

ABSTRACT

We introduce the foundation of a system modeling environment
targeted at capturing the

anticipated interactions

 of hardware and
software behaviors — not just their co-execution. Key to our
approach is the separation of external and internal design
testbenches. We use a frequency interleaved scheduling foundation
ideally suited to our approach because it allows unrestricted
hardware and software modeling, a mix of untimed and timed
software, and a layered approach using software schedulers and
protocols to resolve software to resource time budgets. We illustrate
our approach by discussing how architectural corner cases that arise
due to interacting hardware and software behaviors can be a
meaningful digital modeling concept. In addition to characterizing
the response of a system when viewed as a black box, we
characterize the

response of the design

 to anticipated design
changes. We include examples and simulation results.

Keywords

Hardware/Software Codesign, Computer System Modeling and
Simulation, Digital System Design

1. Introduction

As more computer systems are being integrated into system-on-
chip (SoC) designs and as the interactions of concurrent software
programs with multiprocessing and distributed platforms becomes
more complex, computer system designers must reason about:
platform design for programmability, the modeling impacts of
software schedulers, the co-execution of hardware-like and
software-like system-level behaviors, and the system-level
performance impacts of hardware architectures that execute
software functionality. Many of the critical

system-level

 design
decisions are those that involve the

anticipation

 of hardware/
software interactions; as hardware is loaded with software
functionality, software is deployed onto a variety of hardware
resources (architectures) and parts of a system (mixed hardware and
software) must interact with the yet-to-be designed rest of the
system (which may also include mixed hardware and software).

Codesign for system level modeling has been limited by the view
that all computation should be distilled to reactive models —
mathematical models of computation unified by event or token-
based foundations. The resulting executable specifications are

designed to respond to testbench-style inputs that model the
external environment in which the system is intended to operate.
The presumptions are that the computer system being designed is
passive and it should be isolated from its operating environment.

Increasingly, the operating environment of a computer system is
another computer system. Accordingly, next-generation computer
system modeling must be based not upon the reaction of a passive
computer to its operating environment, but upon active co-operation
and co-ordination — sharing — across model boundaries such as
resources. Computer system designers must be able to capture the
sharing effects or

anticipated interactions

 of concurrent software
executing on multiple hardware resources over a range of design
variations. More than understanding the

response of the system

, this
is understanding the

response of the design.

This paper introduces a new design methodology that allows a
designer to control (vary), directly and independently, computation
and communication power (modeled as rates), computation and
communication loading (modeled as normal behaviors or data-
dependent interference), internal performance limits (such as hard
and soft time-outs) and offsets (which model non-determinism
between clock domains). Essential to capturing resource sharing is
the ability to vary hardware resources independent of their software
loading. Our simulation semantic,

frequency interleaving

 (FI),
provides this ability by uniting hard-timed modeling with untimed
(self-timed) modeling, and uniting data-dependent resource sharing
with data-independent resource modeling at multiple levels.

Our results show how

corner cases

 arise due to the effects of
critical hardware/software interactions. For example, if
performance degrades to unacceptable levels or resources become
saturated, then any resulting bottleneck(s) may dominate the system
model. Searching a complex design space for designs that satisfy
performance criteria can be thought of as isolating and analyzing

prevalent performance models

that arise between corner cases in a
design space.

To fully analyze a computer system, designers must
isolate these prevalent performance models and the range(s) over
which they are valid. A designer can then understand the effects of
software loading, resource variations, and resource sharing.

