
System Canvas: A New Design Environment for Embedded
DSP and Telecommunication Systems

Praveen K. Murthy, Etan G. Cohen, Steve Rowland
Angeles Design Systems, San Jose, CA, USA

{pmurthy,ecohen,srowland}@angeles.com

Abstract
We present a new design environment, called System Canvas, tar-
geted at DSP and telecommunication system designs. Our environ-
ment uses an easy-to-use block-diagram syntax to specify systems
at a very high level of abstraction. The block diagram syntax is
based on formal semantics, and uses a number of different models
of computation including cyclo-static dataflow, dynamic dataflow,
and a discrete-event model. A key feature of our tool is that the
user does not need to have an awareness of which model is being
used; the models can be freely mixed and matched and a simula-
tion can consist of an arbitrary combination of models. The blocks
are written in ‘C’ or ‘C++’ and it is straightforward to write cus-
tom blocks and incorporate them into custom libraries. Other key
features include the ability to control simulations via language-
neutral scripts, and a powerful optimization engine that enables
optimization of the system over arbitrarily specified parameters,
constraints, and cost functions. Fixed-point analysis capability
allows any signal or variable in the system to be set to any type of
number system before the simulation proceeds. The tool is avail-
able on the Windows NT platform and incorporates modern and
ubiquitous Windows GUI look and feel.

1 Introduction
Research in academia [8][15][20] has demonstrated the

attractiveness of visual languages based on formal models of com-
putation for specifying modern embedded DSP and communica-
tion systems. In particular, various flavors of dataflow have been
shown to be good matches for signal processing because of the nat-
ural correspondence between discrete-time signals used in DSP
and the infinite streams of tokens that characterize the data in data-
flow networks. While dataflow is a good match for expressing
computations that have to occur at a constant sample rate as in
DSP, it is not a good match for expressing systems where computa-
tions occur in response to arbitrary events, such as packet net-
works. Instead, discrete event models where tokens exchanged
have not only a value but also a timestamp, are widely used for
expressing such systems. Other domains of application, like con-
trol, have inspired models of computation geared towards such
specifications such as FSM-based languages like StateCharts [12]
or the synchronous languages like Esterel [5]. The Ptolemy project
[1][8] has been at the forefront of advocating an approach to sys-
tem design that allows for a combination of various models of
computation rather than trying to find one model that works well in
all domains.

Our goal with System Canvas has been to adopt this approach
to combine various models that are well suited for the DSP and
communication domains. We base our environment on three fla-
vors of dataflow along with a discrete event model to enable
designers to tackle DSP and telecommunication systems compre-
hensively. While control constructs can be modeled using dataflow
and discrete-event models, we recognize that heavily control-ori-
ented systems are sometimes best modeled via formalisms such as
finite state machines, and the synchronous languages; we intend to

provide this capability in the future. Along with providing different
models, our goal has also been to provide comprehensive, unified
fixed-point modeling capability since this is one of the fundamen-
tal requirements for embedded DSP development, and an optimi-
zation engine that enables design-space exploration. An additional
goal has been to make the environment very easy to use by provid-
ing a state-of-the-art user interface.

2 Related work
As already mentioned, Ptolemy [1] is a key inspiration as far

as the paradigm of combining differing models of computation is
concerned. However, one departure that we have taken is that we
have simplified the interface between the various models so that
the user need not be aware of what ‘domain’ a particular library
block belongs to. Instead of the user-created wormhole approach
taken by Ptolemy for interfacing different models of computation
[8], we rely on automated clustering algorithms and domain con-
version actors to provide this interface automatically and seam-
lessly. While Ptolemy permits the arbitrary nesting of, say, timed
models within untimed models and vice versa, our experience with
design indicates that it is untimed models that are almost always
used within timed models; System Canvas therefore gives prece-
dence to the discrete event model in the sense that a mixture of dis-
crete event and dataflow models is treated as a discrete event
simulation. This approach is similar to the one taken in Polis where
a discrete event model is taken as the top-level model [3].

