The Usage of Stochastic Processes
in Embedded System Specifications

Axel Jantsch, Ingo Sander, Wenbiao Wu
Royal Institute of Technology, Stockholm, Sweden

ABSTRACT

We review the use of nondeterminism and identify two dif-
ferent purposes. The descriptive purpose handles uncertain-
ties in the behaviour of existing entities. The constraining
purpose is used in specifications to constrain implementa-
tions. For the specification of embedded systems we suggest
a stochastic process o instead of nondeterminism. It serves
mostly the descriptive purpose but can also be used to con-
strain the system. We carefully distinguish different inter-
pretations of these concepts by the different design activities
simulation, synthesis and verification.

1. INTRODUCTION

Nondeterminism as a modelling concept has been used
with two different objectives. One objective is to capture
an aspect of the world which is not completely known and
which behaves in an unpredictable manner. We call this
usage the descriptive purpose. The second objective is to
designate different possibilities for implementation, which
we call the constraining purpose.

Following Dennis and Gao [4] we use the terms “determi-
nate” and “deterministic” in the following sense. An entity
is deterministic if its entire internal mechanism is fully func-
tional, i.e. in each part and in each step the same output is
produced for the same input. An entity is determinate if its
externally visible behaviour is functional, i.e. if the entity
always produces the same output for the same input. Thus,
a nondeterministic system may be determinate but a non-
determinate system cannot be deterministic. Our interest
here is mainly in what can be observed from outside, hence
we mostly use the term determinate.

Nondeterminism describes a situation where we do not
have enough information to predict a specific behaviour. If
we say an entity E generates Os and 1s nondeterministically,
we admit that we cannot predict what the next generated
value will be. We cannot exclude any possibility, not even
corner cases such as that no 1 is ever produced. If we require
that E is fair, we constrain its behaviour and request that

Submitted to CODES 2001

if E produces an infinite sequence, it must produce both in-
finitely many Os and infinitely many 1s, thus it cannot block
the generation of 1s forever. To require that the generated
sequence has a specific stochastic distribution, is a stronger
constraint. It means not only that the number of 0s and 1s
must be infinite in an infinite sequence, we also define the
relative number of 0s and 1s. For instance if we request a
uniform distribution we require that the ratio 223228; be-
comes 1 when the sequence length becomes infinite.

Nondeterminism allows to express uncertainties and dif-
ferent possible behaviours. In contrast a determinate model
can only express one definite behaviour explicitly. Thus,
nondeterminism increases the expressiveness of a modelling
language. However, nondeterminism makes the task of anal-
ysis, formal verification, validation by simulation, and syn-
thesis much more complex.

We argue that it is beneficial to use a stochastic distribu-
tion instead of nondeterminism for three reasons. First, very
often we know more about an entity than nondeterminism
would suggest. E.g. we know that its behaviour follows a
specific probabilistic distribution. The additional informa-
tion can be useful for simulation, synthesis and validation.
Second, stochastic behaviour can be modeled by means of
a pseudo random generator, which essentially is determi-
nate. In this way we can avoid some of the difficulties that
come with nondeterminism, but increase the expressiveness
as compared to determinate models. Third, nondeterminate
behaviour can be approximated by stochastic behaviour. In
particular fair nondeterminism can be approximated rather
well by a stochastic process. We acknowledge that nonde-
terminism cannot be fully simulated by a stochastic process
but we have not yet encountered a concrete example where
it is an advantage to use a nondeterminate model rather
than a stochastic one.

In the next section we trace the history of determinate
and nondeterminate models which forms the context for our
proposal to use a stochastic process to get almost the ex-
pressiveness of nondeterminate models and to keep almost
all the advantages of full determinism. Then we introduce
some basic concepts of the Formal System Design (ForSyDe)
methodology which sets the context for the discussion there-
after. In section 4 we introduce the stochastic o process. In
section 5 we discuss transformations which refine stochas-
tic processes into non-stochastic, determinate processes. Fi-
nally we conclude the paper in section 6 with a general dis-
cussion on the use of stochastic processes.

2. RELATED WORK

2.1 The Descriptive Purpose

In theoretical computer science nondeterminism has re-
ceived continuous attention over decades due to the difficul-
ties to deal with it in a satisfactory manner. On one hand
nondeterminism has been considered mandatory as a mod-
elling concept when writing distributed programs. When
these programs are compiled and executed on a particular
machine, the delays of computation and communication de-
pend on the details of the target machine. If the different
delays potentially lead to different behaviour, the abstract
program is nondeterminate. Hence, nondeterminism is used
to capture the timing behaviour of the target machine.

