
Optimizing Sequential Verification by Retiming Transformations

Gianpiero Cabodi Stefano Quer Fabio Somenzi

Politecnico di Torino
Dip. di Automatica e Informatica

Turin, ITALY

University of Colorado
Dept. of Electrical and Computer Engineering

Boulder, CO

Abstract
Sequential verification methods based on reachability analysis are still
limited by the size of the BDDs involved in computations. Extending their
applicability to larger and real circuits is still a key issue.

Within this framework, we explore a new way to improve symbolic
traversal performance, working on the representation of state sets. We
exploit retiming to reduce the number of latches of a FSM, and to re-
locate them in order to obtain a simplified state set representation. We
consider retiming as a temporary state space transformation to increase
the efficiency of sequential verification. We discuss it as a state space
transformation and we formally analyze the conditions under which such
a transformation is equivalence preserving for a given property under
verification.

We lower image computation cost, and we reduce the size of BDDs

representing intermediate results and state sets. Experimental results
show considerable memory and time improvements on some benchmark
and home made circuits.

1 Introduction
State-of-the-art approaches for reachability analysis and formal
verification of circuits modeled as Finite State Machines (FSMs)
exploit symbolic techniques based on Binary Decision Diagrams
(BDDs).

Given the transition relation of a system, , and a
set of states, , the set of states reachable in one step from the
states in , , is computed as

(1)

This is the core computation of all symbolic reachability and se-
quential verification algorithms. But even symbolic techniques
reach their limits on large practical examples. Several improve-
ments have thus been proposed to the basic idea, in order to deal
with realistic circuit sizes. Among the other, we remember parti-
tioned forms, dynamic variable reorderings, approximate traver-
sal/verification strategies, abstractions of sub-components, and,
more recently, guided searches.

In the sequel we use TR, , and to indicate respectively the transition
relation, primary inputs, present state variables, and next state variables.

In this paper we explore a different way of improving traver-
sal performance, working on the representation of state sets. We
exploit retiming to reduce the number of latches of a FSM, or to
simply reposition them, to obtain smaller BDDs for the states of
the transformed FSM.

Retiming has been introduced to reposition latches across the
combinational logic in a sequential circuit. It is used in logic
synthesis, in order to minimize the clock period, the number of
latches, or to meet a given clock period while minimizing the
number of latches. By definition, retiming preserves the input-
output behavior of the sequential circuit.

Our use in verification with performance enhancement pur-
poses, represents a new application of retiming. Previous works
in sequential verification have used retiming with different goals.
In [1, 2, 3] retiming is exploited to infer structural similarities
to reduce sequential verification to a combinational equivalence
proof. By contrast, we completely work in the sequential domain
as we see retiming as a temporary transformation to be applied
to the FSM and to the property as well. In [4] a restricted form
of retiming is used to collapse registers driven by clocks of dif-
ferent phases. We use general retiming, and we address the issue
of property retiming. Finally, in [5] retiming is used to extract as
many peripheral latches as possible from the circuit. Though this
is useful, it is not the focus of our work.

2 Motivation and Overview of the Presented Ap-
proach

We propose a technique to reduce the size of BDDs encountered
in sequential verification. Our approach originates from the intu-
ition that retiming may be effective as an equivalence preserving
transformation to minimize the number of latches, and/or explor-
ing alternative ways (more efficiently in terms of BDD size) of
coding the information stored in latches. Retiming is usually ap-
plied to automatically designed circuits to target optimal clock cy-
cle, area, or low-power, rather than minimum number of latches.
We partially alter the above assumptions, by considering the re-
timing method as a temporary transformation to improve the ef-
ficiency of sequential verification. We can thus disregard, for in-
stance, cycle time and area, and concentrate on latch minimiza-
tion, with the aim of compacting the amount of reachable states
and the size of the BDDs representing them. Moreover, we can
explore different heuristics and cost measures for given latch posi-
tions, oriented to more efficient symbolic operations, rather than
better hardware implementation. We can finally partially mod-

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

ify the equivalence criteria of the FSM transformation, which are
again bound by the correctness of a verification task, not by phys-
ical implementation: A given input signal could, for instance, be
artificially delayed or anticipated with respect to its original tim-
ing, thus modifying the input output behavior, but preserving the
verification task. (See Section 4.)