The Scenic project at Synopsys, that has now evolved into the
SystemC initiative, has advocated using C++ has a hardware
description language, and as such, has underlying discrete event
semantics [18]. However, since our discrete event model is geared
towards high-level communication protocols (where relatively few
events are generated per unit time) rather than low level hardware
(where lots of events are generated per unit time), we employ an
event-driven simulation engine for the discrete event model, rather
than the hybrid cycle-based and event-driven approach used by
Scenic [18].

Some of the other existing tools include the Cocentric system
studio [9] from Synopsys, that focuses on combining dataflow
with control constructs, the VCC system from Cadence that targets
automotive control applications by combining a discrete event
engine with finite state machines [14], and Simulink from Math-
works Inc. that targets continuous time and signal processing sys-
tem simulation using differential equation solvers [19].
Approximate numerical techniques such as differential equation
solvers for simulation have proven to be less efficient in terms of
simulation speed compared to cycle-based dataflow simulators in
the past.

3 Notation
A symbol is a graphical depiction of a computational actor. It

is represented graphically as some shape with input and output
ports. A schematic is an interconnection of various symbols. The
computation represented by a symbol can be implemented either
by another schematic, in which case the symbol is said to represent
a hierarchical actor, or it can be implemented by ‘C’ or ‘C++’
code (or call MATLAB functions), in which case the symbol is
said to represent a non-hierarchical actor. Non-hierarchical
actors are also called JET models. Pushing into a symbol means
looking at its contents; popping from a symbol description means

2

going up by one level where the contents of the symbol appear as
the symbol again. The terms actors and blocks are used inter-
changeably in the sense that for addressing issues related to syn-
tax, we will refer to actors as blocks, while for addressing issues
related to semantics, we will refer to them as actors.

4 Tool usage flow
Figure 1 shows the main System Canvas GUI. The GUI is

divided into four regions: the top region consists of user-customiz-
able tool bars and buttons that accelerate functions also available
in the various pull-down menus. The pane on the left shows the
project groupings, the schematics and custom blocks in each
project, and finally, a graphical list of all of the library elements in
a particular project. The pane on the right consists of windows that
are either the schematic editor, the symbol editor, or the library
block text editor. The schematic editor supports all of the expected
behaviors like pushing into hierarchical actors, pushing into the
‘C’ code inside a non-hierarchical actor, and pushing into the sym-
bol editor. It supports panning, zooming, cut, copy, and paste.
Block and various schematic parameters can be set via dialog
boxes. There is an unlimited undo/redo stack. The environment
also has a number of flexible charting and plotting capabilities.

Libraries and projects are compiled and linked using similar
settings and steps as in the Microsoft Visual C++ environment. All
libraries are linked and loaded dynamically.

Schematic information is stored in XML format; we chose
this format because in addition to it being a textual format, the
XML standard makes it easier for inter-operability with other tools
in the future.

The user creates a simulation by dragging and dropping the
required blocks from the left pane. If any custom blocks are
needed, he will have to create these JET models using the text edi-
tor and the symbol editor that automatically creates a graphical
symbol from the text contents. The graphical symbol can be edited
and customized to any degree desired. The custom blocks are
compiled and linked with one button press, and upon successful
compilation, the user then connects up the blocks in the schematic
window and is ready to do the simulation.

5 Anatomy of a JET model
As already mentioned, JET models are implemented using

‘C’ code. Figure 2 shows an example of a JET model, the decima-
tor.

JET models have several fields as shown; some important
fields are the INPUT and OUTPUT fields that contain the port
declarations, the PARAMETERS and STATES sections that con-
tain variable declarations, and the SETUP_CODE,
BEGIN_CODE, MAIN_CODE, and WRAPUP_CODE sections
that contain the code that needs to be run before scheduling, code
that needs to be run before the schedule is executed, the code that
needs to run in the main schedule, and the code that needs to run
after the schedule is finished respectively. Note that types them-
selves are parametrized; this decimator model uses the parame-
trized type declared in the SIGNAL_TYPES section. Using this
(optional) feature, it is possible to write a single model that can
operate on any type. For instance, the decimator shown in fig. 2
can handle double as well as complex types, as well as any other
types.

Fig 2. JET model example: decimator.

Fig 1. System Canvas environment.