2. Modeling Environment

Our computer system design methodology introduces pure software
models into a simulation environment, allowing for reasoning about
the

whole

 entity being designed — without restrictions to the
software or hardware virtual machines. By viewing software
modeling as a hardware resource sharing paradigm, we enable the
designer to manipulate the system design space where hardware
and software interact. As shown in Figure 1, a textual specification
captures the model of the system as composed of software models,
software scheduler/protocol models, and resource models.
Distinguishing features include:
• The modeled system (middle of the diagram) is

layered

. Our
layering approach allows software to be unrestricted (not lim-

Modeling and Evaluation of Hardware/Software Designs

Neal K. Tibrewala, JoAnn M. Paul, and Donald E. Thomas

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268-3545

{zyrain,jpaul,thomas}@ece.cmu.edu

ited to finite models of computation), allows schedulers and
protocols to be included separately in the model, and enables
novel means of resolving software execution to time (see later
discussion on

frequency interleaving

 (FI)).
• The simulation output (bottom of the figure) is viewed as

mixed

rate-based

 data and data that is captured over a

number
of simulation cycles

. Key to our approach is that we capture

strongly timed and untimed (self-timed)

 [3] software models.
Real time (and structural modeling [5]) can be reasoned about
in the same modeling environment with soft-time and perfor-
mance-only models.

• The simulation

testbench

 (TB) is split into three parts (left of
figure). By separating the testbench for

normal operation

 of
the system from that used to

explore the design

, we provide the
foundation for isolation of

anticipated

hardware/software
interactions.

Robustness

 captures software loading (top arrow)
and resource loss or severe degradation (lower arrow).

Design
exploration

 varies resource models as with conceptual

tuning
knobs

 — adjusting computation and communication rates.
• The robustness and design exploration testbenches are shown

penetrating the system model

. By viewing parts of the system
design as

incomplete,

 we support an abstract level of design
where hardware/software interactions are modeled as

anticipa-
tory

 behaviors — resources to be supplied for software, or
software to load resources.

Our approach of modeling three independent layers allows the
design methodology to support, directly, the manipulation of the
resource models, the scheduler models, and the software models.
Thus, any, or all, of these can contain the designable parameters
while others can contain fixed or anticipated hardware or software.
From this high level, a designer can converge on a point in the
design space satisfying performance constraints. While some
current high-level system design methodologies ignore the
modeling of the hardware [6], this is clearly inadequate for system-
level design. Other approaches limit software to hardware-like
finite models of computation [11][12] or apply synthesis to a
restricted portion of the design space [7][8][9]. Still others resolve
all modeling to token-based encapsulated computation and
communication [13][14][15], or gate-like discrete event
scheduling [10][16]. None of these approaches allow the designer
to reason about the resulting interactions and system-level
characterizations of independently manipulable models of resource
power, resource loading, and resource sharing.

3. Foundation: Frequency Interleaving

The modeling vision of Figure 1 is enabled by the simulation

foundation,

frequency interleaving

 (FI) [1][2]. Most other system-
level models, most hardware-only models, and many software-
only process models distill to graph-like encapsulated computation
and communication, which does not directly allow for modeling
the anticipated way that software will share resources. The
“bubble-and-arrow” diagrams that result from graph-based models
require discrete firings for information exchange [14]. By contrast,
the primary concern in modeling most computer systems has
become the modeling of computation and communication
resources along with their sharing. These models require timed and
self-timed behaviors to co-execute, and thus a flexible,
comprehensive treatment of time that does not require the

strong

coupling of software to hardware (resource) time. These are all key
in allowing the modeling environment of Figure 1 to become a
reality — and are enabled in FI because its shared memory multi-
rate, multi-threaded foundation allows independent manipulation
of resource and software models.

3.1 Thread Relationships

All computation in FI is modeled from two fundamental thread
types — C and G(F). The hardware foundation of system modeling
(the Resource Model of Figure 1) is based upon interleaved
execution rates — type C threads, for

continuous

 execution. These
are the only threads in the system with guaranteed, independent
activation. Most significantly, they

continuously

 execute based
only on fixed

rates

 or frequencies (f

i

) — regardless of any other
type of data events such as changes on inputs. Each C thread
atomically samples and generates corresponding static, fixed size
data sets (tuples) in a shared memory (state) space. Overlap is
established by the threads’ input/output shared memory.

