Experiments with the Peripheral Virtual Component I nterface

Roman L. Lysecky, Frank Vahid*, Tony D. Givargis
Department of Computer Science and Engineering
University of California, Riverside
{rlysecky, vahid, givargis} @cs.ucr.edu, www.cs.ucr.edu/~dalton

*also with the Center for Embedded Computer Systems, UC Irvine

Abstract

The Peripheral Virtual Component Interface, or PVCI, is a
standard intended to simplify the interfacing of peripheral
cores to on-chip buses in a system-on-a-chip, by standardizing
the interface between a core's internals and its bus wrapper.
We provide results of experiments intended to determine the
power, performance, and size overhead associated with using a
PVCI bus wrapper versus using a non-PVCI bus wrapper, and
versus using no bus wrapper at all. The results demonstrate
that using a bus wrapper may result in only small
performance, power and size overhead versus using nho
wrapper, though even that performance overhead can be
reduced or eiminated using pre-fetching. The results also
demonstrate that using a PVCl bus wrapper yieds no
significant additional power, performance or size overhead
compared with a non-PVCI bus wrapper.

Keywords

Cores, system-on-a-chip, interfacing, on-chip bus, intellectual
property, VCI, bus wrappers.

1. Introduction

Silicon capacity continues to increase faster than the ability for
designers to use that silicon, resulting in the well-known
productivity gap [1]. Many propose extensive reuse of pre-
designed intellectual property cores to reduce this gap [2],
where typical cores include microprocessors as well as
peripherals like encoders/decoders, bus interfaces, analog-
digital converters, serial communication components, etc. In
response, several commercial libraries of cores have evolved in
recent years (e.g., [3]). Soft cores come in the form of
synthesizable code, while hard cores come in the form of
technol ogy-specific layouts.

A key aspect of a core’'s marketability, soft or hard, is its
ability to be easily integrated into a system-on-a-chip (SOC).
Unfortunately, standardizing on one or two on-chip SOC buses,
which certainly would ease integration, does not appear to be
possible because of the diversity of constraints present in
embedded systems, as recognized for example by the Virtual
Socket Interface Alliance (VSIA) [4]. Thus, to achieve such
ease of integration, many have proposed designing cores with
their interface behavior implemented in a bus wrapper,
separated from the core's internal behavior [4][5][6]. This

separation means that changes necessary to adapt a core to a
particular bus are limited to the bus wrapper.

In this paper, we analyze the impact of using a bus wrapper
on the design metrics of performance, power and size.
Furthermore, we analyze the impact on those metrics of using
the VSIA interface between a bus wrapper and a periphera
core’ sinternals versus using a customized interface.

2. PVCI

After deciding that a single on-chip bus standard was unlikely,
the VSIA developed the Virtual Component Interface (VCI).
The VCI is a proposed standard interface between a core's
internals and a core’ s bus wrapper, asillustrated in Figure 1. A
core with its interface behavior separated into a bus wrapper is
believed to be much easier to retarget to different buses than a
core whose interface behavior is integrated with its internal
behavior. By standardizing the interface between the core's
internals and the bus wrapper, retargetting of a core may
become easier. Retargetting any core using VCI will involve
roughly the same changes to the bus wrapper, since the VCI
ensures that the changes are limited to the wrapper and not the
internals, and since a bus provider can even provide bus
wrapper templates between the bus and the VCI. The VCl is a
far simpler protocol than a typical bus protocol, since it is a
point-to-point transfer protocol. In contrast, a bus protocol may
involve more advanced features, such as arbitration, data
multiplexing, pipelining, and so on. Thus, standardizing the

Figure1: PVCI 'slocation in a system-on-a-chip.

Microprocessor Memory

'

< On-chip system bus ¢

()
g
5 & . »>
On-chip peripheral bui i
Bus wrapper Bus wrapper
¢ PVCI ¢ PVCI
Peripheral Peripheral
coreinternals coreinternals
Peripheral core Peripheral core

Figure2: PVCI 'sgeneral structure.

< >
On-chip peripheral bus¢
Bus wrapper
x | 4
[} w g et 4 %
sl ~|2| B g g S PVCI
Peripheral
coreinternals
Peripheral core

VCl isfar simpler than standardizing a bus protocol.

