MAGELLAN: Multiway Hardware-Software Partitioning and Scheduling for
Latency Minimization of Hierarchical Control-Dataflow Task Graphs

Karam S. Chatha
Department of ECECS, ML 30
University of Cincinnati,
Cincinnati, OH 45221-0030

kchatha@ececs.uc.edu

ABSTRACT

The paper presents MAGELLAN, a heuristic technique for
mapping hierarchical control-dataflow task graph specifica-
tions on heterogeneous architecture templates. The architec-
ture can consist of multiple hardware and software processing
elements as specified by the user. The objective of the tech-
nique is to minimize the worst case latency of the task graph
subject to the area constraints on the architecture. The tech-
nique uses an iterative approach consisting of closely linked
hardware-software partitioner and scheduler. Both the parti-
tioner and scheduler operate on the task graph in a hierarchi-
cal top down manner. The technique optimizes deterministic
loop constructs by applying clustering, unrolling and pipelin-
ing. The technique considers speculative execution for condi-
tional constructs. The number of actual hardware/software
implementations of a function in the task graph are also op-
timized by the technique. The effectiveness of the technique
is demonstrated by a case study of an image compression
algorithm.

1. INTRODUCTION

System-level hardware-software (HW-SW) codesign is an

effective methodology for designing embedded systems. HW-
SW codesign consists of two basic design stages: mapping
or partitioning of an application on to architecture elements
and scheduling the execution of application components.
The paper presents a heuristic technique called MAGEL-
LAN for mapping an embedded system specification on to
a user specified architecture template.
Application Domain: MAGELLAN is aimed at design of
computation intensive applications like JPEG and MPEG
algorithms. These applications can be specified as a set of
coarse granularity tasks. The applications are characterized
by predominantly data dependences between tasks with few
control flow constructs. At a finer granularity the control
constructs consist mainly of loops. At a coarse granularity
level the applications can contain feed back control loops for
adaptive behavior.

*This work was partially supported by the ARPA RASSP
program and US-AF, Wright Lab, under contract numbers
F33615-93-C-1316 and F33615-97-C-1043 respectively.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES 2001 Copenhagen, Denmark

Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

Ranga Vemuri
Department of ECECS, ML 30
University of Cincinnati,
Cincinnati, OH 45221-0030

ranga@ececs.uc.edu

Local bus

General
purpose SW
processor: s2

General
purpose SW
processor: s1

System bus

FPGA: f2

System
level

shared
memory

Figure 1: System Architecture

System Architecture: MAGELLAN implements the ap-
plications on a user specified architecture template. The
template was developed based on existing (and proposed)
implementations of the applications in our domain. The
D30V MPEG multimedia processor [1] and SuperENC [2]
(an MPEG-2 video encoder chip) consist of processor cores,
dedicated logic and memory elements connected through a
single system bus. Hence, MAGELLAN assumes that the
system architecture consists of a single bus connected to
shared memory and processing elements (Figure 1). The
shared memory is used for inter-processor communication.
The number and type of processing elements are specified
by the user. The user specifies the area constraint (a(PE))
for all the HW coprocessors. Additionally the user specifies
the read (7,q4) and write (7w,) times per data item for all
the memory elements.

Application Specification: MAGELLAN models the ap-
plication as a hierarchical control-dataflow task graph. The
control behavior is described with the help of hierarchy.
Hence, at each level of hierarchy the behavior of the ap-
plication is described by a data flow task graph. The task
graph is described with the help of ports, port maps, chan-
nels and tasks. MAGELLAN supports 5 basic types of tasks:
leaf tasks, call tasks, case tasks, loop tasks and hierarchical
tasks. Additionally it provides two other types of tasks:
control tasks and counter tasks that can only exist as com-
ponents of case or loop tasks. Figure 2 depicts a task graph
that contains a loop task (T1), leaf task (T2) and case task
(T3).

The ports are used for task data input/output. The chan-
nels specify data dependences between output port of one
task and input ports of other tasks. Call tasks model func-
tion call behavior. Case tasks contains one control task that
specifies the control behavior and a set of path tasks that
execute in mutual exclusion based on the control behavior.
A loop task can be of two types : deterministic loop task or
non-deterministic loop task. The iteration count of a deter-
ministic loop task is known a priori and is specified by the
counter task. The loop behavior is specified by a loop body
task. A non-deterministic loop task has unknown iteration
count and it contains a control task instead of a counter task.



