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ABSTRACT
We introduce a new PLA-based decoder architecture for
random-access run-time decompression of compressed in-
struction memory in embedded systems. The compression
method employs class-based coding. We show that this

new decoder architecture can be extended to provide high
throughput decompression. The design of the decompressor
is based on the following HW/SW tradeo�: decoding is done
in hardware to provide high throughput, yet the codebook
used for decompression is fully programmable.

Keywords: embedded systems, compressed instruction mem-
ory

1. INTRODUCTION
The program memory of a system-on-chip (SOC) design,

usually ROM or ash memory, may take a substantial por-

tion and sometimes more than half [9] of the chip's area.
By compressing the programs that reside in the instruction
memory, we can reduce the size, and therefore the cost of the
embedded system, or alternatively we can store in the pro-
gram memory larger and more sophisticated applications.

Thus object code compression in a SOC o�ers the follow-
ing tradeo�: investment in hardware (decompressor unit)
helps to reduce the size of the software (application pro-
grams, real-time operating system), without reducing the
functionality of the software. There is also another hard-
ware/software tradeo� that has to do with the design of the

decompressor itself: the codebook used for decompression
may be �xed in hardware, or stored in on-chip memory. In
the latter case, the compression method may be adapted to
the symbol frequency statistics of a given set of programs.
In the rest of this section we briey review relevant work on
the design of decompressors.

Sun and Lei [10, 7] describe the design of a constant-
output-rate decoder for compression systems in advanced
television applications. Chang and Messerschmitt [2] and
Lin and Messerschmitt [8] present VLSI architectures and
parallel decoding methods for variable-length-code decoders.

While the primary application they envision is high through-
put video compression systems, their work is generally ap-
plicable to compression systems that use a pre�x code, such
as the Hu�man code [3].
In this paper we focus on class-based coding (see Sec-

tion 3). Building on the work of Sun and Lei [10, 7] and

Chang and Messerschmitt [2], in Section 4 we describe a new
decoder architecture designed to decode class-based code-
words. The new architecture uses a PLA to decode class
codes and, as in IBM's CodePack [5], a ROM to decode sym-
bols in each class. From the published literature [5, 4, 6], it
appears however that the IBM design is not a PLA-based

design. Also, it is not clear to what extent the CodePack im-
plementation may be scaled to provide higher throughput.
The scalability of our PLA-based design is investigated in
section 6.
In the Sun and Lei design, any modi�cation in the code-

book requires changes in the PLA speci�cation; this implies
that PLA optimization software must be run again, with re-
sults that are diÆcult to predict in terms of the PLA area.
Such changes are normally not done after a custom-designed
chip becomes a product. This is also a limitation of the
Chang and Messerschmitt variable I/O rate decoder, which

is discussed in the Conclusions section of their paper [2].
(Actually, programmability of the codebook is mentioned
in [2] as a possible, but \not a simple extension" of their
work). Our architecture o�ers codebook programmability.
The PLA speci�cation and its implementation are �xed; the
compression algorithm may be adapted to the statistics of

various object programs by modifying the symbol codebook,
which is stored in a ROM and is fully programmable.
After a discussion on class-based code (Section 3), we in-

troduce a class-based decoder architecture in Section 4. In
Section 5 we show how this new decoder architecture can
be extended to provide higher throughput. In section 6 we

apply our decoder architecture to a speci�c class-based com-
pression algorithm.

2. BACKGROUND
In this section we briey review the Hu�man code and

a decoder architecture for it. Hu�man coding [3] assigns
variable-length codes to the symbols of an alphabet based on
the frequency of occurrence of a symbol in the text or object

�le. As shown in the example below, frequent symbols are
assigned short codes.

Example 1

Table 1 illustrates the code assignment for an

eight-symbol alphabet.



Alphabet Frequency Codeword

A 0.50 0
B 0.15 110

C 0.11 100
D 0.09 101
E 0.07 1110
F 0.05 11110
G 0.02 111110
H 0.01 111111

Table 1: An example of Hu�man code. The average
code length is 2.26 bits.