The PVCI is a simplified version of the VCI, specifically
intended for peripherals. PVCI cores would reside on a lower-
speed peripheral bus as shown in Figure 1, and thus would not
need some of the high-speed features of the VCI (e.g., packet
chaining). The general structure of the PVCI is shown in Figure
2. It consists of two uni-directional buses. One bus leads from
the wrapper to the internals. The wrapper sets the read line to
indicate a read or a write, and sets the address lines with a
valid address. For awrite, it also sets the wdata lines. It asserts
the val line to indicate to actually initiate the read or write. The
wrapper must hold all these lines constant until the internals
assert the ack line. For a write, this means that the internals
have captured the write data. For a read, this means that the
internals have put the read data on the rdata bus. The
transaction is completed on the next rising clock edge. A fast
internals module can keep ack asserted continuously to provide
for fast transfers, similar in spirit to the synchronous wait
protocol [9].

3. Experimentswith the | SA bus

We first sought to evaluate the impact of a wrapper and of
PVCI when using a widely used peripheral bus. We chose the
well-known ISA bus.

Asillustrated in Figure 3, the ISA bus works as follows. A
23-bit bus, isa_addr, is used for addressing peripheral devices.
A peripheral latches the address when the control signal,
isa_ale, is asserted. A bi-directional 32-bit bus, isa_data, is
used for data transfer to and from peripheral devices. Two
control signals, isa_ior and isa_iow, are used to signal a read
or write operation. By default all 1/0 operations take 4 cycles,
however, slower peripheral devices can delay the operation as
long as they assert a not-ready control signal denoted
isa_chrdy. Other ISA control signals such as interrupt-request,
byte 1/0 and DMA control are omitted in this paper.

The example we evaluated was a simple version of a digital
camera system, illustrated in Figure 4. The camera system
consists of a (simplified) MIPS microprocessor, BIOS, and
memory, al on a system bus, with a bridge from the system bus
to a peripheral bus (ISA) having a CCD (charge-coupled
device) pre-processor and a simple CODEC (compressor/
decompressor). The two-level bus structure is in accord with

Figure 3: ISA Bus.
Bus Master
5| 8|5 = &
5| % g o EI g
g| 8| 8|~ 8 £
Peripheral
(Bus Slave)
L LML LS
dod — gups
isa_addr t
isa ale .—|
isa_data : :l_
isa ior L
isa iow
isa_iochrdy .[
Start trandfer deta ready

the hierarchical bus concept described in [2]. The camera is
written in register-transfer level synthesizable VHDL, and
synthesizes to about 100,000 cells. We used the Synopsys
Design Compiler as well as their power analysis tools to
evaluate different design metrics. Power and performance were
measured for the processing of one frame.

We made changes to the CCD pre-processor and CODEC
cores since they represent the peripherals on the periphera
bus. These cores are used heavily while processing a frame.
We created three versions of the camera system:

1. Integrated: The CCD pre-processor and CODEC cores
were written with the interface behavior inlined into
the internal behavior of the core. Thus, synthesis
generates one entity for each core.

2. Non-PVClI Wrapper: The CCD pre-processor and
CODEC cores were written with the interface
behavior separated into a wrapper. Thus, synthesis
generates two connected entities for the core. The
interface between these two wrapper and interna
entities consisted of a single bi-directional bus, a
strobe control line and a read/write control line, and
however many address lines were necessary to
distinguish among internal registers.

3. PVCI Wrapper: Same as the previous version, except
that the interface between the wrapper and internal
entities was PVCI.

The non-PVCl wrapper version was created for another
purpose, well before the PVCI standard was developed and
with no knowledge that the version would be used in these
experiments. Thus, its structure was developed to be as simple
as possible.

Figure 4 : Digital camera example system.
MIPS MEM. BIOS
S T TN
¢ System bus
BRIDGE
¢ On-chip peripheral bus
: :
CCD CODEC

Table 1 summarizes size, performance and power data for
the three versions using the ISA bus. Size is reported in
equivalent NAND gates, time in nanoseconds, and power in
milliwatts. As expected, the integrated version represents the
most efficient implementation, but at the expense of being
harder to retarget to different buses.

