Optimizing Sequential Verification by Retiming Transfor mations

Gianpiero Cabodi

tPolitecnico di Torino
Dip. di Automatica e Informatica
Turin, ITALY

Abstract
Sequential verification methods based on reachability analysis are still
limited by the size of the BDDs involved in computations. Extending their
applicability to larger and real circuitsis still a key issue.

Within this framework, we explore a new way to improve symbolic
traversal performance, working on the representation of state sets. We
exploit retiming to reduce the number of latches of a FSM, and to re-
locate them in order to obtain a simplified state set representation. \\e
consider retiming as a temporary state space transformation to increase
the efficiency of sequential verification. We discuss it as a state space
transformation and we formally analyze the conditions under which such
a transformation is equivalence preserving for a given property under
verification.

We lower image computation cost, and we reduce the size of BDDs
representing intermediate results and state sets. Experimental results
show considerable memory and time improvements on some benchmark
and home made circuits.

1 Introduction

State-of-the-art approaches for reachability analysis and formal
verification of circuits modeled as Finite State Machines (FSMs)
exploit symbolic techniques based on Binary Decision Diagrams
(BDDs).

Given the transition relation of a system, TR(x,y)l, and a
set of states, F'(z), the set of states reachable in one step from the
statesin F', T'(y), is computed as

T(y) = IMAGE(TR(z, y), F(z)) = 3(TR(z,y) - F(z)) (1)
Thisis the core computation of all symbolic reachability and se-
quential verification algorithms. But even symbolic techniques
reach their limits on large practical examples. Several improve-
ments have thus been proposed to the basic idea, in order to deal
with realistic circuit sizes. Among the other, we remember parti-
tioned forms, dynamic variable reorderings, approximate traver-
sd/verification strategies, abstractions of sub-components, and,
more recently, guided searches.

Lin the sequel we use TR, w, z and y to indicate respectively the transition
relation, primary inputs, present state variables, and next state variables.

Permi ssion to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, thetitle of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or afee.

DAC 2000, Los Angeles, California

(c) 2000ACM 1-58113-188-7/00/0006..$5.00

Stefano Quer®

Fabio Somenzit

*University of Colorado
Dept. of Electrical and Computer Engineering
Boulder, CO

In this paper we explore a different way of improving traver-
sal performance, working on the representation of state sets. We
exploit retiming to reduce the number of latches of a FSM, or to
simply reposition them, to obtain smaller BDDs for the states of
the transformed FSM.

Retiming has been introduced to reposition latches across the
combinational logic in a sequentia circuit. It is used in logic
synthesis, in order to minimize the clock period, the number of
latches, or to meet a given clock period while minimizing the
number of latches. By definition, retiming preserves the input-
output behavior of the sequential circuit.

Our use in verification with performance enhancement pur-
poses, represents a new application of retiming. Previous works
in sequential verification have used retiming with different goals.
In[1, 2, 3] retiming is exploited to infer structural similarities
to reduce sequential verification to a combinational equivalence
proof. By contrast, we completely work in the sequential domain
as we see retiming as a temporary transformation to be applied
to the FSM and to the property as well. In [4] arestricted form
of retiming is used to collapse registers driven by clocks of dif-
ferent phases. We use general retiming, and we address the issue
of property retiming. Finally, in [5] retiming is used to extract as
many periphera latches as possible from the circuit. Though this
isuseful, it is not the focus of our work.

2 Motivation and Overview of the Presented Ap-
proach

We propose a technique to reduce the size of BDDs encountered
in sequential verification. Our approach originates from the intu-
ition that retiming may be effective as an equivalence preserving
transformation to minimize the number of latches, and/or explor-
ing aternative ways (more efficiently in terms of BDD size) of
coding the information stored in latches. Retiming is usually ap-
plied to automatically designed circuitsto target optimal clock cy-
cle, area, or low-power, rather than minimum number of latches.
We partially alter the above assumptions, by considering the re-
timing method as a temporary transformation to improve the ef-
ficiency of sequential verification. We can thus disregard, for in-
stance, cycle time and area, and concentrate on latch minimiza-
tion, with the aim of compacting the amount of reachable states
and the size of the BDDs representing them. Moreover, we can
explore different heuristics and cost measures for given latch posi-
tions, oriented to more efficient symbolic operations, rather than
better hardware implementation. We can finaly partially mod-

ify the equivalence criteria of the FSM transformation, which are
again bound by the correctness of a verification task, not by phys-
ical implementation: A given input signal could, for instance, be
artificially delayed or anticipated with respect to its original tim-
ing, thus modifying the input output behavior, but preserving the
verification task. (See Section 4.)