3

6 Simulation technologies
The connected block diagram that the user constructs has for-

mal underlying semantics to it based on various models of compu-
tation. System Canvas supports four models of computation:
synchronous dataflow (SDF) [17], cyclo-static dataflow (CSDF)
[7], dynamic dataflow (DDF) [11], and discrete-event (DE).

In general, a dataflow network is an interconnection of com-
putational actors; this interconnection is represented as a directed
graph where the nodes represent the computational actors, and the
edges represent the communication channels between the actors.
The execution of an actor is called a firing; typically, an actor fires
by consuming tokens (data) from some subset of its input ports
and producing tokens on some subset of its output ports. Actors in
the network fire according to ‘firing rules’ [16]. The communica-
tion channels are implemented by infinite FIFO queues, and may
contain initial tokens in the queues before execution starts. The
state of a FIFO queue is defined as the number of initial tokens
(also called delays) contained in it, and the state of the entire net-
work is the set of states of its FIFO queues. The state is similar to
the concept of a marking in Petri-nets. Various restrictions on fir-
ing rules lead to various flavors of dataflow as we describe below.

6.1 Synchronous dataflow
SDF is a subset of dataflow in which an actor fires by con-

suming a fixed, non-zero number of tokens on each of its input
ports, and produces a fixed, non-zero number of tokens on each of
its output ports. The numbers that are produced and consumed in
this manner, called rates, can be different for each port, but the
key is that they are known and fixed. These known rates allow the
construction of a static, compile-time schedule for the SDF graph;
a schedule is a sequence of actor firings, where each actor is fired
a non-zero number of times, that returns the graph to its initial
state. The static schedule can be optimized for various parameters
including code-size and buffer-size (for the FIFO queues) [6], and
can be constructed efficiently.

Simulation of an SDF network proceeds by first constructing
the static schedule, and then executing this schedule the required
number of times (as specified by the user). An iteration in SDF is
defined as one complete execution of the static schedule.

The static schedule is a key property of SDF graphs. Execut-
ing the SDF graph by executing its static schedule is much faster
than executing the SDF graph dynamically. However, we gain this
efficiency at the cost of generality: because of the restriction that a
fixed number of tokens be produced and consumed on each firing,
not all programming constructs can be represented in SDF; in par-
ticular, data-dependent behavior cannot be modeled. In other
words, SDF is not Turing complete [16].

6.2 Cyclo-static dataflow
While SDF is a good match for modeling multirate signal

processing applications, it can be generalized slightly without sac-
rificing the static schedule property. This more general model is
called cyclo-static dataflow (CSDF) [7]. In CSDF, the execution of
an actor is divided into some fixed number of phases, and in each
phase, the actor consumes and produces a fixed number of tokens.
In fact, the phases are properties of the individual ports, so that the
actor itself goes through some multiple of these port phases. This
generalization allows more fine-grained modeling of multirate
actors since we can now subdivide an SDF firing into smaller
units. This enables modeling the execution of multirate actors in a
more accurate manner since we can now incorporate the relative
sample slots where the multiple tokens are consumed and pro-
duced rather than just modeling the total number that are con-
sumed and produced. This finer-grain modeling of multirate actors
also implies that the conditions under which a CSDF graph will
remain deadlock-free are broader than conditions under which an
equivalent SDF graph will remain deadlock free; this arises
because an SDF actor can fire only after all of its required number
of tokens are available on its inputs while a CSDF actor can fire in

phases where not all of the required tokens (for the complete exe-
cution cycle) need be present. However, because the number of
phases is fixed and known a priori, CSDF is also not Turing com-
plete. We do retain the ability to construct static schedules at com-
pile time.

In our simulation engine, we have extended the loop-schedul-
ing framework of [6] to include CSDF graphs. Hence, we not only
construct a static schedule, but we construct, whenever it exists, a
single appearance looped schedule that has been shown to require
the least amount of schedule space [6]. This means that our sched-
uling algorithm is more efficient than the scheduling strategies
presented in [7] and [17], and for a large class of graphs, our
scheduling algorithm runs in polynomial time (unlike the algo-
rithms of [7] and [17]).