The size overhead when using a bus-wrapper (non-PVClI)
compared to the integrated version was roughly 1500 gates per
core. This overhead comes from extra control and registers. In
the integrated version, the core’s internals includes control to
interface to the ISA bus. In the wrapper version, this control is
replaced by control for interfacing to the wrapper, so the size of
the core’s internals stays the same. However, the wrapper now
must implement control for interfacing to the internals, and for
interfacing to the ISA bus, representing overhead. The wrapper
must also include registers whose contents are copied to/from
the internals, representing additional overhead. The reason that
the non-PV Cl wrapper version shows more size overhead than
the PVCI wrapper version is because the non-PVCIl version
used a single bus for transfers both two and from the core
internals, whereas PV CI specifies two separate buses, resulting
in less logic but more wires. 1500 gates of size overhead seems
quite reasonable, given the continued increase of chips gate
capacities, and given that peripheral cores typically posses
20,000 gates or more [3].

The system power overhead was only about 1%. The extra
power comes from having to transfer items twice per access --
on awrite, an item must be transferred first from the bus to the
wrapper, then from the wrapper to the internals. On aread, an
item must be transferred first from the internals to the wrapper,
then from the wrapper to the bus. However, the power
consumed by the memory, system bus, and processor dominate,
so the extra power due to the wrappers is very small -- even
though the CCD and CODEC are heavily used when processing
aframe.

There was no performance overhead when using a wrapper,
because of the fact that 1SA uses a minimum of four cycles per
access. The extra cycles required for the two transfers per item
(as described in the previous paragraph) are performed within
those four cycles, and thus no extra cycles were introduced.
This lack of performance overhead may not be true for a bus

Figure5: Timing diagrams for a custom peripheral bus: (a)
Read cycle of an integrated core, (b) read cycle of a core with
awrapper (Non-PVCI or PVCI).

dok —1 LI

bus_addr _:l_—
(@) Pusdala L g aserted

bus ior _|—| by core
bus rdy
data ready +

dok T LI L

bus_addr I:l _:

bus data

bus:ior 1 ::l « ng:::d
(b) bus rdy

N < VP

wrp_addr 4:'—_
wrp_data 4:—— 4 assrted

wrp_read I_I
wrp_ack [<

data ready

by core
internals

protocol that uses fewer cycles, or a peripheral that requires
more cycles to access.

4. Experimentswith a custom peripheral bus
The ISA peripheral bus includes a minimum of four cycles, so
the use of a wrapper resulted in no performance overhead in
our examples. To determine the performance impact for a bus
that did not include such a minimum, we modified the system
to use a customized peripheral bus. The bus used a two-phase
handshake protocol to ensure that the communication was as
fast as possible for a given peripheral. Using a wrapper results
in a two cycle overhead per read as compared with an
integrated core.

Figure 5(a) illustrates the timing of a read cycle of this
custom peripheral bus for an integrated core. The periphera
bus master (in our case, the bridge) places an address on
bus_addr and then strobes bus_ior. The peripheral responds by
placing data on bus_data and strobing bus_rdy as early as once
cycle after receiving the bus_ior strobe. Thus, the total read
cycle could be as little as two clock cycles.

Figure 5(b) illustrates the read cycle of the custom bus for a
core using a bus wrapper. Since the non-PVCl and PVCI
versions have the same timing behavior, they are both
represented by a single timing diagram and a set of signals in
this figure. After the bus master places the address and strobes
bus ior, the wrapper responds by translating this read request
into a read request over the internal bus. This translation
involves translating the address to one appropriate for the core
and then placing that address on wrp_addr, and then asserting
wrp_read. The core's internals responds by placing data on
wrp_data and then asserting wrp_ack. The wrapper receives
the data, putsit on the peripheral bus, and strobes bus_rdy.

Table 1: Comparison of interface versions using the ISA bus. Table 2: Comparison of interface versions using a custom bus.
Version Ex. Size of Size of Timefor | Power for Version Ex. Size of Size of Timefor | Power for
wrapper | internals | 1frame 1 frame wrapper | internals | 1frame 1 frame
7 2
Integrated ccd 0 3436 82955 7.88 Integrated ccd 0 34320 75175 7.90
codec | O 1968 codec | O 1926
Non-PVCI | ccd 1684 34556 82055 811 Non-PVCI | ccd 1661 34556 79054 811
wrapper codec | 1679 1904 Wrapper codec | 1674 1904
PVCI ccd 1478 33978 82055 797 PVCI ccd 1439 33978 79054 708
wrapper codec | 1474 1588 Wrapper codec | 1434 1588

A write cycle need not incur any performance overhead in
the wrapper versions. When the bus master sets the addresses
and strobes the appropriate ready line, the wrapper can respond
immediately by capturing the data and strobing the ready line,
just like an integrated core will do. The wrapper can then
proceed to write the captured data to the core internals.