Example 1 Let usconsider apiece of acircuit, reported in Figure 1(a),
containing an ALU with two input/operand registers, A and B, and an
output/result one, Out. The ALU operation is selected by the op-code
field of an Instruction Register I R. All registers are controlled by enable
inputs, and the usual sequence of operationsis. Fetch theinstruction, load
the operand registers, execute the operation, write the result in Out. A

op-code

execute load execute

() (b)

Figure 1: A Retiming Example with insertion of a“dummy” reg-
ister.

relevant part of the reachable states is characterized by atight correlation

among the values of al the above registers. Out isthe result of the oper-

ation specified by I R, and applied to the A and B operands. The BDDs
representing such states would be reduced by retiming A and B in the
forward direction across the ALU:

e A singleregister (PreOwut) would replace the A and B registers, with
any new value stored in PreOut equivalent to sets of values previ-
ously storedin A and B.

e Thevauesstoredin PreOwut and Out would be equal in all operation
steps, except after loading PreOwut (A and B in the origina circuit).

Notice that a backward retiming of Out would also benefit from the sec-

ond point, but not from the first one.

Figure 1(b) reports such aretimed circuit. Since retiming of latches
withload enableinputsisallowed only for a set of latches sharing the load
input, adummy register (with the same enable as A and B) isinserted on
the op-code input of the ALU. This insertion is represented with dotted
linesin Figure 1(a). In Section 4.1 we show that it is permissible.

In view of the previously described goals, we implemented
an ad hoc retiming procedure and we decided not to work on
gate level net-lists, but to retime latches across entire next state
functions, seen as black boxes. Although this choice reduces the
available latch positions, it has some practical advantages, which
are discussed in the next section.

We thus find and apply aretiming transformation by working
on a FSM represented by its next state transition function. We
then produce a transition relation, usualy in conjunctively clus-
tered form, to be used for the following verification tasks. The
method has similarities with known published techniques on re-
timing, but we propose (and we rely on) some different optimality
criteria. It also shares some of the inspiring ideas of works do-
ing equivalence preserving transformations with the aim of sim-
plifying a verification process. Concerning the particular aspect

of retiming applied to sequential verification, both the theoretical
framework, and the application we propose are new.

3 Retiming for Verification

We describe in this section retiming as a state space transforma-
tion oriented to simplify sequential verification operations. The
theoretical framework and the formalism we propose are quite
genera and not limited to retiming. They could be applied with
minor modifications to other FSM transformations, like, for in-
stance, state minimization.

Retiming isexploited in logic synthesis as an equivalence pre-
serving optimization of sequential circuits. It usually works on a
net-list made of logic gates and latches, whereas in our verifica-
tion framework we prefer using next state functions as basic black
blocks for the retiming procedure. Although limiting the num-
ber of possible retimings, this has the following desirable conse-
guences:

e |t may be applied as a preprocessing step of formal verifica
tion, directly on the BDD representation of next state func-
tions, without requiring any structural knowledge of the gate
level net-list.

e Automatic detection of latch enables is possible by directly
working on BDD representations (see Section 4.1).

e The complexity of the retiming problem is much lower than on
the original net-list.

Working on gate level net-listsis an aternative option, which
isnot excluded from our theoretical and practical framework, pro-
vided that proper notational changes aredoneto all formulas, now
using next state functions as basic blocks.

AnFSM M isgiven by

M = (I,0, 5,5, So)

where I isthe set of input variables, O the set of output variables,
S the set of states, § the next-state function, A the output func-
tion, and Sy the set of initia states. Input, present, and next state
variables are denoted w, z, and y. TR is the transition relation,
defined as

TR(w, z,y) = [[(i = 6i(w,)

i

Let uscal M theoriginal FSM and M the retimed one, with
TR(w, z,) and TR(w, 7, 7) their transition relations.