2.1.1 Determinate Models

However, the inclusion of nondeterminism severely com-
plicates the attempt to define a precise semantics for a com-
puter program. One track of research has therefore excluded
nondeterminism by defining the semantics of a language in
such a way, that its behaviour is independent of the execu-
tion delays of the target machine. In Kahn’s language for
parallel programs [7] both the individual processes as well as
an composition of processes are determinate functions over
infinite input streams. Kahn’s semantic is very elegant and
useful and had long lasting influence on various research di-
rections and application fields. But the restriction that he
imposed for the sake of determinate behaviour sometimes
impede the programmer to formulate more efficient solu-
tions to a problem. For instance one restriction in Kahn’s
language is that processes cannot test for the emptiness of
an input channel, a feature known as “blocking read”. Of-
ten it is obvious to a programmer that resources are better
utilized if a process may check if input data is available and
do something else if it is not.

While Kahn process networks and its descendants, e.g.
data flow networks, took the approach to define a behaviour
which is independent of timing properties, the perfectly syn-
chronous languages [1] impose on any implementation the
constraint that it has to be “fast enough”. For programs
and their implementations which fulfill this assumption, the
behaviour is determinate, again by separating timing prop-
erties from the behaviour.

Clocked synchronous models have been used in hardware
design to achieve the same. A circuit behaviour can be de-
scribed determinately independent of the detailed timing of
gates, by separating combinatorial blocks from each other
with clocked registers. An implementation will have the
same behaviour as the abstract circuit description under the
assumption that all combinatorial blocks are “fast enough”.
This assumption has been successfully used for design, syn-
thesis and formal verification of circuits.

In summary, determinate models achieve determinate be-
haviour by separating timing properties from behavioural
properties. Variants of Kahn process networks define the
semantics such, that any behaviourally correct implementa-
tion is acceptable independent of its timing. On the other
hand perfectly synchronous and clocked synchronous mod-
els divide possible implementations into two classes, those
which are “fast enough” are acceptable and those which are
“too slow” are not acceptable.

2.1.2 Nondeterminate Models

Nondeterminism has been studied in data flow networks
with asynchronous, infinitely buffered communication and

in process algebras with synchronous, unbuffered communi-
cation.

One approach to generalize Kahn'’s theory for nondeter-
minate process networks is to use history relations rather
than history functions. A history relation maps an input
stream onto a set of possible output streams instead of a
single determinately defined output stream. However, his-
tory relations are not sufficient to model nondeterminism.
Brock and Ackerman [2] showed with examples that two
components with identical history relations, if placed in the
same context of a bigger system, may cause the system to
behave in a different way, i.e. the system has different his-
tory relations. This means, that history relations are not
sufficient to capture all relevant information about a com-
ponent. In particular causality information between events
must be included. Brock [2, 3] gave a formal semantics based
on history relations and scenarios, which represent causal-
ity. Kosinski [8] described a semantics for nondeterminate
data flow programs based on the idea to annotate each event
with the sequence of nondeterminate choices that leads to
that event. Park’s formal semantics of data flow [10] models
nondeterminism with oracles. Each nondeterminate merge
operator is provided with an extra argument called the ora-
cle. It is a random sequence and controls from which input
stream the next token for the output stream is selected. We
follow this idea to some extent but replace the nondetermi-
nate oracle with a stochastic oracle.

Hoare’s CSP (Communicating Sequential Processes) [5]
and Milner’s CCS (Calculus of Communicating Systems)
[9] have been developed in response to two difficulties with
data flow models. First, it appeared difficult to find ele-
gant solutions for the formal semantics of nondeterminate
data flow languages. Second, data flow models require un-
bounded buffers for communication which lead to difficulties
in implementation. In almost the entire work on process al-
gebras nondeterminism is assumed and significant effort has
been spent to establish properties, equalities, and methods
to guarantee a specific behaviour of the system in the pres-
ence of nondeterminism. For CCS, Milner defines the con-
cept of weak determinacy [9], which is based on observational
equivalence. A system in a given state with given inputs can
enter a set of different successor states nondeterministically.
If the system in all successor states behaves identically, as
far as it can be observed from the outside, the system is
weakly determinate. A somewhat broader concept is weak
confluence. A system is confluent if for every two possible
actions, the occurrence of one can never preclude the other.
Thus, even though one of the two is selected nondetermin-
istically the other will eventually also occur. Milner then
gives a set of construction rules which preserve confluence
[9].