When resources are shared, software schedulers and
communications protocols on networks multiplex access to the
resources throughout the system in a data-dependent manner. This
creates a conceptual

self-timed layer

 that logically resides on top
of the Resource Model layer of Figure 1. Accordingly, C threads

may

 also act as a resource-like foundation for more complex forms
of scheduling — G(F) threads, which have

guarded functional

execution, and state-dependent activation properties. Unlike C
threads, G(F) threads have no

guaranteed

 activation properties, but
activate as a function of scheduler and data dependencies, need not
execute atomically, operate on conceptually unbounded state, have
flexible forms of time resolution, and can be thought of as
behaving non-deterministically with respect to variances in the
resource layer. Thus, G(F) threads are used to model the Software
and Scheduler/protocol layers of Figure 1. While rate-based
modeling environments [17] could conceptually be used to support
the activation of FI C threads, they do not support G(F) threads.
Figure 2 shows, for a system with three C threads, how G(F)
threads relate to C threads, each other, and system state. Sets of
G(F) threads are shown as {G

ni

(M

n

,F

ni

)} where the

n

 subscript

Figure 1 Computer System Design Methodology

Normal Use

Robustness

Design
Exploration

Textual
Specification

Feedback
Analysis of
Functional

and
Performance

Results

Redesign

data
over

cycles

data
@

rates

Multiple
Testbenches

Software Model

Scheduler/protocol
Model

Resource Model

Paths
to

Implementation

FI Simulator

results

{G1i(M1,F1i)}

C2

C3

M1(G1)

Figure 2 FI Thread Relationships

C1

{G2i(M2,F2i)}

{G3i(M3,F3i)}

M2(G2)

M3(G3)

M2-3

M1-2

M1-2-3

M1-3

denotes a unique C thread and the

i

 subscript denotes a unique
G(F) thread within a set of G(F) threads mapped to the same clock
domain (C thread). The state upon which a set of G(F) threads
operate is M

n

, the size of which is a function of system execution
as for unbounded software memory — allocation/de-allocation is
possible in the shared memory foundation. Each G(F) thread
within a set is activated by a function F

ni,

which is, itself, another
G(F) thread within the set grouping, or a C thread. Each G(F)
thread within a set must ultimately resolve back (possibly through
other G(F) threads) to a foundation C thread, or the thread will
never activate, shown by the dotted line emanating from each C
thread on the diagram.

3.2 Resolving G(F) threads to C threads

In FI, resource models (C threads) provide time budgets that can be
manipulated independently of the software models that consume
them.

Conceptual

 O/S (operating system) threads arbitrate access
by one or more G(F) threads and account for their individual
consumption of the time budget. The system designer chooses the

loading expense

 of G(F) functionality. Because time budgets are
themselves partitioned, different sets of G(F) threads may execute
within a C thread’s time budget in a highly data-dependent manner
with very coarse to very fine-grained control. When a G(F) thread
calls back to the scheduler at pre-determined points (which will
eventually be inserted by a custom language), the scheduler makes
a decision whether to continue running the thread, suspend the
thread and run another thread, or suspend the thread and return
control to the frequency interleaved scheduler. The latter option
will end the atomicity of the C thread’s execution, allow control to
pass to another resource (C thread), and allow simulation time to
progress.

For example, a designer may determine that each call to a
particular function, such as read(), represents 50% of the resource
time budget of the C-thread, allowing the remaining time to be
consumed by other (parts of) G(F) threads until the C thread’s time
budget is consumed and control is returned to the FI resource
scheduler to execute the next resource (C thread). Alternatively, a
more expensive system call, memory access (via implicit
callback), or library call may cost 400% of the C thread's budget.
For this, the scheduler must partition the

over-budget

 G(F) thread
so that it relinquishes control to the simulator 4 times in order to
obtain enough time to process the full call. The scheduler
determines if the partitions are executed in succession or if the
partitions are functionally interleaved [4] with other G(F) threads
which may become eligible to execute in the meantime.

Thus OS/scheduler threads can be used to model a wide range of
scenarios. They could be a simple round-robin scheduler, a more
complex scheduler made to mimic the actions of a real OS or
RTOS, or they could schedule the execution of an instruction-cycle
accurate model — a very low level of modeling. They can
represent high-level models of scheduling or portions of a design
that remain in the completed system.