6.3 Dynamic dataflow
If the system of interest cannot be expressed using the restric-

tions imposed by the SDF and CSDF models of computation, we
have to fall back on dynamic dataflow. In DDF, an actor can have
arbitrary firing rules; these rules need not be fixed or known ahead
of time. Indeed, in our DDF model, we also allow actors to have
firing rules that test a channel for zero tokens; this leads to non-
blocking reads that has been shown to lead to indeterminacy [13].
While we do support and encourage the use of firing rules that
obey the blocking read property, we give the ultimate control on
this choice to the user. Hence, we can express arbitrary computa-
tions in DDF, including data-dependent behavior, and non-deter-
minate behavior like the non-determinate merge.

The following code fragment for a ‘Mux’ actor shows the
API style used in DDF actors. The Mux actor has three inputs: a
control input (CtrlIn), a TrueIn input, and a FalseIn input.
It has one output, Out. On each firing, the Mux actor reads a token
from the CtrlIn input, and if that token has a value of true, it
reads a token from the TrueIn input and writes it onto Out. If
the token value is false, it writes the value read from the FalseIn
input.

MAIN_CODE:
if (JETAvailConsumeTokens(CtrlIn, 1)) {

if (CtrlIn[0]) {
if (JETAvailConsumeTokens(TrueIn,1)) {
JETProduceTokens(Out,1);
Out[0] = TrueIn[0];

} else JETRestoreTokens(CtrlIn);
} else {
if (JETAvailConsumeTokens(FalseIn,1)) {
JETProduceTokens(Out,1);
Out[0] = FalseIn[0];

} else JETRestoreTokens(CtrlIn);
}

}

The JETAvailConsumeTokens(Port, Num) API checks
whether Num tokens are available on port Port, and if so, con-
sumes them meaning that these tokens can now be overwritten the
next time the actor connected to this port fires. The JETProduc-
eTokens(Port, Num) API says that Num tokens are to be
produced on port Port. If the buffer on this port is not big enough
to hold this many tokens, it will be appropriately resized. The API
JETRestoreTokens(Port) undoes the consumption opera-
tion. Finally, the notation Out[i] is used to write tokens into the
ith place in the buffer on the output port Out. In fact, the buffer is
implemented as an array, with the [] operator overloaded to
access that array for the Port object and its derived classes.

The style of the code above is inefficient because it does not
tell the scheduler what ports the actor wants data on, even though
the actor can make this determination after each firing. Hence, the
scheduler will fire this actor whenever there is a token on any of its
inputs, even though the actor might be waiting for a token on its
TrueIn input. We provide APIs that allow the actor to declare so-

4

called ‘wait ports’ that it is waiting for data on; this allows the
scheduler to fire the actor only if those ports contain data. The
Mux actor can be rewritten using the wait-port style in the follow-
ing way:
BEGIN_CODE:

JETRequireTokens(CtrlIn,1);

STATE:
long status=0

MAIN_CODE:
bool cont = true;
while (cont) {

switch (status) {
case 0:
if (JETAvailConsumeTokens(CtrlIn, 1)) {
status = CtrlIn[0] ? 1 : 2;

} else {
JETRequireTokens(CtrlIn,1); cont = false;

}
break;
case 1:
if (JETAvailConsumeTokens(TrueIn,1)) {
JETProduceTokens(Out,1);
Out[0] = TrueIn[0]; status = 0;

} else {
JETRequireTokens(TrueIn,1); cont = false;

}

break;
case 2: // similar to case 1

}

The API JETRequireTokens(Port, Num) tells the
scheduler that the actor is waiting for Num tokens on port Port.
Hence, after this declaration, the actor will only be fired when that
condition is true. The codeblock above implements a 3-state FSM;
the actor first declares that it is waiting for a token on CtrlIn.
Once it gets a token there, it consumes it and switches state inter-
nally to be waiting on the TrueIn or the FalseIn if the
required one does not have any tokens. If it does have tokens, it
immediately consumes them, writes them to Out, and goes back to
waiting on the CtrlIn input.