We can view retiming as a state re-mapping applied to the
FSM. Re-mapping is expressed by the relation p(z, z) applied to
the state spaces and returning 1 for any couple (z,z) of corre-
sponding states, i.e., the T state in Mis equivalent to state z in
theorigina FSM M. In the case of retiming, state equivalence is
strictly related to the nature of the transformation, whichis proved
to preserve the input—output behavior of a sequential circuit. In
the sequel we will omit discussing conditions for maintaining the
sequential behavior through the p transformation, which are im-
plicit with retiming, and should be specifically addressed for more
general cases.

A retiming process can be decomposed in a sequence of steps
where any retimed latch is only moved across one single block

either in the forward or in the backward direction. The retiming
relation of such a step can be computed through the following
formula:

p(.’l),/l\‘) = HleN(fc\N i —=IN 1) HJEF(mFJ = (Scrossed(-z‘))

HkEB(:”'B k= 6crossed($))

where N isthe set of latches not retimed, i.e., keptintheir original
position, F' is the set of forward retimed latches (in M,i.e ater
retiming), and B is the set of backward retimed latches (in M,
i.e. beforeretiming). dcrosseq iSthe function of the combinational
block crossed by theretimed latch. The global retiming relation of
a sequence of steps can be expressed as arelational composition
of the step relations. A two step retiming p1,2 is computed as
composition of thefirst (p1) and second (p2) retiming:

p1,2(x, %) = 3 (p1 (2, 2') - p2(a’, @)
Let us represent the sequential behavior of the FSM through its
transition relation. The transition relation of M can be com-
puted, through retiming transformations in the present and next
state spaces, as.

TR(w,2,y) = Joy(p(z,7) - TR(w, z,9) - p(y,y)) ()
The following example shows an application of the above con-
ceptsto asimple practical case.

Example 2 Figure 2 reports an example where retiming is applied to a
circuit with two latches (L; and Ls). f1, f2 and f3 are generic combi-
national blocks. Figure 2(a) shows the original circuit, whose transition
relationis:

TR(’IU,.’,I},y) = ((yl = fl(w;$2)) : (y2 = fZ(ZI)))
Figure 2(b) shows the result of retiming latch L; forward across f». The

L, latchisnot retimed, sothe NV setis Lz, and z 1 (yn,1) corresponds
to z2 (y2). The retimed state transformation relation may be expressed

p(z,T) = (@n1 = 22) - (@ra = fo(21)))
The resulting transition relation can be computed as:

TR(w ;c,A) = TJey(p A) TR(w, z,y) y,/\))
= ﬂm,y[(ﬂw 1 =122)- Cm = f2(11))
(y1 = fr(w,22)) - (y2 = fa(z1))
@N 1=92) (\Fl = fa(y1))]
(yF 1= (f20f1)('w mN 1)) - ($F1 = il/N 1)

which is exactly the expression one can get directly from the circuit:

TR(w,2,7) = Joy(y1 = f1(w, By 1) (@1 =)
(F 1= fo(@1)) - @p1 = Un)
through existential quantification.

3.1 Property Preserving Retiming
Retiming is usually viewed as an input—output equivalence pre-
serving transformation, i.e., theinput—output behavior of the FSM
ispreserved. Inour case we areinterested in property verification,
so we want a given property to be maintained through aretiming
transformation.

Let us consider a property P(z)3. P is a propositional for-
mula on the state variables. The property in the retimed space is

defined as ~ . .
P(z) = 3:(p(z, 7) - P())
2Noticethat foof1 expressesfunction composition.

3 A more general caseisaproperty P(w, x) function of input and state variables.
We avoid input dependence here for sake of simplicity.

Ll L2
w— 1] *a ‘ Y2 [] %2 ; 2
r 1 u 2 u 3
@
X Y
X fl\ ! n1
S L, V) L, Xn1
W r oo, A / fy z
(b)

Figure 2: A retiming example.

The transformation is property preserving iff, given z and z in
p(z,z) .
P(z) & P(x)

If all the propositional formulae appearing in a generic temporal
logic formula ¢ are preserved, then ¢ is also preserved. There-
fore, without loss of generality, we concentrate on properties that
are propositional formulae.