4. Digital System Design Corner Cases

One view of digital systems is that their models can be thought of
as

invariant

 over the operating space — the model of the system
does not change when certain inputs or ranges of inputs are
applied. This is analogous to an electrical or mechanical (analog)
system for which a single set of linear equations applies for all
possible operating conditions — a single linear model completely
characterizes the input-output response of the system. It is
convenient to think of digital systems as invariant when it is
possible to use a single model to characterize the state of every
register, memory location, and wire in a digital system. The system

responds to sets of input data applied in succession from reset, but
the system model does not change in response to the input data.

In contrast to such specification-driven modeling techniques,

prevalent models

 are inferred from of a complex set of
interactions. Complex systems containing software, software
schedulers, communication protocols, and multi-resource
interactions have made it more appropriate to consider digital
system models as

variant

 with respect to system inputs. These
systems can be viewed as having ranges of inputs that not only
exercise the system, they also modify its response, i.e. its prevalent
model.

Programmability is an example of this. A program can be
viewed as changing the model of the system for given data sets.
Again using an analogy to electrical or mechanical systems,
multiple prevalent models may be necessary to completely
characterize the system, where each model may be appropriate for
only portions of the range of operation. Corner cases for such
systems result when there is a transition from one prevalent model
to another. For a purely functional software system, the prevalent
models of the system might be considered to change in such a
manner as different functions are invoked — function calls can be
considered

corner cases

. This singularly powerful aspect of
software modeling — that of viewing the data input as being
separate from the program input used to construct arbitrary models
of the system — has made it possible for software systems to be
characterized by a richer set of models than pure hardware
systems. The challenge in digital system modeling is to provide for
a similar view of systems with mixed software-programmability
and hardware-resource modeling so that system designers may
more effectively manipulate the design space without restricting it.

As digital systems grow in complexity, it is more useful to
consider digital systems as variant with respect to

mixed models of
function and architecture

. As mentioned previously, functionality
is one way a pure software system model can be viewed as variant.
But equally important for real-time (hard-time) and performance
driven systems is the interaction of functionality with the
computation platform.

Consider the system of
Figure 3. It consists of four
conceptual busses, or

bus
domains

, labeled A-D,
defined by a shared
memory space, labeled
M1-M4, which is equally
accessible by any of the
conceptual processors (P1-
P6) or hardware devices
(H1-H3) on the bus.
Conceptual networks (N1,
N2) interconnect the bus
domains. The upper levels of our system model (Figure 1) are not
shown on the purely structural diagram of Figure 3. These include
the software schedulers implied by the multiprocessors, the
protocols implied by the busses and networks, and the
functionality mapped to the schedulers (or individual processors).
All of these imply sharing of or across resources. Also not shown
is how the schedulers may/not be tied to system clocks for real-
time or self-timed behavior, and if the bus models are synchronous
or asynchronous. The intended system response, i.e. the conditions
under which the system is intended to operate is also missing.
However, the prevalent system model is clearly defined by the
interaction of all of these aspects of the design.

For example, when the model shown in Figure 3 is considered
invariant, the network, N2, is required to resolve communications

P1
P2

M1
H1

H2
M2
P3

M3 P4
P5

P6
M4
H3

N1
N2

A

C

DB
Figure 3 A System Architecture

from bus domain C to bus domain D, under all circumstances.
However, when N2 is sufficiently fast

under the intended operating
conditions

 to resolve all data exchange between the functionality
and schedulers mapped to bus domain C and the functionality and
schedulers mapped to bus domain D, the network N2 may be
considered to be transparent to the execution of the system — it is
not a part of the model of the system so long as those conditions
are met. Establishing the speed of the network where it no longer is
transparent amounts to finding the corner case between two
prevalent models — where N2 is/not transparent.