Task Graph Non-determinsitic Loop Task

Input Ports =
[} - Port Map

0

control | | Loop Body
Task
Task

Channel
-

Case Task

! A
} ¢ p Q
4 L ontrol| | Path | | Path
Q & Task || Task
Task || 1 2
OutPut Ports
b O

Figure 2: Application Specification
As the name suggests a hierarchical task models hierarchical
abstraction.

The user specifies the size of the data transfered across
each channel (w(C)) and dependence distance of each chan-
nel (6(C)). Associated with each leaf task v is an estimate
set e(v) = {{PE1,D1},...,{PE;, D;} where PE; is a pro-
cessing element and D; is the set of estimated design points
of the task on PE;. The set D; is given by:

One-to-one mapping

D — {r} if PE; is SW
v {{T1,a1},...,{Tj,aj},...} if PE; is HW

where 7 is the timing estimate and « is the area estimate.
MAGELLAN accepts multiple design points for each task
on each HW coprocessor.

Problem Description: The objective of MAGELLAN is
to:

1. Map the hierarchical control-dataflow task graph on to
architecture elements,

2. Select a design point for each leaf, counter or control task
that is mapped to a HW coprocessor,

3. Schedule task execution, inter-processor communication
on system bus and intra-processor communication,

such that the worst case execution time of the application
is minimized subject to the area constraints on the various
HW coprocessors.

The paper is organized as follows: Section 2 gives an
overview of MAGELLAN, Section 3 discusses the previous
work, Section 4 presents the scheduler, Section 5 discusses
the partitioner and Section 6 presents experimental results
and concludes the paper.

2. MAGELLAN: AN OVERVIEW

MAGELLAN uses the partitioner and scheduler in an it-
erative manner to obtain a mapping of the application on
the system architecture (see Figure 3). Both the scheduler
and partitioner apply a hierarchical top down approach.
MAGELLAN calls the scheduler to generate an initial so-
lution. The scheduler obtains an initial solution by map-
ping, optimizing and scheduling the application. The opti-
mizations performed by the scheduler include loop unrolling,
loop pipelining, speculative scheduling of path task compo-
nents of a case task and optimizing the number of actual
implementations of a call task. The partitioner tries to im-
prove on the solution generated by the scheduler by trying
out several moves. The partitioner moves vary depending
upon the task type. The partitioner evaluates each move by
invoking the scheduler. The scheduler maps and schedules
the remaining tasks, and gives feedback to the partitioner in

 Control Dataflow] [ Architecture |
i Task Graph ! | Specification |

' '

MAGELLAN: Integrated Multiway Partitioning,
HW design space exploration,

and scheduling. Schedule to obtain
an initial solution
Partitioner tentatively
implements a move
Schedule to evaluate
the move

"All moves
explored ?
YES

Any move that
results in an
improvement 2

Schedule to
obtain a new
solution

Implement move
with largest
improvement

Output Solution

Figure 3: MAGELLAN: An overview

terms of resulting latency of the task graph. The partitioner
tries several moves and implements the move that results in
largest improvement over the initial solution. MAGELLAN
continues in an iterative manner until the partitioner cannot
find a move that results in an improvement. The algorithm
then exits and outputs the solution.

3. PREVIOUS WORK

Vulcan [3], Cosyma [4], Design assistant [5], Bakshi et
al. [6], Marwedel et al. [7] and Jeon et al. [8] have proposed
approaches for automated HW-SW partitioning. [3] and [4]
map the nodes by using a partitioning algorithm based on a
cost function. In contrast MAGELLAN uses an integrated
scheduler with the partitioner which is much more accurate
for performance evaluation. [5] and [6] use a modified list
based scheduler for partitioning and scheduling. Their tech-
nique is limited due to the greedy approach adapted by list
scheduling algorithm. MAGELLAN overcomes this limita-
tion by using an iterative partitioner. [7] proposed an integer
linear programming (ILP) approach for integrated HW-SW
partitioning and scheduling. However, the ILP based ap-
proach is limited by the large run times. [8] require the user
to specify number of pipeline stages and they apply loop
pipelining before HW-SW partitioning. MAGELLAN op-
timizes the number of pipeline stages by using a modified
retiming heuristic (RECOD [9]). In contrast to [8], MAGEL-
LAN maps the loop tasks with an objective of maximizing
their throughput and then applies pipelined scheduling. To
the best of our knowledge none of the existing approaches
on automated partitioning optimize a hierarchical control-
dataflow task graph. Further none of these approaches par-
tition on user specified architectures.