Input—output equivalence is a first avenue of attack for this
problem: Any property expressed as afunction of primary outputs
is guaranteed to be preserved by standard retiming. Whenever a
property depends on internal circuit points or state elements, the
property itself (in caseitisaBoolean formula), or aset of Boolean
sub-expressions (in case of atempora logic property) might be
regarded as output function(s) and included as such in the retim-
ing process. Since retiming guarantees input—output equivalence,
the property in the retimed FSM is equivalent to the original one.

Following the above reasoning, a wider space for retiming
is available by ignoring all output functions, with the exception
of the ones related to the property under verification. Moreover,
input—output equivalence could be changed to a more generd
property preserving condition.

The following theorem expresses in a formal way a general
condition relating the retiming transformation and the property
under verification.

Theorem 1 Given astate space transformation defined by p(z,), and
aproperty P(z), transformed as P(z) = 3, (p(z, T) - P(x)), thetrans-
formation is equivalence preserving for P

(2,7) = (P(z) & P(3))

) P@)
Proof The direct implication follows from the definition of P. Infact, if
P(z) holdsthen P(Z) = 3. (p(, 7)), whichistrue for all re-mapped zs
(such that p(m,/@ holds). Theinverse |mp||cat|on is derived in asimilar
way from the hypothesis (P(z) = 3~(p(z ,7) - P(2))).

P(z) = EIA(p

O

The theorem states a property preserving condition based on a
kind of invertibility of the p transformation applied to the P prop-
erty. The boolean condition required by the theorem should be
checked for any property being verified on aretimed FSM.

Two particular cases included in the above theorem are ex-
pressed by the following lemmas. The former showsthatal : 1

transformation is property preserving. But this is a tough con-
strain for retiming; hence, the latter lemmaintroduces a partially
1 : 1 transformation, where the condition is required only for the
latches on which the property depends.

Lemmal A1 : 1 transformation p(z,) is equivalence preserving for
any P(z) property transformed as P(z) = 3. (p(z, 7).
Proof ASp(w,ZE) is1 : 1 P canbeexpressed asan inverse transformation
of P(z): .

P(z) = 3-(p(x,7) - P(@))
which is the hypothesis of Theorem 1.

Lemma?2 Let us define Sp (§p) as the subspace of S described by
variablesin supp(P(z)) (supp(P(z))). Let us define the projection of
ptoSp X Sp as

pp(w,/w\) =

If pp is1 : 1 thetransformation is equivalence preserving.

amfsupp(P),;v\fsupP(;’\)p(w’ D

A direct consequence of this lemmais that property P(x) is
preserved if we do not retime the latches it depends on.

4 Verification—Oriented Retiming

Standard retiming algorithms may be adapted with a few modifi-
cations to our verification framework. Our present solution is an
ad hoc implementation within aBDD based traversal package.

First of al, we target minimum number of latches, without
caring about clock cycle. Secondly, we also expect benefits from
bringing latches face-to-face (a latch output directly feeding the
input of the second one). This kind of retiming has quite often
the nice effect of duplicating the information stored in two sets
of latches in relevant subsets of the reachable states. See, for
instance, Example 1: Forward retiming of the A and B registers
has the combined effect of reducing the number of latches, and
partially duplicating the information stored in the Out register.
We practically favor chains of latches by reducing, through a user
selectable weighting factor w < 1, the cost of any latch directly
feeding another latch.

Further topics we describe in the following are latch enables,
specific retiming rules for primary inputs, and some traversal re-
lated issues.

4.1 Latch Enables

In practical designs, different latches may be enabled under dif-
ferent enable conditions. Legl et a. [6] consider the problem of
retiming for latches with multiple clocks and enables. Their solu-
tion isto divide latches into classes, where latches share common
enables and clocks. Latches can be retimed (forward or back-
ward) across agate only if they all belong to the same class. The
proposed algorithm is correct, but it may not permit al possi-
ble retimings. Consider for instance the sub-circuit of Exam-
ple 1, where the ALU combinational block is fed by latches of
two classes with mutually exclusive enables (i.e., whenever the
latches of either class are enabled, the latches of the other class
are disabled). Forward retiming is forbidden in the original for-
mulation of [6], whereas the retiming of a class of latches would
be enabled by the insertion of additional “dummy” latches: This
is achieved in Example 1 with the extra register on the opcode

input of the ALU block. The above improvement was suggested
in[5] for multiple clock phases.