Sun and Lei [10] designed a decoder architecture for ad-
vanced television applications. It decodes variable-length

code at a constant output rate of one symbol per clock cy-
cle. As shown in Figure 1, the core of the decoder is a PLA.
Assuming an alphabet size of 2n symbols and the use of
bounded Hu�man code [11] such that the longest codeword
does not exceed w bits, then the PLA implements a truth

table with 2n product terms, w-bit wide input, and two out-
puts: the n-bit decoded symbol, and the codeword length
encoded in log2w bits.
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Figure 1: The one-symbol-per-cycle output decoder
designed by Sun and Lei.

Still referring to Figure 1, the accumulator adds up the
codeword length for each decoded symbol, and controls the
barrel shifter. When the accumulator exceeds the maximum

codeword length w, it produces a carry that transfers the
contents of Latch1 to Latch2, and loads w bits from the
Input Bu�er into Latch1.

3. CLASS-BASED CODE
An obvious problem with Hu�man codes is that the de-

coding performance is limited by the recursive nature of the
decoding process. We do not know where the code for a
symbol begins until we decode the previous symbol.
Another problem is that practical implementation of Hu�-

man codes is limited by the size of the alphabet, which deter-
mines the size of the Hu�man tree. If we consider an object

�le as a sequence of bytes, the alphabet consists of 28 = 256
symbols. We may prefer to look at the same object �le as
a sequence of 16-bit symbols, in which case the alphabet
size is 216 = 65; 536. Although the choice of 16-bit symbols
might give better compression performance, especially if the
object �le consists of �xed-length 32-bit RISC instructions

[5], maintaining a full Hu�man tree with 216 leaf nodes is

prohibitively expensive both in terms of storage space and

decoding speed.
Both of these problems may be addressed by using classes.

A class is a group of symbols that are assigned codes with
the same length. Every symbol in the alphabet belongs to
a single class. Every class is identi�ed by a unique class-

code. If a class consists of 2q symbols, a q-bit symbol-code

is appended to the class-code to identify each symbol that
belongs to that class. A codeword consists of a class-code

followed by a symbol-code.

Example 2

This example illustrates class-based coding for an

alphabet with eight symbols. Table 2 shows the
class structure. The class-based code, shown in
Table 3, is suboptimal compared with the Hu�-
man code (Example 1).

Number of symbols Class structure
in the class

1 0

2 1 0 b

5 1 1 b b b

Table 2: Class structure with three classes. The
alphabet consists of eight symbols. Following the
class-code, in each class there is a sequence of zero

or more bits b, which are used to encode the symbols
in that class.

Alphabet Frequency Class Codeword

A= 000 0.50 0 0
B= 001 0.15 10b 100
C= 010 0.11 10b 101
D= 011 0.09 11bbb 11011
E= 100 0.07 11bbb 11100
F= 101 0.05 11bbb 11101

G= 110 0.02 11bbb 11110
H= 111 0.01 11bbb 11111

Table 3: An example of class-based code, using the
classes de�ned in Table 2. The average code length
is 2.48 bits, longer than the average Hu�man code
length shown in Table 1. Decoding, however, is sim-

pli�ed because it is suÆcient to look at the �rst two
bits to determine the code length.

By using classes we split the decoding process into two
phases: (1) determining the code length by decoding the
class-code, and (2) decoding the symbol-code by accessing a
lookup table. This simpli�es decoding, and helps with the
�rst problem mentioned above (the recursive nature of de-

coding) because class codes are typically short, and it takes
less e�ort to determine the code length in comparison with
the Hu�man code with the same size alphabet.
We de�ne a class of literals { symbols whose contents is

not changed by the coding process. Literals are coded by
simply attaching to them the class-code. The class of literals

contains symbols that have the lowest frequencies.



Example 3

In Table 3, the �ve symbols that belong to the
third class (class-code \11") are literals. The
symbol itself is contained in the codeword fol-
lowing the class-code.