Corner cases can be inferred or intentionally established by the
designer. Indeed, some high-level system designs are appropriately
modeled and tested as a set of corner cases. This makes the design
highly resistant to variations and highly predictable over a wide
range or ranges of operating conditions.

5. Experiments and Results

Our modeling environment provides a basis for exploring digital
system designs that contain interacting hardware and software
models at a variety of levels of modeling detail, much like
hardware description languages are a general model of digital
hardware for a variety of levels of modeling detail [5]. No single
design will illustrate all of its capabilities. The example in this
paper is focused on a client/server application with multiple clients
running on multiple CPUs requesting data from a single server on
a single shared Ethernet link because it is rich in demonstration
possibilities for high-level hardware-software interactions unique
to our modeling environment. Such interactions include
simulation-based computation and communication resource
models, and software loading of resources varied independently as
timed and self-timed software models.

As illustrated in Figure 4, the resources (C-threads) modeled in
the system are 5 CPUs, 1 Ethernet, and 1 global clock reference.
The clock reference provides a timebase for re-transmission of
dropped packets, required in TCP/IP. The network model includes
the effects of the network interface cards (NICs) on each CPU, and
the actual packet exchange. Each CPU is running a copy of our
conceptual OS — the G(F) thread that resolves software time to
the time budget provided by its underlying C thread and which also
schedules the software layer G(F) threads which are mapped to it.
Initially, we have 2 clients running on each of 4 CPUs, and the
server application running on its own CPU. The clients are
competing against each other for both the single shared network
link out of the CPU and for shared access to the CPU for execution
time. A background task (BG) represents anticipated software
loading which can be varied as the model is explored. The server
dynamically spawns a new thread to handle each connection. All of
the active server threads will be competing for their shared CPU as
well as the network.

5.1 Packet Accurate Network

We initially created a high-level, packet-accurate model of the
network. A variable amount of time is required to send a packet
through an Ethernet network; smaller packets take less time to
transmit than larger ones. Models with less detail can utilize
average, random, or worst-case response times. We chose to do a
worst-case simulation, with each packet transmission requiring
1.5ms, in a “packet accurate” cycle-based model, corresponding to
the worst-case frame (packet) transmission time on 10BaseT
Ethernet. The designable parameters in this initial model are the
speeds of the processors and the size of the buffers on the network
cards. The fixed parameters are the network speed (corresponding
to 10BaseT — 1500

µ

s), a fast server (set to 100

µ

s), and a single-
packet buffer in each NIC.

Our first experiment, shown in Figure 5, determined the required
speed of the CPUs for maximum utilization of the system
resources, while minimizing the transfer time. The design
exploration testbench was used to vary the power of the client
CPUs. In this example, this is represented as the period of time on
the processor we would expect to use to process a single packet.
Therefore, slower processors are on the right, as they take a longer
period of time to process a packet. The range varied from a fast
0.1ms to a slower 1.7ms time in 0.1ms increments. The same
normal use testbench was used for each data point. This testbench
had 8 clients simultaneously request a 10KB file from the server.
Other scenarios are, of course, possible.

Three metrics were used: CPU utilization, network utilization,
and total execution time. The total transfer time line corresponds to
the elapsed time on the system clock when the last client finished
its transfer. CPU utilization is measured by the progress of the
background task. A large amount of completed work by the
background task means the CPU did not spend much time on
network packet processing. The background task’s interference on
the benchmark is minimized in this example by allowing the
clients to continue in the simulation as soon as resources allow
them to become unblocked. This task could also represent
increased interference. The last metric, network utilization, is the
percentage of time the network spent transferring packets instead
of being idle.