In contrast to approaches mentioned in the previous para-
graph that partitioned on a fixed system architecture, Wolf
et al. [10], COHRA [11], MOGAC [12] and COSYN [13]
proposed approaches for architecture synthesis. [10] use a
preemptive scheduling algorithm that is too expensive both
in time and space for many high-volume low cost embedded
systems [14]. Hence, MAGELLAN adapts a non-preemptive
static scheduling approach. In contrast to MAGELLAN,
MOGAC adapts a stochastic approach based on genetic al-



Algorithm Magellan_Scheduler (AR, TG(T),Stables S, L, Tezec)
begin
Lready = ready_tasks(T)
while (L,cqay #0)
v = heuristic_select(Lready)

if (tasktype(v) = HIERTASK)
schedule_hiertask (AR,v(T),wale,S,I,TE"d) endif

exec

update(Lyeady)
endwhile

— .end
Texec = Tegee

end

Algorithm schedule_hiertask(AR, v(T), Stabie, S, L, 7202
begin
if (state(v) # FIXED)
Snee =00
for all (PE:, € AR)
explore(PE: ,v(T), Stabte, L', 7")
if (7' < Tee:edc) ‘rf;'edc =7',Z =1 endif
endfor
for all (eligible PEL, € AR)
explore(PE: ,v(T), a(v, PEL ), Siabte, L', ")
i (' < 7iL) TR =7, T =1 endif
endfor
Magellan_Scheduler (AR, v{T), Siabie, FALSE,I',7")
if (1 < T8) il =7, =1’ endif
endif

if (S = TRUE) remove_temp(Stabic), add(v, Stabie)
else temp_add(v, Stapie) endif

end

Figure 4: Algorithm for scheduling

gorithm. While COSYN and COHRA also adapt a heuris-
tic technique, they do not optimize hierarchical control-
dataflow graphs.

4. SYSTEM SCHEDULER

MAGELLAN uses a modified list based scheduler for map-
ping and scheduling of the task graph specification. The
scheduler selects a task from the ready based on: 1. The
task is a non-deterministic loop task, 2. Urgency of the
task [15]. The non-deterministic loop task is given higher
priority since it is difficult to a priori estimate its total exe-
cution time.

A pseudo code for the scheduling algorithm is shown in
the top half of Figure 4. In the function call AR is the
architecture description, 7G(7) is the task graph with task
set T, Stabie is the schedule table, S is a boolean variable,
7 is the implementation set that records the processor and
design point mapping and Tegec is the latency of the task
graph. S is TRUE (FALSE) when the function is called
for scheduling (design space exploration) by the partitioner
(hierarchical task). The scheduler performs design space
exploration for the hierarchical task by making temporary
entries in the schedule table that are replaced at a later
stage by the selected implementation. Based on the task
type of the task that is selected from the ready list, the
scheduler calls the appropriate sub-function. For example
schedule_hiertask() as shown in the figure.

4.1 Scheduling of leaf, control and counter tasks

The scheduler decides the mapping of a leaf task based
on its suitability and threshold suitability (Th(PE;)) of the
processing element [15]. Suitability of a leaf task for a par-
ticular HW design point or SW processor varies from 0 to
1. A value closer to 1 (0) makes the task highly suitable
(unsuitable) to be mapped to the corresponding implemen-
tation. Th(PE;) has a value between 0 and 1. It is used to
select tasks that are suitable to be mapped to the process-
ing element PE;. The scheduler considers mapping a leaf
task to a HW coprocessor PE; only if the suitability of at
least one of the design points is greater than Th(PE;). The
scheduler explores the following implementations:

1. Single HW: The scheduler maps the task to the highest
suitability design point that satisfies the threshold value and
area constraint on the corresponding HW coprocessor.

2. Single SW: If none of the HW design points of a task sat-
isfy both the threshold suitabilities and area constraint on
corresponding HW coprocessors, the scheduler explores SW
implementation. It maps the task to the SW processor that
has the highest suitability value.