Since a system can consist of an arbitrary mix of DDF and
non-DDF actors, in general we have to use a dynamic scheduler
for simulating the system. For scheduling efficiency, we employ a
clustering algorithm that segregates the graph into islands of SDF/
CSDF and DDF actors. This enables us to statically schedule the
SDF/CSDF islands so that the total number of actors that the
dynamic scheduler has to keep track of is less than the total num-
ber of actors in the graph. In other words, each SDF/CSDF island
becomes a hierarchical SDF/CSDF actor with SDF/CSDF firing
semantics; internally, it will have a static schedule that is invoked
when the island is ‘fired’. Of-course, if there are no DDF actors at
all, then the entire system is one cluster that is scheduled statically
by the CSDF loop scheduler. The clustering is done conservatively
and guarantees that no artificial deadlock is introduced.

Our dynamic scheduler is largely based on the one used in
Ptolemy [1]; it obeys the conditions set forth there:

(1) If a graph can be executed in finite memory, the
dynamic scheduler should find such an execution policy that
results in finite memory usage.

(2) If a graph can be executed without premature dead-
lock, the dynamic scheduler should find such an execution policy.

6.4 Discrete event
All of the dataflow models mentioned so far are timeless:

they do not have a notion of time. The samples that are represented
by the streams of tokens are assumed to follow some fixed sam-
pling rate so that absolute times at which they occur are irrelevant

since the relative times between occurrences are fixed and known
a priori. Of-course, there is a large class of systems for which this
assumption is not true; for event-based systems, where systems
react to events that occur at particular times, a model that incorpo-
rates time into its framework becomes necessary. Indeed, all hard-
ware modeling languages have a notion of time, as do various
modeling languages for communication networks, like CSIM [10],
and Maise [2].

We provide a discrete event model in System Canvas that
incorporates the features of many of these timed models that are in
use. Discrete-event simulation uses time-stamps on data tokens.
An actor waits for events, is activated when events arrive, pro-
cesses those events, outputs events (i.e. data tokens with a possibly
new time-stamp), and goes back to waiting. These tokens are held
in a global event queue in sorted order by their timestamps. The
DE scheduler then fires those actors to which the tokens at the
head of the event queue are destined for. By default, after a DE
actor fires, all of the events on its input ports are erased. If the
block wants to change this default behavior, it can through an API
call.

All actors have a priority parameter that can be set statically
by the user and changed dynamically by the actor itself. The prior-
ity allows the DE scheduler to break ties when there are simulta-
neous events in the queue, and multiple actors can be fired. Since
the order in which these actors are fired could determine the result
of the simulation, using priorities to break ties ensures more con-
sistent and determinate behavior. Our use of the priority in this
context is similar to its use in most real-time operating systems.

All actors in our environment have an execution time param-
eter, and a processor ID number that can both be set by the user.
The actor can also change the execution time dynamically. These
two parameters allow modeling of concurrency at an abstract
level, where the scheduler can keep track of time progress on vari-
ous processors and execute the partitioned system accordingly.
This allows us to do architecture modeling; in the future, we will
provide more elaborate architecture models where busses and
memories can be incorporated as well. For resource modeling, the
execution time parameter allows us to distinguish between two
types of time-advancing operations: operations that tie up a pro-
cessor will have a non-zero execution time, meaning that any
events produced will necessarily have a timestamp greater or equal
to the execution time, while operations that model some sort of
transport delay can have a zero execution time but produce events
in the future.

DE actors can declare to the scheduler that they are waiting
for a certain number of tokens at their input ports via APIs such as
JETWaitFor(double timeOut), or JETWait-
For(DEInputPort& A, DEInputPort& B, double
timeOut); the former instructs the scheduler to fire the actor
after the local time on the processor to which the actor is mapped
to has advanced by timeOut units, and the latter instructs the
scheduler to fire the actor upon either an event on port A, or an
event on port B, or the local time has advanced by timeOut
units. There are also APIs that allow AND semantics: JETWait-
ForAnd(DEInputPort& A, DEInputPort& B); this
instructs the scheduler to fire the actor if there are events on port A
and port B. Generator actors (actors with no input ports) use the
JETWaitFor(double timeOut) API to schedule their fir-
ings. There is an API available for the actor to check whether it is
being fired due to the timeout condition, or due to arrival of a
token on a waited port.