Literals help with the second problem mentioned above (the

size of the Hu�man tree) because literals are used to reduce
the size of the lookup table; in fact, if we use 16-bit symbols
we are likely to encode most of the 65K symbols as literals,
and maintain a relatively small lookup table that stores only
the most frequently used symbols. To build a full Hu�man
tree we have to limit ourselves to a small alphabet; 8-bit

symbols are typically used, 16-bit symbols would require a
huge 65K Hu�man tree. We can construct, however, class-
based code using 16-bit symbols.

4. CLASS-BASED DECODER ARCHITEC-
TURE

The Sun and Lei decoder (Section 2) uses 8-bit symbols,
and a maximum codeword length of 16 bits. It requires
a reasonable sized PLA: 16-bit input, 12-bit output (8-bit
symbol and 4-bit codeword length), and 256 product terms.
As it is, this design cannot be used for an alphabet size of

216 symbols because the PLA would require 65,536 product
terms. In this section we adapt the Sun and Lei design to
class-based codes by making the following changes.

1. The alphabet size is large, its size might be 216 symbols
or even larger.

2. The PLA is used to decode the class-code, but not
the symbols. This results in a small PLA, because the

number of product terms is equal to the number of
classes, not to the number of symbols in the alphabet.

3. A relatively small ROM stores the most frequently
used symbols (typically 512 or 1024 symbols). The
remaining symbols are encoded as literals.

As shown in Figure 2, the PLA decodes the class-code and

generates the following output:

1. Codeword length.

2. Mask control (the number of 1's in the mask).

3. ROM address of the block of symbols for the corre-

sponding class, if the symbol is not a literal.

4. A select literal signal if the symbol is a literal, as de-
termined by the class-code.

The codeword length is used as the rotate left control;

the result is a right-aligned codeword. The mask is used to
clear the class-code and the extra (unused) bits in the input
word. The mask output is a word that contains a single
right-aligned symbol-code (that is, a codeword stripped of
its class-code), padded with zeros up to the length of the
longest symbol-code.

If the \select literal" signal is active, the mask output is
a literal, which is selected as the decoder output. Other-
wise, the mask output is interpreted as the low-order ROM
address bits, which are ORed with the high-order address
bits produced by the PLA (the block address of the block
of the symbols that belong to this class), to yield the ROM

address of the symbol.

Example 4

Table 4 illustrates the PLA speci�cation for the
code of Example 2, and Table 5 shows the con-

tents of the ROM used to decode the eight-symbol
alphabet of the example.

PLA Output

PLA Input Rotate Mask High-
(contains Control Control Order
at least one Select (codeword (symbol ROM
class-code) Literal length) length) Address

0x 0 000 00 00
10 0 010 01 10
11 1 100 11 xx

Table 4: PLA speci�cation for the code of Exam-
ple 2. Since the shortest codeword is 1-bit long,
codeword length 000 denotes a 1-bit (the shortest)

codeword, and codeword length k is interpreted as
a length of k+1 bits. When \Select literal" is 1, the
symbol itself is contained in the codeword following
the class-code, and the ROM address is xx since,
whatever the ROM output is, it will not be selected
as the decoder output.

ROM Address

High- Low- Full ROM
Order Order Address Contents

Code- (PLA (Rotate (OR (Decoded
Class word Output) Output) output) Symbol)

0 0 00 00 00 A
10b 100 10 00 10 B
10b 101 10 01 11 C

Table 5: Address generation and contents of the
ROM used to decode the �rst three symbols of the
eight-symbol alphabet from Example 2. The re-

maining �ve symbols are literals.