In summary, determinate models restrict the model to
guarantee a well defined behaviour in the presence of non-
deterministic mechanisms. To the same end the construc-
tion process is constrained for nondeterminate models. Non-
deterministic mechanisms are part of the implementation
realm for the determinate models and part of the models
themselves for the nondeterminate models.

2.2 The Constraining Purpose

For the purpose of describing requirements on a system
various techniques related to nondeterminism have been used.
Relations divide the possible responses of a system to a given

input into two parts: those acceptable and those not accept-
able. execution_time (Program)<5ms and size(Chip)<icm’
are two relations constraining the nonfunctional properties
of a system. The relation defining a sorted integer array has
been used numerous times as an example of a functional re-
quirement. Dennis and Gao [4] describe the example of a
transaction server, which accepts requests at several inputs
and processes them (figure 1). The merge process, which

Requests
: Transaction

Merge

Server

Figure 1: A transaction server with request merger.

decides the order in which requests are served, is subject
to several functional and nonfunctional constraints. Appar-
ently each request should eventually be served. Perhaps
we require that the average response time is similar for re-
quests on all input lines. And most likely we would like to
have a high performance of the merge operator itself while
minimizing its implementation cost. Clearly, the functional
specification should not define a determinate merge mecha-
nism to allow the allow the design process to find the best
solution. The specification should rather be content with
defining all allowed behaviours.

While relations constrain the functionality, perfectly syn-
chronous and clocked synchronous models constrain the tim-
ing behaviour. With respect to functionality these models
are fully determinate, hence we have discussed them in sec-
tion 2.1.1 However, with respect to timing they constrain
the implementation to be “fast enough”.

3. ForSyDe METHODOLOGY

In order to make the features of stochastic o processes
(section 4) understandable we need to introduce a few key
concepts of the Formal System Design (ForSyDe) Methodol-
ogy for which we have developed the o process. ForSyDe [12,
13] is a fully determinate system specification and modelling
technique. It adopts the perfectly synchronous assumption
that neither communication nor computation takes time. It
employs skeletons, which give the system description a struc-
ture, separate functionality from timing, and have explicit
interpretations for hardware and software implementations.
Skeletons are templates for processes which are connected
by streams. In the following section we introduce the o pro-
cesses and the ForSyDe skeletons which encapsulate them.

4. THE o PROCESS

A o process is a pseudo random generator with a defined
statistical distribution. We use it in two ways.

First, we use it to constrain the implementation of the
system with respect to behaviour. Depending on the precise
kind of the o process, the implementation may or may not
be required to respect the statistical properties of the spec-
ifying process. Note, that we do not use the o process to
constrain the timing behaviour. For the timing behaviour
we strictly follow the approach of the synchronous languages
by requiring that the implementation is “fast enough” [13].

Second, environment elements can be modeled with o pro-
cesses when we cannot or do not want to represent their

exact behaviour or timing. We think a statistical distribu-
tion is more appropriate than nondeterminism. Consider
an ATM switch which receives ATM cells from the environ-
ment. The type of ATM cells, user cells, alarm cells, mainte-
nance cells, erroneous cells, etc., follow a statistical distribu-
tion. To generate ATM cells according to given probabilities
is both more accurate and more useful for the design and
validation of the ATM switch.

‘ ,Integer ‘ ,Integer

Figure 2: The o processes for uniform and normal
distributions. s denotes the seed value, r the range,
m the mean value, and d the standard deviation.

A o process is instantiated with a few parameters which
define the statistical properties of the generated infinite stream
of integers (figure 2). The ¢“ process generates a uniform
distribution within a given range r and the o™ process gen-
erates a normal distribution defined by the mean value m
and the standard deviation d. o processes for other dis-
tributions can be defined as needed. The o processes are
true functions because they use a pseudo random genera-
tor which is initialized with a specific seed value s. For the
sake of simplicity we use only o“ processes in the rest of the
paper.