The graph shows that as the client CPU period increases from
0.1ms (i.e., a decrease in frequency, or power), the total transfer
time and network utilization remain fairly constant, while the CPU
utilization increases. This is the range where the network is the
bottleneck. The first corner case exists at roughly 0.9ms. This is
where the CPU is just fast enough to handle packets as fast as the
network can deliver them. At higher periods, the client CPUs are
the bottleneck. The system, therefore, responds differently to
additional decreases in CPU power; a different prevalent model

CPU CPUCPUCPUResource

Layer

Scheduling/
Protocol
Layer

CPU

OS-

Software

Layer Server

Spawned
Thread

Spawned
Thread

Listener

C-Thread
1 MHz
Clock 10BaseT

TCP/IP
OS-

TCP/IP
OS-

TCP/IP
OS-

TCP/IP
OS-

TCP/IP

Application

Figure 4 Thread Relationships of System Example

…Client

Client

BG Task

Round-Robin

x4

0

1 00

200

300

400

50 0

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Client CPU Period (us)

T
ot

al
 E

xe
cu

tio
n

T
im

e
(u

s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Total Transfer Time
CPU Utilization
Network Utilization

Figure 5 Design Response as a Function of CPU Period

dominates. At the corner case, the CPU and network utilizations
are both high, indicating good use of available resources, and the
benchmark is still completing in close to the fastest time possible.
This tells the designer that a client CPU that can process packets in
about 0.9ms is maximally efficient for the benchmark.

5.2 Byte Accurate Network

Multi-level modeling allows a designer to rewrite a portion of the
model with more detail while leaving other parts at higher levels of
detail. This is a strength of our modeling environment. In the
previous example, our system was realizing only about 2 megabits
of bandwidth (after overhead) on the 10 megabit network. A bench
test on a real network would most likely yield closer to 7.5
megabits (after overhead). Several factors contribute, including the
protocol model, the buffer sizes, and the network model. However,
the most important contributing factor is that we were conservative
in the network model. The high-level, packet-accurate model
assumes the worst-case network response time. By providing more
detail to the network resource model, a second, byte-accurate,
model removes this worst-case assumption.

In the byte-accurate model, the client and server CPUs remain
packet-accurate, but the packet buffer size on each NIC is
increased to 20 packets. This corresponds, approximately, to a
standard 16KB RAM buffer. This size is large enough that our
benchmarks did not drop any packets due to buffer overflows, so
we did not need to model, in detail, the TCP retransmission and
congestion control algorithms. These could be included if we
wanted to model congested networks as well.

For this more detailed example,

both

 the network and the client
CPU speeds were varied. The client CPU speeds varied from 50

µ

s
per packet to 1000

µ

s per packet in increments of 50

µ

s. The
network speed varied from 0.1

µ

s per byte (80Mb/s) to 2.0

µ

s per
byte (4Mb/s) in increments of 0.1

µ

s. The server CPU speed
remained at 100µs per packet. Figure 6 clearly illustrates where the
corner cases are. The smooth right half of the graph is the region
where the CPU is the bottleneck. A decrease in network
performance causes no degradation in benchmark speed.
Conversely, the stepped left half of the graph is where network
speed is the bottleneck. The ridges in this region represent
decreasing processor speed without decreasing system
performance. The corner case is where the smooth right region
meets the stepped left region. The line is where the system is
balanced and both the processor and network are fully utilized.

5.3 Cost Considerations
In the abstract, computation and communication speed can be
varied together with no limits; the behavior shown in Figure 6 will
extend ideally in the absence of additional constraints. However,
physical and cost limitations can impose such constraints leading
to additional corner cases. To illustrate this, we overlaid cost
functions on the performance graph of Figure 6. The network cost
factor penalizes high resource speeds (network periods) for a
saturated resource or bandwidth allocation. Similarly, a simple
CPU cost factor step function was generated by selecting the cost
of the slowest CPU from a list of six that could process a packet in
the period time. By increasing the penalty for exceeding the target,
we amplify design effects so that corner cases are more easily
seen. The factor below generates our performance/cost graph using
the square of the ratio of performance to the target for a 100ms
transfer time.
NetworkCostFactor * CPUCostFactor * (Performance/100000)2