JETWaitFor requests for ports are only valid till the next
firing; after that, the wait list is reset internally. However, the time-
out request is not reset. This is because a timeout request really
generates an event with a future timestamp, much like an actual
output event. Once an event has been produced, it cannot be
erased. If an actor generates multiple timeouts, it is responsible for
keeping track of these timeouts in the sense that the scheduler will
fire the actor whenever the timeout condition is reached. Hence, if

5

the actor has requested a timeout multiple times, the actor has to
be written in such a way that when these requests are satisfied and
the actor is fired, it is aware that one of its timeout requests (not
necessarily the last one) is responsible for its execution now.

7 DE-DF Interaction
Dataflow actors can be freely used with DE actors. If there is

even one DE actor, the simulation becomes a DE simulation under
control of the DE scheduler. The dataflow actors are treated as 0-
delay actors, with dataflow fireability semantics applied to them
by the DE scheduler. Dataflow generators can be used in a DE
simulation with a ‘ClockPeriod’attribute set so that the DE
simulator can automatically generate timeout requests from these
dataflow generators and fire them periodically.

8 Fixed-point simulations
The simulator accommodates fixed-point data formats to

enable simulation of finite wordlength effects on system perfor-
mance. To provide as great flexibility as possible, several features
are desirable:

• There should be a single modeling code. The user should not
have to rewrite any of the code already written in order to
simulate fixed-point effects.

• There should be a single design hierarchy for both fixed and
floating point modes.

• Some actors should be allowed to run in floating-point while
others are in fixed-point, without modifying the basic sche-
matic. Benefits include successive refinement of the design,
isolation of fixed-point effects and simulation of real-world
models (e.g., channels) in floating-point.

• User defined fixed-point formats in several formats, e.g., 2’s
complement, unsigned, and more general arbitrary precision
specifications should be allowed.

• The system should allow specification of a unique fixed-point
format on each port and internal signal of a model because
this enables greater flexibility in modeling different architec-
tural implementations.

• The user should be allowed to specify rounding modes as
well as exception handling modes individually for each vari-
able.

All of these capabilities are provided in System Canvas. In
particular, System Canvas handles two’s complement, signed mag-
nitude, unsigned, one’s complement, canonical signed digit,
MMR, MMN, and custom floating point formats. All of the usual
rounding and overflow modes are supported, as well as user-pro-
vided modes.

8.1 Statistics collection
As values are assigned to fixed-point objects (whether they

are ports, parameters, states, etc. and whether they are quantized or
not) the simulation can collect information on those values,
optionally performing some action. The following types of infor-
mation are provided:

• Warnings (given for each occurrence with the number that
caused it, and the action taken): overflow (if a conversion
results in a number which is outside the representable range
of the current fixed-point numbering system), underflow (if a
conversion of a non-zero number results in zero), invalid
operations (a conversion of a NaN or some operations on
infinity; for example, wrap-around).

• Statistics: number of overflows, underflows, and invalid
operations; signal statistics like mean, variance, skewness
(3rd moment), kurtosis (4th moment), minimum, location of
minimum (simulation cycle), maximum, and location of max-
imum (simulation cycle); bit transition counts; zero crossing
counts; histogram of fixed-point values; slew histograms. In
addition, users can integrate additional modes into the sys-
tem.

9 Multivariate optimization engine
System Canvas includes a sophisticated optimization engine

that allows the designer to optimize a design for the best parame-
ters. The general optimization problem we address can be
expressed as the following equation. Denote the set of parameters
over which the system is being optimized (i.e, the search space) by

, and the set of outputs of the system (i.e, properties) by , and
let be the cost function. Let be a set of desired reference
values for the system outputs, and let be the set of tolerances on
these outputs. The optimization problem is:

.

One special case is if there are no reference values at all (or, in
other words, all outputs are acceptable). In that case, we get a
‘pure’ minimization problem: .

The user writes the exploration routine in a scripting lan-
guage such as JavaScript; the purpose of this routine is to set up
the search space, set up the various parameters for the search
engine such as the granularity of the search, the various limits that
govern stopping conditions, and calling the simulation itself. The
job of the optimization engine is to determine the next point in the
search space to evaluate; this determination is made based on a
modified centroid algorithm [4]. The scripting technique allows
the user a great deal of flexibility in using the optimization engine,
and also allows for the entire state of the optimization to be saved
in XML format, and reloaded at a later time for an optimization
run that picks up where it left off from that saved state.