In the ForSyDe methodology we assign different interpre-
tations to the o processes, depending on the design activity.
The description that we have given above is the interpreta-
tion for simulation. For synthesis and verification we adopt
a different interpretation. We distinguish two variants:

A synthesized sigma bar process & can generate any of the
possible outputs of a & process without restriction. The out-
put of the synthesized process may or may not have the sta-
tistical properties of the specification process. For instance a
synthesized % 5 1)> could be implemented in such a way,
that it generates always a 0 and never a 1. On the other
hand sigma tilde processes & have to be implemented such
that the statistical properties are preserved.

The merge of the transaction server in figure 1 definitely
requires a & process. However, consider the bar-merge op-
eration illustrated in figure 3. In each processing step the

e yb1,bp Ictr bar-merge:
—p
12 | .
0@ %0 7L (b = 0) S T1, Y1, Y0, TO

then emit z;, y;

-, Y1,%0 I .
—————————*{ else emit y;, z;

Figure 3: A merge which uses a ¢ process.

bar merge receives one token from each of its two inputs I1
and I2 and emits the two tokens in arbitrary order. Since
we do not want to specify the order of the two output tokens
deterministically, we use a & process to drive the third input
of the bar-merge. If that token is a 0, first an = and then a
y is emitted; if it is a 1, the tokens are emitted in reversed
order. For the implementation we are free to select any or-
der; we may select a hardwired solution to always emit x
before y.

Formal verification and analysis is only allowed to use
the statistical properties of the sequences generated by o,
which are guaranteed by any implementation. Hence, formal
analysis follows the interpretation of synthesis.

If desirable, more process types with different interpreta-
tions can be defined. For instance it should be investigated
if a o process type with a fair synthesis and analysis inter-
pretation is useful.

4.1 ForSyDe Skeletons

Strictly speaking the ForSyDe models are still fully de-
terminate because o processes are based on pseudo ran-
dom generators to produce sequences with specific statistical
properties. Then we request synthesis and verification tools
to respect only these statistical properties and to ignore the
specific values of those sequences.

The o processes are not directly visible to the user. ForSyDe

is based on skeletons which provide the system structure and
the system timing. Furthermore, skeletons have specific in-
terpretations in the context of design and implementation
which allow for an efficient, template driven synthesis [12].
Consequently, we use skeletons to encapsulate the o pro-
cesses.

In the following we discuss one simple ForSyDe skeleton,
namely mapS. mapS repeatedly applies a combinatorial func-
tion on individual values of the input stream and thus pro-
duces the consecutive values of the output stream. Now we
develop a variant which also contains a o process. We can
do this in two different ways. First, we can use a select
operator which applies one out of two functions on an input
value depending on the result of a o process. Second, we
can internalize the choice into the combinatorial functions.
In this paper we only present the first option.

. by, bo Ictrl]

selectl:

if (b; = 0)
then emit f(z;)
else emit g(a;)

-5 9(z1), f(wo)

ey X1, X0

—

Figure 4: The selMapS skeleton.

The skeleton selMapS uses the select operator and a o
process sigma to apply one out of two functions repeatedly
on the values of the input stream (figure 4). select(z,b, f,g)
evaluates to f(z) if b = 0, and to g(z) if b = 1. selMapS
takes four instantiation parameters. f and g are the two
functions which are possibly applied to the values of the in-
put stream. s is the seed for sigma, and sigmatype defines
if sigma is a bar or a tilde process.

Stochastic variants can be developed for many other ForSyDe

skeletons in a similar way.

5. TRANSFORMATIONS

ForSyDe is a transformation based methodology [14], which
distinguishes between semantic preserving and decision mak-
ing transformations. When a o process is refined into an
implementation, typically a design decision is made. In this
section we give examples of transformations that transform
a o process into a non-stochastic implementation. As we
will see, each transformation embodies a particular design
decision.