Our implementation follows[6], with the previously cited im-
provement. Moreover, we support both manual and automatic de-
tection of enables. The latter technique (automatic detection) is
derived from [7]. Any next state function d; is expressed as

&; = e; - data; + € - x5,

where e; isthe enabling function, data; is the datainput, and z;
is the present state. In short, given the BDD of §;, we determine
e; and data; as solutions of the above equation.

4.2 Latcheson Primary Input Lines

An additional degree of freedom we have with respect to tradi-
tional retiming is the ability to arbitrarily delay or anticipate sin-
gle primary input signals from their original timing behavior. A
given input line could be delayed by the insertion of a dummy
latch without enable (always enabled), to be used for forward re-
timing purposes. This would imply that the associated input sig-
nal would be anticipated of one clock cycle, to preserve the re-
quired FSM behavior, but strict input—output equivalence would
be violated.

A dual effectisproduced by artificially removing latcheswith-
out enable originally present or appeared on input lines as aresult
of backward retiming. These latches are called peripheral input
latches in [5], where retiming is targeted to producing as many
peripheral latches as possible, to be removed within a ssimulation
run.

Both the above optimizations are possible in our verifica
tion framework, where retiming is only a temporary transforma-
tion, unrelated to logic synthesis steps. More specifically, latches
(without enable) on primary input lines have zero cost for retim-
ing, and dummy latches may be generated whenever useful to
make a retime feasible.

Peripheral latches may appear on the output too. In this case
the techniques presented in [5, 8] may be considered.

4.3 Transforming Transition Relations

A key issue for BDD based symbolic traversalsis supporting par-
titioned/clustered transition relations, to avoid the BDD blow-up
problem often related to their monolithic counterparts.

In our case, this means to compute only partialy the trans-
formed transition relation (see Equation (2)), and to keep it in a
clustered form. The above transformation consists in some state
variable substitutions, latch removals and/or appearance.

e Variable substitution is straightforward (and linear in the BDD
size) if the new variables keep the relative ordering of the re-
placed ones.

e A circuit point, where more latches are chained as a result of
retiming, isasource of new next state functions, which are very
simpleasthey are associated to couples of cascaded latches and
they can be expressed as

d; =e-xrjte-x;
(where the j-th latch feeds the i-th one).

e A circuit node, where a retimed latch is removed and no other
latch is repositioned, is a function composition point.

We keep the original relative order position for all new variables
associated to a circuit node, and we fully solve thefirst two cases
(which imply a negligible time and space effort), whereas we do
not explicitly perform function compositions associated to latch
disappearance. We address the latter problem by means of auxil-
iary variables, considered as pseudo-inputs or cut-point variables,
fully integrated (and quantified out) in the following verification
tasks: Transition relation clustering and image/preimage com-
putations. We operate variable substitution and auxiliary vari-
able generation on the fully partitioned transition relation (TR =

[L:(yi = 53).

5 Experimental Results

The experiments we present here are limited to reachability anal-
ysis, as afirst and general experimental setup, unrelated from the
verification of specific properties. Our main goal is to prove that
the sequential behavior of the circuits presented can be analyzed
with relevant improvements by using retiming. Some of the ad-
vantages we attained could be (partialy or totally) denied by ver-
ifying properties related to retimed latches.

The presented technique isimplemented within an home-made
reachability analysistool, built on top of the Colorado University
Decision Diagram (CUDD) package.

We compare traversal performance on the original circuits
and on the retimed ones. In al the caseswe try to optimize perfor-
mance using appropriate settings (clustering threshold, variable
reordering threshold, etc.). Theinitial variable ordering is a good
one, computed either manually or automatically. We usualy en-
able dynamic reordering with the default settings of the CUDD
package.

Our experiments ran on the following machines. a 266 MHz
Pentium 11 with a 384 Mbyte main memory, a 400 MHz Pentium
Il with a 128 Mbyte main memory, and a 400 MHz Pentium |1
with a 1 Gbyte main memory, al running RedHat Linux. To sim-
plify direct comparison we have normalized all CPU times to the
fastest machine, with a normalization factor of 0.7 (derived ex-
perimentally) for the 266 MHz machine.