4.2 Scheduling of a call task

The scheduler determines from the schedule table if there
exists an implementation for the call task. An implemen-
tation can exist for the call task if another call task that
exhibits the same behavior has already been scheduled. The
new call task can be mapped to the existing implementation
if the earliest possible schedule time of the new call is greater
than the execution end time of the previous call. Hence, the
scheduler tries to limit the actual number of physical imple-
mentations of the call task. In the case that the call task has
not been implemented or there exists a scheduling conflict,
the scheduler does design exploration based on the task type
of the corresponding callee (function) task.

4.3 Task area constraint and implementation selection

The scheduler uses a hierarchical top down approach for
design space exploration and scheduling of hierarchical, loop
and case tasks. It associates an area constraint a(v, PE;) =

asum (v)

asum (TG
v for(evéry HW coprocessor PE;. Qsym (V) (Qsum(TG)) is
the summation of median area design points of constituent
tasks of v (task graph 7°G) that satisfy the threshold suitabil-
ity on PE;. a(v, PE;) is the area available to the scheduler
for implementing the task v on PE;. This area may be mod-
ified by the moves applied by the partitioner. The scheduler
saves the results of design space exploration for the previous
iteration. Hence, if the available area for the task on a HW
coprocessor remains unchanged, the scheduler saves time by
not repeating the exploration.

The scheduler selects the design alternative that gives the
earliest end time as the implementation for the hierarchical,
loop and case tasks.

a(PE;) with each hierarchical, loop and case task

4.4 Scheduling of a hierarchical task

The scheduler explores the following implementations:
1. Single SW: The scheduler maps the hierarchical task on
each SW processor and calculates the end time for the task.
2. Single HW: The scheduler maps the hierarchical task on
all eligible HW coprocessors and calculates the end time for
the task. A HW coprocessor is considered eligible if major-
ity of the constituent tasks of the hierarchical task satisfy



the threshold suitability of the coprocessor.

3. Multiple processor: The scheduler explores multiple pro-
cessor implementation by making a recursive call on itself
with the hierarchical task as argument.

A pseudo code description of the algorithm is shown in the
bottom half of Figure 4. The function performs design space
exploration if the mapping of the task is not FIXED. The
function invokes explore() to explore single HW and single
SW implementations for the task. It then makes a recursive
call on the top level scheduling function to explore mul-
tiprocessor implementation by setting the parameter S to
FALSE. The function selects an implementation that re-
sults in earliest possible end time (757%) for the task. If S
is set to TRUE in the call to schedule_hiertask(), then the
function removes any temporary entries from the schedule
table and adds an entry for the selected implementation. Al-
ternatively the function makes a temporary entry in schedule
table if S is set to FALSE.

4.5 Scheduling of a deterministic loop task

Scheduling of a deterministic loop task is the most com-
putation intensive operation since MAGELLAN considers
loop unrolling and pipelining for the task. The scheduler
applies a modified retiming heuristic (RECOD [9]) for ob-
taining pipelined schedules. The maximum unrolling degree
for the loop task is calculated based on the number of iter-
ations and area constraint a(v, PE;). The following discus-
sion on design space exploration considers an example loop
task shown in Figure 5(a).

1. Single SW: The scheduler maps the entire loop on each
SW processor (see Figure 5(b)) and obtains the end time for
the task.

2. Multiple SW iteration locality unrolled: The scheduler un-
rolls the loop and maps all tasks belonging to an iteration
of the loop to the same SW processor (see Figure 5(c)).

3. Single HW pipelined: The scheduler explores single de-
vice pipelined implementations of the loop on all eligible
HW coprocessors (see Figure 5(d) ).

4. Single HW unrolled/pipelined: The scheduler explores sin-
gle device unrolled /pipelined implementations of the loop on
all eligible HW coprocessors (see Figure 5(e)).

5. Multiple processor (HW and SW) pipelined : The tasks
are mapped to different processors with an objective of min-
imizing the throughput of the pipelined loop (see Figure
5(f)).

6. Multiple HW task locality unrolled/pipelined: The task
locality implementation as the name suggests maps instances
of the same task belonging to different iterations of the loop
to the same processing element (see Figure 5(g)). Such a de-
sign facilitates sharing of HW resources. If in the pipelined
schedule two instances of the same task that are mapped to
the same HW coprocessor do not execute concurrently, then
the scheduler implements the task once.