For the sake of conciseness we do not use the ForSyDe
language but an abbreviated notation. As example we use a

smerge

u w
FIFO dmerge
FIFO _ J©

Figure 5: A merge process with a stochastic oracle.

simple merge process, which is borrowed from D. Park [10]
and adopted to our needs. Both inputs are buffered with
infinite FIFOs as illustrated in figure 5. The buffers prevent
loss of data if there is temporarily more data on the two
inputs than can be emitted to the output. We assume the
buffers are infinite to concentrate on the merge operation
itself. We use the following conventions: f and g are de-
terminate functions implementing the merge operation. w, v
and w are infinite sequences at the inputs and outputs. a
and b are individual data values in these streams. We use
the dot notation to concatenate values and streams, e.g. a.u
is a value a followed by the stream u. L is a token in the
stream indicating the absence of a value. Remember that
we use a perfectly synchronous model, which means that we
can detect when no data is available at a particular time
instance. The FIFOs do not store L tokens but an empty
FIFO emits a L at each time instance. § is the infinite
streams of Os and 1s coming from the o process. With this
we define the dmerge of figure 5 as follows.

dmerge = f(a.u,v,0.0) = f(u,a.v,1.9) = a.f(u,v,d)

dmerge takes the first token from one of the input streams,
depending on the current value from the o process, and
emits it to the output. The stochastic merge smerge con-
tains dmerge and the o process.

Strict round robin: One possible implementation of
smerge is strict round robin as defined by strictRR:

strictRR = f(a.u,v) = a.g(u.v)
9(u,b.v) =b.f(u,v)

strictRR transmits even L tokens. This may be no problem
if the load on both input streams is on average less than or
equal to half the bandwidth on the output stream. If this
is not the case our merge process cannot handle the inputs
quickly enough, even if the combined load on both input
streams is less then the bandwidth of the output stream.
The reason is that we dedicate a full time slot alternately to
each input stream independent if there is a value or not.
The ForSyDe transformation rule for transforming a smerge

into a strictRR merge is

smerge_strictRR = [| = smerge < strictRR

smerge_strictRR is the name of the rule. The expression
in square brackets is the premise of the rule, which in this
case is empty because strictRR is equivalent to smerge.
Let w, be the n*" element in stream w, and let P,(wy) be
the probability that w, € v. Then it is easy to see that
P,(wp) = Py,(w,) = 0.5 for both smerge and strictRR.

1 -sensitive round robin: If above solution is not ac-
ceptable we can adopt a round robin procedure which is

sensitive to the absence of values.
sensitiveRR = f(L .u,b.v) = b.g(u,v)
fla.u,v) =a.g(u,v) a#l
g(a.u, L w) =a.f(u,v)
g(u,b.v) = b.f(u,v) b#£L

The problem here is that we deviate from the behaviour
of the smerge even with respect to the stochastic proper-
ties. We can still formulate a transformation from smerge to
sensitiveRR but only under certain conditions. Let Py(d»)
be the probability that the n'" element of the §-stream is 0,
and let Pp(vy,) be the probability that the n‘" element of v
is a valid data, i.e. it is not L. Then we can formulate the
transformation rule as follows.

smerge_sensitiveRR =
[Vn : Po(dn) 2 Pp(vn) A PL(dn) 2 Pp(un)]
|= smerge < sensitiveRR

The premise here relates the stochastic properties of the o
process to the stochastic properties of the input streams u
and v. For instance, if the o process has a uniform distri-
bution as in figure 5, the load on both inputs must be less
than or equal to 50%, which is equivalent to the require-
ment that Vn : P,(v,) < 0.5 A Py(un) < 0.5. Consequently,
if we expect different loads on the input streams, we have
to adapt the o process accordingly in order to maintain the
same stochastic properties for specification and implemen-
tation. This will work as long as the combined load of the
input streams is less or equal to the maximum load on the
output stream.

Unfair arbiter: The sensitiveRR may be a more effi-
cient solution but not the best one for all situations. Assume
we have to maximize throughput and we have to pay a high
delay penalty when we switch from one input stream to the
other. On the other hand, our FIFOs are sufficiently long to
buffer even long bursts. For this the unfair arbiter unfaird
might be a preferable solution.

unfairh = f(L .u,b.v) = b.g(u,v)
flau,v) = a.f(u,v) a#l
gla.w, L w) =a.f(u,v)
g(u,b.v) =b.g(u,v) b#L

unfairA transmits data from one input as long as there is
input. It only switches to the other input when a L is en-
countered.