Table 2 summarizes size, performance, and power results.
Size overhead is comparable to the earlier experiment, roughly
1500 gates. Power overhead is again amost negligible. Unlike
the previous experiment, however, there is a performance
overhead, though it is quite small, amounting to only about 5%.
Furthermore, the overhead was due to the use of a wrapper,
which would have occurred whether using PVCI or another
other wrapper. In our experiments, the CCD was accessed 256
times per image frame, while the CODEC was accessed a total
of 128 times per frame. The MIPS processor executed
approximately 5000 instructions per frame.

In earlier works, we demonstrated that in many cases, we
can pre-fetch data into register copies added to the wrapper in
order to reduce or even eliminate the performance overhead
associated with a wrapper [7][8], while still obeying the VCI
standard. This approach involves adding register copies from
the internals into the wrapper, and adding a pre-fetch control
unit into the wrapper. The pre-fetching size overhead ranged
from 500-2000 gates. Pre-fetching would eliminate the extra
cycles caused by using a bus wrapper in the CCD and CODEC,
as those cores fall into categories suitable for pre-fetching
described in [7] and [8].

One difference between the non-PVCI and PVCI interface
that does not appear in the results is the number of wires
internal to the core. The non-PVCI version used a multiplexed
bus, and has fewer signals (some PVCI signals were not
shown), and thus would have fewer internal wires.

Noting that our CCD and CODEC cores are relatively small
and have simple interfaces, it took us 6 designer hours,
excluding synthesis and simulation time, to retarget a design
from one wrapper to another, e.g., to convert the CCD’s non-
PVCI wrapper to a PVCI implementation. Synthesis time for
the CCD and CODEC was approximately 1 hour. Simulation
time for capturing one image frame was slightly over 10 hours
and power analysis was an additional 5 hours. These times
were obtained by synthesizing the models down to gates using
Synopsys Design Compiler with medium mapping effort, using
the Isi_10k library supplied by Synopsys, with no area or delay
constraints specified. We used a dual 200 MHz Ultra Sparc Il

machine to perform both our synthesis and simulation.
Synthesis and simulation times were relatively the same
between the integrated bus implementations and those using a
bus wrapper. We note that peripheral devices that are capable
of DMA or burst mode I/O with interrupts will require more
time to integrate into a system.

5. Conclusions

Our experiments demonstrated that PV CI results in only minor
size, power and performance overhead compared to a non-
wrapper peripheral core approach (though pre-fetching can
even eliminate the performance overhead), and in amost no
overhead compared to an alternative wrapper approach based
on abi-directional bus between a core’ s wrapper and internals.
Thus, the retargetability advantages of such a standard seem to
come with acceptable penalty.

6. Acknowledgements

This work was supported by the National Science Foundation
(grants CCR-9811164 and CCR-9876006) and a Design
Automation Conference Graduate Scholarship. The work is
part of the Dalton project at UCR (www.cs.ucr.edu/~dalton).

7. References

[1] Semiconductor Industry ~ Association
http://notes.sematech.org/ntrPUbINTRS.nf.

[2] Virtual Socket Interface Association, Architecture Document,
http://mww.vs.org, 1997.

[3] Inventracorelibrary, Mentor Graphics,
http://Amww.mentorg.com/inventral.

[4] Virtua Socket Interface Association, On-Chip Bus Development
Working Group, Specification 1 Verson 1.0 (OCB 1 1.0),
http://mww.vs.org, 1998.

[5] F.VahidandL. Tauro, An Object-Oriented Communication Library
for Hardware-Software Co-Design, International Workshop on
Hardware/Software Codesign, pp. 81--86, 1997.

[6] J. Rowson and A. Sangiovanni-Vincentelli, Interface-Based Design,
Design Automation Conference, 1997.

[71 R. Lysecky, F. Vahid, T. Givargis, and R. Patel, Pre-fetching for
Improved Core Interfacing, International Symposum on System
Synthesis, 1999.

[8] R.Lysecky, F. Vahid, and T. D. Givargis, Techniques for Reducing
Latency of Core Bus Wrappers, Design, Automation and Test In
Europe, 2000.

[9] S. Vercauteren, B. Lin, H. De Man. Constructing Application-
Specific Heterogeneous Embedded Architectures from Custom
HW/SW Applications. Design Automation Conference, pp. 547-551,
1996.

Roadmap 1997,

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