Example 1 Let us consider a piece of a circuit, reported in Figure 1(a),
containing an ALU with two input/operand registers, and , and an
output/result one, . The ALU operation is selected by the -
field of an Instruction Register . All registers are controlled by enable
inputs, and the usual sequence of operations is: Fetch the instruction, load
the operand registers, execute the operation, write the result in . A

Figure 1: A Retiming Example with insertion of a “dummy” reg-
ister.

relevant part of the reachable states is characterized by a tight correlation
among the values of all the above registers: is the result of the oper-
ation specified by , and applied to the and operands. The BDDs
representing such states would be reduced by retiming and in the
forward direction across the ALU:

A single register () would replace the and registers, with
any new value stored in equivalent to sets of values previ-
ously stored in and .
The values stored in and would be equal in all operation
steps, except after loading (and in the original circuit).

Notice that a backward retiming of would also benefit from the sec-
ond point, but not from the first one.

Figure 1(b) reports such a retimed circuit. Since retiming of latches
with load enable inputs is allowed only for a set of latches sharing the load
input, a dummy register (with the same enable as and) is inserted on
the - input of the ALU. This insertion is represented with dotted
lines in Figure 1(a). In Section 4.1 we show that it is permissible.

In view of the previously described goals, we implemented
an ad hoc retiming procedure and we decided not to work on
gate level net-lists, but to retime latches across entire next state
functions, seen as black boxes. Although this choice reduces the
available latch positions, it has some practical advantages, which
are discussed in the next section.

We thus find and apply a retiming transformation by working
on a FSM represented by its next state transition function. We
then produce a transition relation, usually in conjunctively clus-
tered form, to be used for the following verification tasks. The
method has similarities with known published techniques on re-
timing, but we propose (and we rely on) some different optimality
criteria. It also shares some of the inspiring ideas of works do-
ing equivalence preserving transformations with the aim of sim-
plifying a verification process. Concerning the particular aspect

of retiming applied to sequential verification, both the theoretical
framework, and the application we propose are new.

3 Retiming for Verification
We describe in this section retiming as a state space transforma-
tion oriented to simplify sequential verification operations. The
theoretical framework and the formalism we propose are quite
general and not limited to retiming. They could be applied with
minor modifications to other FSM transformations, like, for in-
stance, state minimization.

Retiming is exploited in logic synthesis as an equivalence pre-
serving optimization of sequential circuits. It usually works on a
net-list made of logic gates and latches, whereas in our verifica-
tion framework we prefer using next state functions as basic black
blocks for the retiming procedure. Although limiting the num-
ber of possible retimings, this has the following desirable conse-
quences:

It may be applied as a preprocessing step of formal verifica-
tion, directly on the BDD representation of next state func-
tions, without requiring any structural knowledge of the gate
level net-list.

Automatic detection of latch enables is possible by directly
working on BDD representations (see Section 4.1).

The complexity of the retiming problem is much lower than on
the original net-list.

Working on gate level net-lists is an alternative option, which
is not excluded from our theoretical and practical framework, pro-
vided that proper notational changes are done to all formulas, now
using next state functions as basic blocks.

An FSM is given by

where is the set of input variables, the set of output variables,
the set of states, the next-state function, the output func-

tion, and the set of initial states. Input, present, and next state
variables are denoted , , and . TR is the transition relation,
defined as

Let us call the original FSM and the retimed one, with
and their transition relations.

We can view retiming as a state re-mapping applied to the
FSM. Re-mapping is expressed by the relation applied to
the state spaces and returning 1 for any couple of corre-
sponding states, i.e., the state in is equivalent to state in
the original FSM . In the case of retiming, state equivalence is
strictly related to the nature of the transformation, which is proved
to preserve the input–output behavior of a sequential circuit. In
the sequel we will omit discussing conditions for maintaining the
sequential behavior through the transformation, which are im-
plicit with retiming, and should be specifically addressed for more
general cases.