The corresponding transformation rule is

smerge_unfairA =
[V Po(8a) > Py(va) A Pi(8n) > Py(un)]
= dmerge < sensitiveRR

Note, that the premise here is the same as for sensitiveRR,
because we assume infinite buffers at the inputs of the merge.
However, the choice of the merge implementation has an
impact on the required buffer size. For the sake of brevity
and comprehensiveness of this discussion we have assumed
infinite buffers, which allows us to operate with stochastic
properties on infinite streams. To select a finite buffer size
for the FIFOs we must consider stochastic properties of fi-
nite subsets of the infinite streams. This is beyond the scope
of this paper but we would like to emphasize, that the basic
principle is the same, which is to relate a design decision
to stochastic properties of the environment. These relations
are expressed in the premises of transformation rules as ex-
emplified above. In our methodology we use the premises

as documentation and, partially, as proof obligations. They
document the design decisions taken, under which condi-
tions they are allowed, and how these decisions constrain
other parts of our system or the environment. If the premises
constrain other parts of our system, e.g. if the input streams
to the merge originate within our system, we have to prove
that the affected parts comply with these constraints. In
this way stochastic properties are propagated through the
system until they can be firmly based on properties of the
environment.

6. USAGE OF STOCHASTIC SKELETONS

In the introduction we have stated that we use the stochas-
tic skeletons with similar objectives as nondeterminism. We
have also discussed briefly how different design activities
should interpret these skeletons. Now we summarize our
objectives and delineate them from issues that we do not
intend to address.

6.1 The Descriptive Purpose

One important application of stochastic skeletons is to
model environment components. Very often we do not know
the exact behaviour of the environment, or that we do not
care about all details. The uncertainty about the environ-
ment concerns both the functional as well as the timing be-
haviour. With nondeterminism we allow different environ-
ment behaviours and we give no further information about
how likely the different cases are. If we add a notion of fair-
ness we exclude a few specifically undesirable possibilities.
However, very often we know a bit more and we would like
to assign probabilities to the different possible behaviours.
The simulations that we can perform based on probabilistic
environment behaviour will be often more realistic.

We have to acknowledge though, that the notion of nonde-
terminism is broader than any specific probability distribu-
tion, because it encompasses all possible probabilistic distri-
butions. A nondeterminate process may generate sequences
of numbers which exhibit any possible probability distribu-
tion, while a stochastic process can only generate sequences
with a given probability distribution. However, for two rea-
sons we doubt that this difference is of practical importance.
First, any sequence that a nondeterminate process can gen-
erate, can also be produced by a stochastic process. Second,
all implementations of simulators which allow to simulate
nondeterminate behaviour, use in fact some stochastic pro-
cess for this. Our computer technology does not allow us to
simulate nondeterminate behaviour which does not follow
a specific probability distribution. These arguments justify
the substitution of a nondeterminate process by a stochastic
process. However, we go even further and claim that it is
an advantage to do this. If a user includes a nondetermi-
nate process in a model, she has no control over what the
implementation of the simulator is in fact doing. Since a
nondeterminate process may generate any sequence of num-
bers, the implementor of the simulator typically selects one
of the possibilities which is most convenient for her. But
this decision is often unknown to the end user who uses the
simulator. On the other hand the simulator must respect
defined statistical properties. Thus, the end user has a bet-
ter control over the behaviour of the model. Furthermore,
by using pseudo random generators a particular simulation
run is repeatable which greatly helps debugging.

While we advocate strongly the usage of stochastic pro-

cesses for the description of the environment, we do not pro- specification of embedded mixed hardware/software systems

pose them for describing uncertainties of the system under we propose to use stochastic processes to approximate the
design. In the context of specification we find the notion, expressiveness of nondeterminate models while preserving
that we do not know the exact behaviour, with respect to much of the analytic capabilities for determinate models.

timing or function, not satisfactory. We design, implement
and manufacture the system. So in principle we have full 8. REFERENCES

control and knowledge about it if we decide to dedicate the [1] Albert Benveniste and Gérard Berry. The synchronous
necessary effort. Sometimes we may not want to spend the approach to reactive and real-time systems.

effort because we do not care as long as the behaviour falls Proceedings of the IEEE, 79(9):1270-1282, September
into a given class or range of acceptable behaviours. Conse- 1991.

quently, we prefer the notion that we constrain the system. [2] J. Dean Brock and William B. Ackerman. Scenarios:
We do this although we acknowledge that in software de- A model of non-determinate computation. In J. Diaz
velopment the uncertainty about timing properties of the and I. Ramos, editors, Formalism of Programming
underlying hardware machine was the foremost motivation Concepts, volume 107 of Lecture Notes in Computer
for nondeterminism. However, we do not address problems Science, pages 252-259. Springer Verlag, 1981.

