
tions). If more than 137 connections are removed, however,
the remaining parallelism in the architecture is insufficient
to generate efficient schedules. This means that the sched-
ule length increases, which in turn causes an increase in
the number of executed cycles. This increase is more rapid
than the cycle time reduction, resulting in a higher execution
time. It can also be seen in figure 7 that it is not possible
to remove more than 167 connections. At this point, the
minimal connectivity has been reached that is required to
generate a working schedule.

MEMSFU FPSFU ASHSFUL ASHSFU2

o ol t 1o o ol o2 t 1 1 12 o o1 t 1 o1 o ol t 1o

EEEET

IIITT

2 ol o2 in ol B pc ra iml im2 im3 im4

MULSFU INT RF F | FETCH
llIE:

-]
-
-
-
-
-
]
EEX X X X)
—
—

o ol o2 t 1 1 12

o

Figure 8: The architecture after removing 137 con-
nections.

Figure 8 shows the architecture that results from the con-
nectivity removal experiment, after 137 bus-socket connec-
tions have been removed. It has an area of 52 mm?, a re-
duction of 6 mm?. The most remarkable feature of the ar-
chitecture is that there now are several SFU (result) sockets
that are not connected to any buses. This does not mean
that those units are incapacitated; it merely implies that
there is no call for the more complex custom operations that
use these result sockets. This in turn implies that an even
cheaper architecture may be possible that will get the same
performance as the one shown: by redesigning the SFUs
without the unused, complex custom operations, a more ef-
ficient architecture can be designed. Note, however, that the
experiments presented here all use basic block scheduling, it
is very well possible that more advanced scheduling strate-
gies with bigger scheduling scopes will be able to exploit the
custom operations that have three outputs.

7. SUMMARY AND CONCLUSIONS

In this paper, we set out to automatically design appli-
cation domain specific processors. We demonstrated our
method for the automated detection and exploitation of in-
struction set extensions, which led to the specification of a
number of Special Function Units (SFUs). These SFUs sup-
port a number of custom operations, which can be put to
use by a special instruction selection and code generation
strategy.

Design space exploration showed that using SFUs can
have a beneficial effect on the cost vs. performance ratio
of application domain specific processors. SFUs turn out to
be an effective way to expand processors while maintaining
flexibility and programmability.

8. REFERENCES

[1] Tom R. Halfhill. 1999 review: Embedded market breaks
new ground. Embedded Processor Watch, 82, January 2000.

[2] K. Keutzer. Dagon: Technology binding and local
optimization by dag matching. In DAC, Proceedings of the
Design Automation Conference, pages 617-623, May 1987.

[3] R. Rudell. Logic synthesis for vlsi design. Technical Report
UCB/ERL M89/49, University of California at Berkeley,
April 1989.

[4] A.V. Aho, M. Ganapathi, and S.W.K. Tjiang. Code
generation using tree matching and dynamic programming.
ACM Trans. Programming Languages and Systems, pages
491-516, October 1989.

[5] Christopher W. Fraser and Todd A. Proebsting. Custom
instruction sets for code compression. not published, 1995.

[6] Frederick Onion, Alexandru Nicolau, and Nikil Dutt.
Compiler Feedback in ASIP Design. Technical report,
University of California, Irvine, September 1994.

[7] Marnix Arnold and Henk Corporaal. Automatic detection
of recurring operation patterns. In Seventh International
Workshop on Hardware/Software Codesign, pages 22-26,
Rome, Italy, May 1999.

[8] Yiannakis Sazeides, Stamatis Vassiliadis, and James E.
Smith. The performance potential of data dependence
speculation & collapsing. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, pages
238-247, Paris, France, December 1996.

[9] Bruce K. Holmer. A tool for processor instruction set
design. In EURO-DAC, 1994.

[10] Ing-Jer Huang and Alvin M. Despain. Synthesis of
instruction sets for pipelined microprocessors. In DAC,
1994.

[11] Stan Liao, Srinivas Devadas, Kurt Keutzer, and Steve
Tjiang. Instruction selection using binate covering for code
size optimization. In International Conference on
Computer-Aided Design, pages 393-399, 1995.

[12] Clifford Liem, Trevor May, and Pierre Paulin.
Instruction-set matching and selection for dsp and asip
code generation. In Proceedings of
EDAC-ETC-EUROASIC, pages 31-37, 1994.

[13] Rainer Leupers and Peter Marwedel. Instruction selection
for embedded dsps with complex instructions. In European
Design Automation Conference (EURO-DAC), September
1996.

[14] Marnix Arnold. Instruction Set Eztension for Embedded
Processors. PhD thesis, Delft University of Technology,
March 2001. ISBN 90-9014523-0.

[15] Jan Hoogerbrugge. Code generation for Transport
Triggered Architectures. PhD thesis, Delft Univ. of
Technology, February 1996. ISBN 90-9009002-9.

[16] Giovanni De Micheli. Synthesis and optimization of digital
circuits. McGraw-Hill, 1994.

[17] S. Vassiliadis, J. Phillips, and B. Blaner. Interlock
collapsing alus. IEEE Transactions on Computers,
42(7):825-839, July 1993.

[18] Troy N. Hicks, Richard E. Fry, and Paul E. Harvey. Power2
floating-point unit: Architecture and implementation.
hitp://www.austin.ibm.com/tech/fpu.html, 1994.

[19] William L. Lynch, Gary Lauterbach, and Joseph I.
Chamdani. Low load latency through sum-addressed
memory (sam). In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages
369-379, Barcelona, Spain, June 1998. ACM SIGARCH
and IEEE Computer Society TCCA.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