5. MULTIPLE-SYMBOL-PER-CYCLE
CLASS-BASED DECODER

The decoder described in the previous section produces
one symbol per cycle. If the alphabet consists of 16-bit in-
struction halves of a typical RISC architecture with 32-bit
long instructions, then decoding a 64-byte cache line of 16

instructions requires 32 decoding cycles. Even if the pro-
cessor clock cycle is long enough to �t two decoding cycles,
the decompression penalty still adds substantial delay to the
memory path.
In this section we look at a method for increasing the de-

coding throughput by increasing the PLA complexity. The

PLA can be used to decode multiple codewords by specifying
it as a table of all possible combinations of the class-codes.
To decode n codewords concurrently we slightly change the
compression procedure. Every sequence of n codewords in
the object �le is encoded as P1P2 : : : PnS1S2 : : : Sn (rather
than the normal P1S1P2S2 : : : PnSn sequence), where Pi and

Si are the class-code and symbol-code of codeword i. If the
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Figure 2: Class-based decoder architecture.

class-code is at most p bits long, the n � p input bits of the
PLA contain n class-codees and possibly some extra bits.
As shown in Table 6, the PLA generates n + 1 output

�elds:

PLA PLA Output (no. bits) No.
Input Class-codes Symbol of
(no. P1P2 : : : Pn class no. Product

bits) Combination no. (n symbols) Terms

n � p log2(no. combinations) n�log2c c
n

Table 6: The PLA size used to simultaneously de-
code n codewords, assuming the longest class-code
is p bits and c classes.

1. One �eld that enumerates the combinations of class-
codes P1P2 : : : Pn. Combinations that give the same
length of class-codes are considered identical.

2. n �elds that contain the class number of each of the n
symbols. The c classes are numbered 0 : : : c� 1.

Figure 3 illustrates the structure of a four-symbol-per-cycle
decoder. As shown in the �gure, the symbol class number
is decoded to produce the following:

1. The select literal signal, which is asserted if the class
number identi�es the class of literals.

2. The high-order address (block address) of the block of

symbols that belong to this class.

3. The symbol-code length.

Conceptually, the four-symbol-per-cycle decoder shown in
Figure 3 may be scaled to n symbols per cycle. Parallel
decoding of n symbols is limited by the PLA complexity. In
the next section we look at the PLA complexity for a speci�c

class-based compression algorithm.

6. AN APPLICATION: IBM’S CODEPACK
In this section we apply the multiple-symbol-per-cycle de-

coder design presented above to a speci�c compression al-
gorithm: IBM's CodePack [5]. CodePack is a class-based
object-code compression method introduced in IBM's 405

PowerPC core. As in most other RISCs, PowerPC object
code consists of �xed-length 32-bit instructions. CodePack
compression (Figure 7) is done by using di�erent class struc-
tures for the left 16-bit halves and for the right 16-bit halves
of the instructions.
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Table 7: IBM's CodePack class structure. Coding is

done di�erently for the left and the right halves of
the instruction. In immediate-format instructions
the right instruction-half is used for constants. The
zero constant occurs frequently enough to justify its
own code, it is the only symbol encoded in the �rst
class of the right instruction halves.

There are c = 6 classes in CodePack, which we number
0 : : : 5. Three bits are required to encode the class number,
and 3n bits to encode the class numbers of n instruction
halves. Class-codes are either 2- or 3-bit long. Therefore,
as shown in Table 8, the number of class-code combina-
tions that give distinct lengths for the �eld of n class-codes

is quite small and may be encoded in 1-4 bits, depending
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Figure 3: Class-based decoder, concurrent architecture that produces four symbols.

n symbols PLA PLA Output (bits) No. No. Minimized No. Minimized
(Instruction Input Class-codes Symbol Total Product Product Terms Product Terms
Halves) (bits) Combination no. Class no. Output Terms Uni�ed PLA Decomposed PLA

1 1*3=3 1 1*3=3 4 6 4 5
2 2*3=6 2 2*3=6 8 36 14 15
3 3*3=9 2 3*3=9 11 216 30 35
4 4*3=12 3 4*3=12 15 1,296 92 75

5 5*3=15 3 5*3=15 18 7,776 238 155
6 6*3=18 3 6*3=18 21 46,656 554 315
7 7*3=21 3 7*3=21 24 279,936 | |
8 8*3=24 4 8*3=24 28 1,679,616 | |