9.1 Optimization Variables
We define two types of parameters for the optimization

engine: search variables, and reference variables.

The search variables define the search space. Each search
variable is defined with a lower limit, an upper limit, a granularity
that says how the variable should be quantized (if it is necessary),
and a probability distribution function that says how the variable
should be drawn for the random walk phases of the algorithm. The
lower, upper limits, and the granularity can all be arbitrary func-
tions of other search variables that have been defined already; this
ensures that there are no circular dependencies.

We define the reference variables to be the variables that are
the system outputs (or properties). These variables also specify the
constraints for the general optimization case. Each reference vari-
able has a reference value and a tolerance; the objective of the
optimization is to find a solution of minimal cost where all of the
reference variables have values within their tolerance. Reference
variables get their values from the results of the simulation.

9.2 Cost function
The cost function can either be defined as an arbitrary func-

tion of search and reference variables, or it could be left undefined.
If the cost function is left undefined, then the user is responsible
for computing it in the script and setting it in the optimization
engine. This flexibility allows complex cost functions that may not
be representable as a simple mathematical expression; for
instance, the user could invoke a MATLAB script for computing
the cost, or even another System Canvas simulation. However, if
the cost function can be represented as a simple mathematical
expression, then it should be defined and set.

If the cost function is defined as a mathematical expression,
there are two other possibilities: either it is a function of only the
search variables or it is a function of both the search and reference
variables. This distinction can be explicitly set in the engine; this
allows the engine to compute the cost immediately after determin-
ing the search vector and proceed rather than having to wait for
another simulation to complete before the reference variables have
been determined. The time consuming step in the whole process is
the number of simulations that are performed; hence, a cost func-

x y
f x y,() r

t

MIN
x

f x y,(){ } subject to y r– t≤

MIN
x

f x y,(){ }

6

tion that is a function only of the search variables makes for a
faster optimization.

9.3 JavaScript optimization example
The following script gives the flavor of how the optimization

engine is used; it represents a simple evaluation of a biquad filter
for the best wordlengths of its internal states, with a cost function
that represents the area of the filter. So the script not only exercises
the optimization engine, but also makes use of the fixed point sim-
ulation capability to evaluate the filter response for the ripple in its
impulse response.
WScript.echo("Biquad multi-variate optimization
example");

// Go through some initialization steps to set up
// the simulation
.....
// search variables
var svs = mv.SearchVariables;

var sv_wa = svs.Add("wa");
sv_wa.LowerBound = 3; sv_wa.UpperBound = 20;
sv_wa.Granularity = 1;
// .. add other search variable wc
// reference variables
var rvs = mv.ReferenceVariables;

var rv_ripple = rvs.Add("ripple");
rv_ripple.Reference = 1;
rv_ripple.Tolerance = 0.05;

// cost
mv.CostFunction = "4*wa + 5*wc*(wa+1) + 2*(wa+1)";
mv.IsCostFunctionOfSearchVarsOnly = true;

// stopping criteria
mv.ConstantIterationsToTerminate = 20;
mv.MaxNumberOfIterations = 100;

mv.Seed = 2555;

mv.Initialize();
while (!mv.IsDoneOptimization()) {

// get inputs to simulation (search variables)
waH.Spec = sv_wa.Value;
wcH.Spec = sv_wc.Value;

// set values in design and run simulation
elab.ReEvaluate();
schedule = elab.GetSchedule();
schedule.Run(1);

// set reference value
rv_ripple.Value = ExtractResults();

WScript.echo("Current best solution: wa = " +
sv_wa.BestValue + ", wc = " + sv_wc.BestValue + "
---> ripple = " + rv_ripple.BestValue + " (" +
(mv.IsAcceptableSolutionFound ? "meets spec" :
"doesn’t meet spec") +
"), cost = " + mv.BestCost);
}

WScript.echo("Optimization terminated (" +
mv.TerminationReason + ")");
WScript.echo("Best solution: wa = " +
sv_wa.BestValue + ", wc = " + sv_wc.BestValue + "
---> ripple = " + rv_ripple.BestValue + ", cost =
" + mv.BestCost);