7. Multiple HW iteration locality unrolled/pipelined:

The scheduler explores multiple HW coprocessor iteration
locality unrolled/pipelined implementation over all eligible
HW coprocessors (see Figure 5(h)).

4.6 Scheduling of a Non-deterministic Loop Task

MAGELLAN does not consider multi-processor pipelining
or loop unrolling for a non-deterministic loop task. The
scheduler only explores single SW (Figure 5(b)) and single
HW pipelined (Figure 5(d)) implementation for the task.

4.7 Scheduling of a case task

Similar to the hierarchical task, the scheduler explores
single HW coprocessor, single SW processor and multiple
processor implementations for the case task. MAGELLAN
explores speculative execution of the path tasks if they are
mapped to HW coprocessors. Speculative execution involves
scheduling the execution of the path tasks before the exe-
cution of the control task. Speculative execution can occur
if the intersection of the predecessor task sets of the input
ports of the control and path tasks is the null set. The
scheduler does not explore speculative execution for a case
task if it is the body task or hierarchical successor of the
body task of a loop task.

5. SYSTEM PARTITIONER

The partitioner tries to improve upon a solution generated
by the scheduler. It does so by trying out several moves. It
evaluates several moves and finally implements one move
that results in largest decrease in task graph latency. Once
a move is implemented by the partitioner, the mapping of
the task involved in the move is fixed for the remaining part
of the algorithm.

Every task in MAGELLAN is in three states: free, tagged
or fized. Initially all tasks are in a free state. In a particular
move mode, a task is in a tagged state if all the moves have
been evaluated on it. In each iteration of the move mode, the
partitioner tries out moves on each free task and changes its
state to tagged. Once all the free tasks have been changed to
tagged, the partitioner selects and implements a move that
results in largest improvement in task graph latency. The
state of the task involved in the move is changed to fized
and state of all tagged tasks is set to free.

The partitioner operates in two move modes: hierarchical
move mode and leaf move mode. The partitioner stays in
hierarchical move mode until it cannot find any move that
results in an improvement. Then the partitioner goes in to
leaf move mode. The partitioner iterates between the two
move modes until no move results in an improvement or all
tasks have been mapped by the partitioner. MAGELLAN
exits and returns a solution when the partitioner is unable
to apply any more moves.

5.1 Hierarchical move mode

In the move mode the partitioner applies moves on loop,
case, hierarchical and call tasks. If the area constraint on
the hierarchical task (a(v, PE;)) is too tight to implement a
move, it is increased by the partitioner to a minimum value
that allows the move to be evaluated. The area constraints
on the other hierarchical tasks are also changed to reflect
this increase. For all the moves described below the actual
selection of the design points is done by the scheduler.

5.1.1 Moves for a deterministic loop task

1. Cluster move: The loop task is clustered with the pre-
decessor and successor tasks. Then the entire cluster is
mapped to each HW coprocessor subject to the area con-
straint on each coprocessor. The scheduler obtains a pipelined
implementation on the HW coprocessors. The entire cluster
is also mapped to each SW processor.

2. Cluster move with unrolling on single HW: The partitioner
calculates the maximum unrolling degree for the loop task
on each HW based on the area constraint on the HW copro-




Deterministic Loop Task A
HwW
Coprocessor
=t Shared ]
Memory
el L]
Counter sSw sSw
w S o o
Processor | A 1 >
o]
Shared
[ ‘ ‘ ‘ ‘ | Memory
HW
o Eopacessor [ 29] Eorocessr [ 3]
Coprocessor 3 3

Shared
’—‘ Memory

Shared
’—‘ Memory

HW HW
sw sw Coprocessor Coprocessor
1 ;
(f) (8) (h)

Figure 5: Design space exploration for a deterministic loop task

cessor (a(PE;)). The partitioner allocates enough area to
the loop task v so that the scheduler can unroll the task.

3. Single processor move: In this move the partitioner maps
only the loop task to each HW and SW processing element.
4. Pipelining and Unrolling moves: The partitioner moves are
identical to implementations 2, 4, 6 and 7 that were de-
scribed for the scheduler.