of general software development but we discuss the specifica- [3] Jarvis Dean Brock. A Formal Model for

tion and modelling of embedded systems, hardware and em- Non-deterministic Dataflow Computation. PhD thesis,
bedded software, where we always are concerned with per- Massachusets Institute of Technology, 1983.

formance issues and we often face hard timing constraints. [4] Jack B. Dennis and Guang R. Gao. Multiprocessor

Therefore we find the concept of constraining the timing
behaviour of the implementation more appealing than the
assumption, that the timing behaviour could be arbitrary.

implementation of nondeterminate computation in a

functional programming framework. Technical Report

Computation Structures Group Memo 375,

6.2 The Constraining PUI’pOSG Laboratory for Computer Science, Massachusetts
Institute of Technology, January 1995.

C. A. R. Hoare. Communicating sequential processes.

Communications of the ACM, 21(8):666-676, August

1978.

Axel Jantsch and Ingo Sander. On the roles of

functions and objects in system specification. In

Proceedings of the International Workshop on

Hardware/Software Codesign, 2000.

Gilles Kahn. The semantics of a simple language for

parallel programming. In Proceedings of the IFIP

Congress 7/. North-Holland, 1974.

The functional and timing behaviour of a system imple- [5]
mentation can be constrained in a variety of ways and stochas-
tic processes should only be used in some specific cases. The
ForSyDe methodology uses a perfectly synchronous timing
model, which is very well suited to constrain the timing [6]
behaviour. Both in hardware and in embedded software de-
sign, a synchronous design style has been used with great
success. It effectively separates functionality from timing is-
sues. Static timing analysis can be done independently from [7]
functional validation and verification. A rich set of pipelin-
ing and retiming techniques have been developed to tune

the timing behaviour while keeping the functionality. (8] Paul R. Kosinski. A straight forward denotational
The general method to express constraints on the func- semantics for nondeterminate data flow programs. In
tionality is by means of relations. In the early phase of sys- Proceedings of the 5" ACM Symposium on Pronciples
tem development, the requirements analysis phase, general of Programming Languages, pages 214-219, 1978.
requirements and constraints are formulated in terms of rela- [9] Robin Milner. Communication and Concurrency.
tions. However, because relations allow a huge design space, International Series in Computer Science. Prentice
efficient synthesis techniques. A system specification model, Hall, 1989.
which captures most of the high level design decisions, is [10] David Park. The ’fairness’ problem and
therefor a necessity [6]. This model should be determinate nondeterministic computing networks. In De Baker
because nondeterminism greatly complicates synthesis and and van Leeuwen, editors, Foundations of Computer
validation. Science IV, Part 2: Semantics and Logic, volume 159,
However, as we tried to illustrate in several examples in pages 133-161. Mathematical Centre Tracts, 1983.
this paper, there are occasions when we would prefer to [11] Ingo Sander and Axel Jantsch. Formal design based
leave several options open in order to give the later design on the synchronous approach, functional models and
phases more opportunities to find optimal implementations. skeletons. In Proceedings of the Twelfth International
Stochastic processes are a good way to address this issue. Conference on VLSI Design, 1999.
For simulation they allow to exercise all possibilities which [12] Ingo Sander and Axel Jantsch. System synthesis based
might occur in a concrete implementation. Synthesis can on a formal computational model and skeletons. In
exploit the possibilities that a stochastic process exposes. Proceedings of the IEEE Computer Society Annual
Validation can use their statistical properties to verify sys- Workshop on VLSI, 1999.
tem properties. [13] Ingo Sander and Axel Jantsch. System synthesis
utilizing a layered functional model. In Proceedings of
7. CONCLUSION the 7th International Workshop on Hardware/Software
We have thoroughly reviewed the history of determinate Codesign, pages 136-141, May 1999.
and nondeterminate models to reveal the inherent trade-off (14] Wenbiao Wu, Ingo Sander, and Axel Jantsch.
involved. Determinate models are significantly easier to an- Transformational system design based on a formal
alyze, verify and synthesize. On the other hand nondetermi- computational model and skeletons. In Proceedings of

nate models are more expressive. For the specific purpose of the Forum on Design Languages, September 2000.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