10 Conclusion
System Canvas is a powerful, easy-to-use programming envi-

ronment that addresses many of the needs of system designers
today working in the DSP and telecommunication spaces. We have
used the tool successfully for designing and exploring several,
large ITU-complaint systems (G.7xx speech coders), and several
xDSL modems. Innovative features of the tool include a seamless
combination of discrete-event and dataflow based simulation para-
digms, a state-of-the-art simulation engine that makes use of
advanced scheduling techniques for fast simulation speeds, a
sophisticated fixed-point capability that enables all fixed-point
effects to be comprehensively evaluated, a powerful and flexible
optimization engine that can be used to explore design spaces
effectively and efficiently, and finally, a modern Windows-based
GUI that is immediately familiar and intuitive to use.

References
[1] The Almagest, http://ptolemy.eecs.berkeley.edu/
[2] R. Bagrodia, Wen-Toh Liao, “Maisie: a Language for the

Design of Efficient Discrete-Event Simulations,” IEEE
Trans. Software Engineering, vol.20, no.4, April 1994.

[3] F. Balarin et. al, Hardware Software Co-design of Embedded
Systems—The Polis Experience, Kluwer, 1997.

[4] K. Benke, D. Skinner, “A Direct Search Algorithm for Glo-
bal Optimisation of Multivariate Functions,” Australian
Computer Journal, Vol. 23, No. 2, May 1991.

[5] G. Berry and G. Gonthier, “The Esterel Synchronous Pro-
gramming Language: Design, Semantics, Implementation,”
Science of Computer Programming, vol. 17, no.1, pp.95-
130, 1992.

[6] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Syn-
thesis from Dataflow Graphs, Kluwer, 1996.

[7] G. Bilsen, M. Engels, R. Lauwereins, J. Peperstraete,
“Cycle-static Dataflow,” IEEE Trans. on Signal Processing,
Vol. 44, No. 2, Feb. 1996.

[8] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a
Framework for Simulating and Prototyping Heterogeneous
Systems,” Intl. J. of Computer Simulation, Apr. 1994.

[9] J. Buck, R. Vaidyanathan, “Heterogeneous Modeling and
Simulation of Embedded Systems in El Greco,” CODES,
May 2000.

[10] G. Edwards, R. Sankar, “Modeling and Simulation of Net-
works using CSIM,” Simulation, vol.58, no.2, Feb. 1992.

[11] S. Ha, E. A. Lee, “Compile-time Scheduling of Dynamic
Constructs in Dataflow Program Graphs,” IEEE Trans. on
Computers, vol.46, no.7, Jul. 1997.

[12] D. Harel, M. Politi, Modeling Reactive Systems with State-
charts, McGraw Hill, 1998.

[13] G. Kahn, “Semantics of a Simple Language for Parallel Pro-
gramming”, Proc. of the IFIP Congress 74, North Holland
Pubs., 1974.

[14] S. Krolikoski et. al., “Methodology and Technology for Vir-
tual Component Driven Hardware/Software Co-design on
the System-Level,” Proc. ISCAS, Orlando, FL, May 1999.

[15] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete.
“Geometric Parallelism and Cyclo-static Data Flow in
GRAPE-II,” Proc. IEEE Wkshp Rapid Sys. Proto., Jun
1994.

[16] E. A. Lee, T. M. Parks, “Dataflow Process Networks,” Proc.
of the IEEE, Vol. 83, No. 5, May 1995.

[17] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Syn-
chronous Dataflow Programs for Digital Signal Processing,”
IEEE Trans. on Computers, Feb., 1987.

[18] S. Liao, S Tjiang, and R. Gupta, “An Efficient Implementa-
tion of Reactivity for Modeling Hardware in the Scenic
Design Environment,” Proc. 34th DAC, June 1997.

[19] Simulink manual, www.mathworks.com, 2001.
[20] S. Ritz, M. Pankert, H. Meyr, “A Novel Approach to the

Integration of Simulation and Implementation to Digital Sig-
nal Processing Systems,” Proc. of the 25th Asilomar Confer-
ence on Signals, Systems and Computers, Nov. 1991.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