5. Hierarchical traversal: After evaluation of the above men-
tioned moves, the partitioner traverses down the hierarchy
of the loop task and considers moves on the loop body task
if it is a hierarchical task. The moves that are explored on
the loop body task depend upon the type of loop body task.
If the loop body task is not a hierarchical, loop or case task
the partitioner does not explore any moves on the loop body
task in the hierarchical move mode.

5.1.2 Moves for a non-deterministic loop task

The partitioner evaluates the cluster move, single proces-
sor move and hierarchical traversal for a non-deterministic
loop task.

5.1.3 Moves for hierarchical and case tasks

The partitioner evaluates the single processor move and
hierarchical traversal for hierarchical and case tasks.

5.1.4 Moves for a call task

The number of implementations of a callee (function) task
and the mapping of the call tasks on the callee implemen-
tations is determined by the scheduler. A callee task im-
plementation can have multiple call tasks associated with
it. The followings moves are applied only once for each
callee task implementation in each iteration of the hierar-
chical move mode:

1. Changing the implementation of a callee task : The type
of moves applied on each callee implementation depend upon
the type (deterministic loop task, case task etc) of callee

task.

2. Eliminating an implementation of a callee task : The sched-

uler generates the minimum number of callee implementa-
tions such that there do not exist scheduling conflicts be-
tween any two call tasks. The partitioner move reduces the
number of implementations of the callee task. This leads
to scheduling conflicts and hence delay in scheduling of cor-
responding call tasks. However, it also increases the avail-
able area for implementing other tasks if the callee task was
mapped to a HW coprocessor. Hence, this move is only ap-
plied if the callee task is implemented on at least one HW
COProCessor.

5.2 Leaf move mode

5.2.1 Moves for a leaf task

Depending upon the present mapping of the leaf task, the
partitioner explores several moves:
1. HW coprocessor implementation: The partitioner moves
the leaf task to other design points in the HW coprocessor
and evaluates each design point. The partitioner then moves
the task to all other design points on other HW coprocessors
and evaluates the moves. Finally the partitioner moves the
task to all SW processors.
2. SW processor implementation The partitioner moves the
leaf task to other SW processors and evaluates the move.
It also moves the task to all HW design points on all HW
COProcessors.

5.2.2 Moves for counter and control tasks

The counter (control) task can exist only as a constituent
task of a deterministic loop (non-deterministic loop or case)
task. The mapping of the control and counter tasks are de-
termined by the mapping of the corresponding loop body or
case path task. Therefore, the partitioner does not change
the mapping of the control or counter task in a given solu-



JPEG Task Graph

+
Task D Loop Task Vector-Matrix Multiplication Task Leaf Task
A N
Task Body Task Body

! cal / /

l Mult

Ll Task
zigzag
encoding

4

AJ

Figure 6: JPEG Image Compression
ILP based apﬁroach —
2500 = No Optimzations ------ |
Loop Pipelining and Unrolling --------
Loop Pipelining, Unrolling and Call &

@ 2000 ,
8}

£

©

o

Z 1500 - ,

1000 - 4
. . . .

0 50000 100000 150000 200000 250‘000 300‘000
Time in ns
Figure 7: Design Optimizations
tion. If the counter or control has been mapped to a HW
coprocessor, the partitioner moves the task to other design
points on the same HW coprocessor.

6. RESULTS AND CONCLUSION

The effectiveness of MAGELLAN is demonstrated by a
case study of the JPEG image compression algorithm. In
JPEG the forward discrete cosine transform (FDCT) task
is the most computationally expensive task. As shown in
Figure 6 it primarily consists of two matrix multiplications
and is therefore highly suitable for loop optimizations. The
FDCT task was expressed as hierarchical task that consisted
of two calls to matrix multiplication task. The matrix mul-
tiplication task is deterministic loop task with a counter of
8 and whose loop body task is a vector-matrix multiplica-
tion task. The vector-matrix multiplication task is also a
loop task with a counter of 8 and contains the dot product
task as its loop body. We obtained the SW estimates for
the tasks by profiling on a 266 MHz pentium system. We
obtained four HW design points for the dot product task,
four HW design points for the quantization task and one
HW design point each for the preprocessing, zigzag, RLE
and Huffman encoding tasks. The HW design points were
obtained for Xilinx 4000 series device by using a high-level
synthesis tool.