When we apply these costs to each data point along with the
benefit or penalty for exceeding or missing the performance target
we get the graph shown in Figure 7, illustrating the performance/
cost ratio at each data point. This shows a much more intricate
surface than the previous one, as there are now several equations
contributing to the data. Now, it is no longer beneficial to have the
fastest processor and network possible because of the increasing
cost of each. The higher data points are in the center of the graph.
Of course, this is expected because the previous corner case tells us
that the center line is where there is a balance between network and
client CPU utilization. One very illustrative region on the graph is
the ridge just to the right of the three peaks. This region is one of
the three where the cost function is favorable, but is too far off of
the center line indicating balanced resources. It is a plateau, and
not a peak, because it formed within the smooth region of Figure 6.
Had this cost plateau crossed over the corner case seen in Figure 6,
it would have resulted in a peak.

50
150

250
350

450
550

650
750

850
950

0.1

0.4

0.7

1.0

1.3

1.6

1.9

0

50000

100000

150000

200000

250000

B
e
n

c
h

m
a
rk

 T
im

e
 (

u
s

Client CPU Period (us)Network Period (us)

Figure 6 10KB Transfer — Byte Accurate Network Model

Table 1 Possible Implementation Points

Network
Period
(µs)

CPU
Period
(µs)

Performance
(µs)

Network
Cost

Factor

CPU Cost
Factor

Performance/
Cost Ratio

0.4 250 46749 2.5 11 .166

0.7 250 62499 1.4 11 .163

0.9 450 88199 1.1 7 .165

Figure 7 Cost Adjusted Graph - Byte Accurate 10K Test

5
0 1
5
0 2
5
0 3
5
0 4
5
0 5
5
0 6
5
0 7
5
0 8
5
0 9
5
0

0.1

0.4

0.7

1

1.3

1.6

1.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
P

e
rf

o
rm

a
n

c
e
/C

o

Client CPU Period (us)Network Period (us)

The three peaks in the graph are detailed in Table 1, indicating
where the Performance/Cost ratio is highest. Each point is at a
different place on the network speed axis, while two of the points
share the same place on the CPU speed axis. The first point
(0.4,250) trades off cost for higher performance of the faster CPU
and network. The last point (0.9,450) uses the drop in CPU price to
justify the decreased performance, and the middle point is trying to
strike the perfect balance between the cost of the resources and the
benchmark performance.

5.4 Software Loading
In addition to varying resource power, our methodology allows us
to understand the effects of variable and anticipated software
loading of the resources. In this experiment we added a task to the
server CPU which has the potential to interfere with the server’s
processing of the benchmark. The additional task loads the server
CPU with an execution time ranging from 100 µs to 3200 µs as
shown in Figure 8. We modeled this by changing the number of
server CPU resource cycles (resource time budgets) required to
process this task. The task has minimal effect on the benchmark
time until the execution time reaches about 1200 µs, where the
server CPU becomes 100% utilized (saturated). After that,
increasingly slower performance is seen.

5.5 Model Accuracy
To test how well our models capture real systems we ran a 100KB
benchmark on a system consisting of 5 identical Pentium PCs
connected via a 10BaseT Ethernet hub, measuring the completion
time of each client. The simulation model has a mean client
completion time of 644.0ms across 7 client threads, while the
experiment showed an actual mean transfer time of 615.5ms. The
4.62% error is quite good considering the high level of modeling.
For instance, Ethernet frame collisions are not being modeled. This
is evident in the standard deviation of the test results. The model
gives a standard deviation of 6ms compared to the real test value of
111ms. When a collision occurs, the Ethernet protocol causes the
clients to use an exponential random back-off. This effectively
reduces the contention on the network for some period of time, but
causes a retransmission later. Of course, modeling the effects of
frame collisions is something that can be included in a more
detailed (lower-level) network model.