We present data for a few ISCAS 89, ISCAS 89-addendum
benchmarks, and some other circuits [9]. They have different
sizes, within the range of circuits manageable by state-of-the-art
reachability analysis techniques. We only report here data for the
circuits we could retime and traverse with some gain. The bench-
mark circuits we tried without any significant result are: s1269,
s1423, s1512, s3330, s3271. Our technique did not reduce
the number of memory elements of circuits s1423, s1512, and
s3271, practically leaving the circuits unchanged. In the case of
circuits s1269, and s3330, the number of memory elements was
reduced, but with slight improvement in the efficiency of reacha-
bility analysis.

Table 1 collects statistics on the circuit used, and the retiming
process.

For each circuit it shows the number of primary inputs, # I,
and some statistics before and after retiming. # L indicates the
number of latches, D the sequential depth, and States the fina
number of reached states. We present here partial reachability
analysis results, as on both the circuits, original and retimed, we
were unable to complete the analysis.

Palu [9] is a pipelined circuit with an ALU and a register

H Circuit ‘ #1 H Original Circuit H Retimed Circuit H

#L | D | States #L | D | States
s3384 43 || 183 | — — [147 | = —
54863 49 || 104 | 4 | 219-10™ 96 | 3 | 220-10™®
s5378164 | 35 || 164 | 44 | 3.17-107° 131 | 44 | 2.21-107°
s5378170 | 35 || 179 | 44 | 317.101% || 144 | 43 | 4.39.107°
Palug 17 || 165 | — — 88 | 10 | 7.77-10%
vsaR 17 66 | 36 | 1.62:10™% 62 | 36 | 2.89-10'%
Rotator;g | 20 32 2 | 1.00-2%2 32 2 | 1.00-2%2
Rotatorss | 37 64 | 2 | 1.00.2%% 64 | 2 | 100 2%%

Table 1: Retiming for reachability analysis. — means data not
computed.

file. At each clock cycle the pipeline starts the execution of an
instruction, which completesin three cycles unless stalled: Read
the operands from the register file, perform the ALU operation,
write result back to the register file. The pipeline supports bypass
of the write-back stage. Therefore, if an instruction depends on
the result of the one immediately preceding it, the pipeline needs
to stall for just one cycle.

vsaR [9] isavery simple microprocessor with no pipelining
and no interrupts. Theinstruction set islimited to basic operations
(load, store, add, sub, etc.). All instructions are specified by a12
bit operating code. There are 3 general-purpose 5-bit registers
that can act as source or destinations for the various instructions.
All instructions execute in exactly 5 clock cycles. The program
counter hasonly 5 hits to reduce the sequential depth of the FSM.

Rotator [9] has two stages. An input register is fed by pri-
mary inputs. An output register stores arotated copy of the inputs
register. The number of rotated bits is determined by a control
value of five bits. Every bit of the output register depends on ev-
ery other bit of the input register. All states are reachable.

More specifically, s3384, s5378, and Palu circuits show rel-
evant reductions of number of latches, moderate reductions are
attained with s4863 and vsaR. No reduction is presented by Ro-
tator.

Table 2 collects reachability analysis statistics. For each cir-
cuit (retimed and not), it shows the size (in terms of number of
BDD nodes) of the largest (R. Peak), and the fina (R. Final)
reachable state set, the largest partial product created during im-
age computations (BDD Peak), the memory used by the entire
process (Mem., in Mbytes [Mb]), and the CPU time (in seconds
[sec)).

The advantages obtained on the retimed circuits are evident
both in terms of memory and of CPU time.

The traversal of the retimed circuit s3384 was stopped at
level 100 for time limit. We know from a guided search exper-
iment that the sequential depth of the circuit has an upper bound
of 552. Since our traversal data showed a counter-like behavior
we expect we could complete the experiment with a larger time
limit.