We first compare the results of MAGELLAN with all loop
and call optimizations switched off against an ILP based ap-
proach [5] that also does not perform any loop or call op-
timizations (see Figure 7). MAGELLAN gives close to op-
timal results when compared with the ILP based approach.
The ILP based approach required on an average 9134.98
seconds to produce the results while MAGELLAN without
optimizations required 0.95 seconds. This result establishes
the quality of the solution generated by MAGELLAN and
forms the basis for evaluating the results of the following
experiment.

We demonstrate the effectiveness of the optimizations per-
formed by MAGELLAN by comparing the results against
the optimal solution obtained in the previous experiment
(see Figure 7). The plots give the result of MAGELLAN
with a.) loop unrolling & pipelining and b.) function call
optimization, loop unrolling & pipelining. As can be seen
from the plots the each of the optimizations performed by
MAGELLAN result in significant reduction of latency of the
design. The improvement is 31.01 % at higher area (2500)
constraints and 22.84 % at lower area (1000) constraints.
Thus MAGELLAN improves on existing automated parti-
tioning approaches since they also do apply loop or call op-
timizations. Further with full optimizations MAGELLAN
required on an average 11.76 seconds (maximum 17.32s) to
generate the results on a Sun SPARCstation 20. Hence,
MAGELLAN can generate highly optimized designs in a
short period of time.

The paper presented MAGELLAN, a heuristic technique
for multiway HW-SW partitioning and scheduling of hierar-
chical control-dataflow task graphs. The technique improves
on existing techniques by operating on hierarchical specifi-
cations and applying various algorithm optimizations.

7. REFERENCES

[1] H. Takata et al. “The D30V/MPEG Multimedia Processor”. In
IEEE Micro. IEEE Computer Society Press, July-August 1999.

[2] M. Ikeda et al. ”SuperEnc: MPEG-2 Video Encoder Chip”. In
IEEE Micro. IEEE Computer Society Press, July-August 1999.

[3] R.K. Gupta. Co-Synthesis Of Hardware And Software For
Digital Embedded Systems. Kluwer Academic Publishers, 1995.

[4] R. Ernst et al. ?”The COSYMA environment for
hardware/software cosynthesis of small embedded systems”.
Journal of Microprocessors and Microsystems, 20, 1996.

[5] A. Kalavade. “System-Level Codesign of Mized
Hardware-Software Systems”. PhD thesis, University of
California, Berkeley, 1995.

[6] S. Bakshi and D.D. Gajski. “A Scheduling and Pipelining
Algorithm for Hardware/Software Systems”. In International
Symposium on System Synthesis, September 1997.

[7] R. Niemann and P. Marwedel. “Hardware/Software
Partitioning using Integer Programming,”. In European Design
and Test Conference, ED&TC, 1996.

[8] J. Jeon and K. Choi. “Loop Pipelining in Hardware-Software
Partitioning”. In Proceedings of ASPDAC, 1998.

[9] K.S. Chatha and R. Vemuri. “RECOD: A Retiming Heuristic
To Optimize Resource and Memory Utilization in HW /SW
Codesigns”. In International Workshop on
Hardware/Software Codesign, March 1998.

[10] T. Yen and W. Wolf. Hardware-Software Co-Synthesis Of
Distributed Embedded Systems. Kluwer Academic Publishers,
1996.

[11] B.P. Dave and N.K. Jha. “COHRA: Hardware-Software
Co-Synthesis of Hierarchical Heterogenous Distributed
Embedded Systems”. 17(10), October 1998.

[12] R.P. Dick and N.K. Jha. “MOGAC: A Multiobjective Genetic
Algorithm for Hardware-Software Cosynthesis of Distributed
Embedded Systems”. 17(10), October 1998.

[13] G. Lakshimnarayana B.P. Dave and N.K. Jha. "COSYN:
Hardware-Software Cosynthesis for Heterogeneous Distributed
Embedded Systems”. IEEE Transactions on Very Large Scale
Integration(VLSI) Systems, 7(1), March 1999.

[14] F. Balarin, L. Lavagno, P. Murthy, and
A. Sangiovanni-Vincentelli. “Scheduling for Embedded
Real-Time Systems”. January-March 1998.

[15] K.S. Chatha and R. Vemuri. ” An Iterative Algorithm for
Hardware-Software Partitioning, Hardware Design Space
Exploration and Scheduling. ”Design Automation for
Embedded Systems, (5):281-293, 2000.



	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index