6. Conclusions
We introduced a computer system design methodology that allows
a designer to model unrestricted software and hardware-resource

models so that resource sharing effects can be explored for
anticipated hardware/software interactions. Our methodology
allows a designer to explore, directly and independently, design
variations such as anticipated software loading, and computation
and communication resource power, from a very abstract level
through to detailed design. Critical performance limits and
saturation effects conceptualized as digital system corner cases
allow a designer to infer prevalent models, where a set of modeling
variables dominate over an operating range. We base our
scheduling foundation on frequency interleaving (FI) because it
provides a multirate, multi-threaded foundation for varying
resource power and resource loading, provides the basis for
resolving strongly timed and self-timed behaviors, and allows for
flexible means of resolving software back to hardware time. We
include several sets of results for a networked model with clients,
servers, software schedulers and an Ethernet hub model. Our
modeling is not limited to network designs. Rather, it is aimed at
modeling the general class of complex computing systems.

7. Acknowledgments
The authors would like to thank our other research team members:
Henele Adams, Chris Andrews, Chris Eatedali, and Arne Suppé.
This work was supported in part by the General Motors Satellite
Research Lab at Carnegie Mellon University, ST Microelectronics,
NSF Award EIA-9812939, and the Pittsburgh Digital Greenhouse
through a grant from the Commonwealth of Pennsylvania,
Department of Community and Economic Development.

8. References
[1] J.M. Paul, S.N. Peffers, D.E. Thomas. “A Codesign Virtual

Machine for Hierarchical, Balanced Hardware/Software Sys-
tem Modeling,” 37th DAC, 2000.

[2] J.M. Paul, S.N. Peffers, D.E. Thomas. “Frequency Interleav-
ing as a Codesign Scheduling Paradigm,” 8th CODES, 2000.

[3] C.L. Seitz. “System Timing.” Introduction to VLSI Systems.
C. Mead, L. Conway. Reading, MA: Addison-Wesley, 1980.

[4] D. Skillcorn and D. Talia. “Models and Languages for Paral-
lel Computation,” ACM Computing Surveys. June, 1998.

[5] D.E. Thomas and P.R. Moorby, The Verilog Hardware
Description Language, 4th Edition, Boston: Kluwer, 1998.

[6] B. Selic. “Turning Clockwise: Using UML in the Real-Time
Domain,” Comm. of the ACM, pp. 46-54. Oct. 1999.

[7] D. Gajski, F. Vahid, S. Narayan, J. Gong. “SpecSyn: An Envi-
ronment Supporting the Specify-Explore-Refine Paradigm for
Hardware/Software System Design,” IEEE Trans. VLSI, ‘98.

[8] Y. Li, W. Wolf, “Hardware/Software Co-Synthesis with Mem-
ory Hierarchies,” Proc. of ICCAD98, pp. 430-436. 1998.

[9] R. Ortega, G. Borriello. “Communication Synthesis for Dis-
tributed Embedded Systems,” ICCAD98. pp. 437-453. ‘98.

[10] J.-M. Daveau, G. Marchioro, A. A. Jerraya. Hardware/Soft-
ware Co-design of an ATM Network Interface Card: a Case
Study. Proceedings of CODES 1998.

[11] F. Balarin, M Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, et.al,
Hardware-Software Co-design of Embedded Systems. The
Polis Approach. Boston: Kluwer. 1997.

[12] L. Lavagno, E. Sentovich. “ECL: A Specification Environ-
ment for System-Level Design,” 36th DAC, 1999.

[13] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. Lee, et. al,
"Overview of the Ptolemy Project," ERL Technical Report
UCB/ERL No. M99/37, Dept. EECS, Berkeley. July 1999.

[14] W.-T. Chang, S.-H. Ha, and E. A. Lee, ``Heterogeneous Sim-
ulation -- Mixing Discrete-Event Models with Dataflow,''
Journal on VLSI Signal Processing. Vol. 13, No. 1, Jan 1997.

[15] http://www.inmet.com/sldl/
[16] http://www.systemc.org/
[17] http://www.mathworks.com

375000

385000

395000

405000

415000

425000

435000

0 400 8 0 0 1200 1 60 0 2000 2400 2 800 3200

Execution Time of Interfering Task (us)

T
ot

al
 B

en
ch

m
ar

k
T

im
e

(u
s)

Figure 8 Performance vs. Server Loading (Interference)

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