Table 8: The number of PLA input and output bits and the number of product terms for an n-symbol-per-
cycle decoder that decodes CodePack compressed object-code. The logic minimization software was unable
to perform the PLA product term reduction for the last two rows of the table due to the huge size of the

PLA.



on the number of symbols (instruction halves) decoded per

cycle. The number of PLA terms is c
n for an n-symbol-

per-cycle decoder with c classes. To reduce the number of
PLA terms, we have used Espresso [1] to minimize two PLA
con�gurations: (1) a uni�ed PLA that produces all the out-
put bits, and (2) a decomposed PLA which consists of two
smaller PLAs, one that produces the \Class-codes Combi-

nation No." output, and a second PLA that generates the
\Symbol Class No." for each of the n classes. Although the
number of product terms before minimization is identical in
both PLA con�gurations, as shown in Table 8 the minimized
decomposed PLA has fewer product terms for n > 3.
For the PLA speci�ed in Table 8, we were able to do

the product term reduction up to n = 6. For larger n the
software ran for a few days and eventually crashed due to
the huge size of the PLA. For a four-symbol-per-cycle (n =
4) decoder, Verilog simulation of the design illustrated in
Figure 3 shows, as expected, that the critical path of the
design is the path that passes through the �ve-input adder

(bottom of Figure 3). Timing simulation of the critical path
shows that with 0.35-micron technology the decoding cycle
can be done in 10 ns. This corresponds to a decompression
throughput of eight bytes (four symbols) per clock cycle at
a clock rate of 100 MHz.

7. CONCLUSIONS
We have presented an architecture for decoding class-

based compressed object code in embedded processors. A
central component of the architecture is a PLA that decodes

the class-codes. The PLA is the only serial part of the de-
coder; the remaining operations of isolating the symbol-code
and accessing the symbol codebook are done in parallel for
all symbols. Thus the parallelism of the architecture is lim-
ited by the PLA complexity. By applying the proposed ar-
chitecture to a speci�c class-based compression algorithm

(IBM's CodePack [5]), we have shown that the proposed ar-
chitecture scales to parallel decoding of four symbols. In a
typical 32-bit RISC instruction set architecture, this corre-
sponds to a decompression rate of eight bytes per decoding
cycle.
Many embedded processors run at clock rates much slower

than desktop systems. For example, a state-of-the-art au-
tomotive controller, the Motorola MPC 555 [9] runs at only
40 MHz. We expect that the next generation of similar
automotive/industrial controllers will run at 100 MHz. Al-
though the proposed decoder design has not been fabricated,
we have implemented the design in Verilog. Based on sim-

ulation of the critical path of the design with 0.35-micron
technology, we estimate that at our target rate of 100 MHz
the decoder achieves a decoding rate of eight bytes per clock
cycle.
In a system with a compressed main-memory and a de-

compressed instruction-cache, the decompression penalty is
paid only when a miss occurs. Some embedded systems,
however, do not have an instruction cache for a number of
reasons, including the following:

1. Due to the relatively slow clock, the latency of the on-
chip program memory is quite short and an instruction
cache is simply not needed. For example, in the MPC
555 [9], the 448 KB on-chip ash memory provides
burst access with an initial latency of only two clock

cycles. The chip contains a burst bu�er, but no cache.

2. Some embedded processors control real-time systems

with critical safety requirements. In these systems
the worst case execution time (WCET) must be de-
termined for all programs. Caches, however, have un-
predictable timing and make WCET analyses diÆcult.

In such cacheless, compressed-memory, embedded systems,
high-throughput decompression is crucial.
A high-throughput decoder requires substantial hardware

resources. Using again CodePack as a case study, parallel
decoding of four half-instructions requires access to 4 ROMs,
1KB each, a total ROM size of 4 KB. This is a reasonable in-
vestment, however, considering that code compression saves
on the average 40% [5] of the program memory. For exam-
ple, 2 MB of object code could be stored in compressed form

in only 1.2 MB of ROM or ash memory, in e�ect saving 800
KB of on-chip memory.
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