For circuit vsaR the larger number of reachable statesin the
retimed version is due to the insertion of a3 bit dummy register
before retiming. A fair comparison would imply accounting this
register in the original circuit. Both versions of s5378 and Palu
show relevant memory and CPU time gain. In particular the Palu
example shows that retiming can be very effective with pipelining

Circuit Original Circuit Retimed Circuit
R.Peak | R.Final | BDD Peak | Mem. Time R.Peak | R.Final | BDD Peak | Mem. Time
‘ ‘ ‘ [Mb] ‘ [sec] ‘ ‘ ‘ [Mb] ‘ [sec]
S3384icvel 6 164343 138276 433623 172 3058 114395 74750 321323 164 2513
$33841cvel 100 — — — — — 485242 314395 672634 195 | 475772
54863 8241 8241 17709 14 24 5183 5183 18160 14 21
55378164 125326 46981 761569 55 | 29997 35324 24763 145421 26 3402
s5378179 376219 117086 992340 67 | 25283 84928 62746 464937 36 6752
Palug — — — — — 101857 756 406186 35 625
vsaR 4540095 335694 8524412 648 6975 2478336 49494 4029557 288 1148
Rotatorg 17 1 111263 8 1 17 1 33 1 0
Rotatorzs — — — — — 33 1 65 1 0

Table 2: Reachability analysis comparison. — means data not computed for memory overflow.

units.

Rotator isavery particular case. With thiscircuit abackward
retiming of the output register across the rotating logic makes
reachability a trivia task (an input register directly feeding an
output register with no intermediate logic). The 32 bit version
of the original circuit could not be completed with the available
resources. We should expect a verification performance ranging
between the two extreme cases depending on the verified prop-
erty.

6 Conclusionsand Future Work

We present a new approach to improve reachability analysis, and
possibly all verification problems based on reachability analysis.

We exploit retiming as a property preserving transformation
to reduce the number of latches of a FSM, and to reposition them
to obtain a simplified state set representation. In this framework
retiming is seen as a temporary transformation to be applied to
the FSM, and to the property aswell.

Experimental results on benchmark and home made circuits
show lower image computation costs, and reduced state set repre-
sentation sizes.

Future works will investigate new heuristics, and optimality
criteria for retiming to further improve reachability analysis ef-
ficiency. Moreover, we will move toward property verification,
e.g., model-checking, by transforming properties as well.

References

[1] D. Stoffel and W. Kunz. Record & Play: A structura Fixed Point
Iteration for Sequential Circuit Verification. In Proc. IEEE/ACM IC-
CAD’ 97, pages 394-399, San Jose, California, November 1997.

G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal Imple-
mentation Verification of the Bus Interface Unit for the Alpha 21264
Microprocessor. In Proc. IEEE ICCD’97, Austin, Texas, October
1997.

R. K. Ranjan, V. Singhal, F. Somenzi, and R. K. Brayton. Using Com-
binational Verification for Sequential Circuits. In Proc. |IEEE/ACM
DATE’ 99, pages 138-144, Munich, Germany, March 1999.

J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model Check-
ing the IBM Gigahertz Processor: An Abstraction Algorithm for
High-Performance Netlists. In Eleventh Conference on Computer
Aided \erification (CAV'99), pages 72-83, Berlin, 1999. Springer-
Verlag. LNCS 1633.

A. Gupta, P. Ashar, and S. Malik. Exploiting retiming in a guided
simulation based validation methodology. In Correct Hardware

[2

(3

(4

(5]

(6]

(7

(8l

(9

Design and Verification Methods (CHARME'99), pages 350-353,
Berlin, September 1999. Springer-Verlag. LNCS 1703.

C. Legl, P. Vanbekbergen, and A. Wang. Retiming of Edge-Triggered
Circuits with Multiple Clocks and Load Enables. In IWLS 99: |EEE
International Workshop on Logic Synthesis, May 1999.

K. Ravi. Improvements to Reachability Anaysis.
manuscript, October 1997.

G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis
of Large Finite State Machine. In Proc. IEEE/ACM ICCAD’ 96, pages
354360, San Jose, California, November 1996.

K. Ravi and F. Somenzi. Hints to Accelerate Symbolic Traversal. In
Correct Hardware Design and Verification Methods (CHARME' 99),
pages 250-264, Berlin, September 1999. Springer-Verlag. LNCS
1703.

Unpublished

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