A retiming process can be decomposed in a sequence of steps
where any retimed latch is only moved across one single block

either in the forward or in the backward direction. The retiming
relation of such a step can be computed through the following
formula:

where is the set of latches not retimed, i.e., kept in their original
position, is the set of forward retimed latches (in , i.e. after
retiming), and is the set of backward retimed latches (in ,
i.e. before retiming). is the function of the combinational
block crossed by the retimed latch. The global retiming relation of
a sequence of steps can be expressed as a relational composition
of the step relations. A two step retiming is computed as
composition of the first () and second () retiming:

Let us represent the sequential behavior of the FSM through its
transition relation. The transition relation of can be com-
puted, through retiming transformations in the present and next
state spaces, as:

(2)

The following example shows an application of the above con-
cepts to a simple practical case.

Example 2 Figure 2 reports an example where retiming is applied to a
circuit with two latches (and). , and are generic combi-
national blocks. Figure 2(a) shows the original circuit, whose transition
relation is:

Figure 2(b) shows the result of retiming latch forward across . The
latch is not retimed, so the set is , and () corresponds

to (). The retimed state transformation relation may be expressed
as :

The resulting transition relation can be computed as:

which is exactly the expression one can get directly from the circuit:

through existential quantification.

3.1 Property Preserving Retiming

Retiming is usually viewed as an input–output equivalence pre-
serving transformation, i.e., the input–output behavior of the FSM
is preserved. In our case we are interested in property verification,
so we want a given property to be maintained through a retiming
transformation.

Let us consider a property . is a propositional for-
mula on the state variables. The property in the retimed space is
defined as

Notice that expresses function composition.
A more general case is a property function of input and state variables.

We avoid input dependence here for sake of simplicity.

w
zf

L1

2

x n, 1
y x11

f3f1

L2

n, 1y

yf, 1

f, 1
x

(b)

z
w

f f

L1
y 2

f1 2 3

2L

(a)

1xy1 2 x

Figure 2: A retiming example.

The transformation is property preserving iff, given and in

If all the propositional formulae appearing in a generic temporal
logic formula are preserved, then is also preserved. There-
fore, without loss of generality, we concentrate on properties that
are propositional formulae.

Input–output equivalence is a first avenue of attack for this
problem: Any property expressed as a function of primary outputs
is guaranteed to be preserved by standard retiming. Whenever a
property depends on internal circuit points or state elements, the
property itself (in case it is a Boolean formula), or a set of Boolean
sub-expressions (in case of a temporal logic property) might be
regarded as output function(s) and included as such in the retim-
ing process. Since retiming guarantees input–output equivalence,
the property in the retimed FSM is equivalent to the original one.

Following the above reasoning, a wider space for retiming
is available by ignoring all output functions, with the exception
of the ones related to the property under verification. Moreover,
input–output equivalence could be changed to a more general
property preserving condition.

The following theorem expresses in a formal way a general
condition relating the retiming transformation and the property
under verification.

Theorem 1 Given a state space transformation defined by , and

a property , transformed as , the trans-
formation is equivalence preserving for

if

Proof The direct implication follows from the definition of . In fact, if

holds then , which is true for all re-mapped s
(such that holds). The inverse implication is derived in a similar

way from the hypothesis ().

The theorem states a property preserving condition based on a
kind of invertibility of the transformation applied to the prop-
erty. The boolean condition required by the theorem should be
checked for any property being verified on a retimed FSM.

Two particular cases included in the above theorem are ex-
pressed by the following lemmas. The former shows that a

transformation is property preserving. But this is a tough con-
strain for retiming; hence, the latter lemma introduces a partially

transformation, where the condition is required only for the
latches on which the property depends.

Lemma 1 A transformation is equivalence preserving for

any property transformed as .
Proof As is can be expressed as an inverse transformation

of :

which is the hypothesis of Theorem 1.

Lemma 2 Let us define () as the subspace of described by
variables in (). Let us define the projection of

to as

If is the transformation is equivalence preserving.

A direct consequence of this lemma is that property is
preserved if we do not retime the latches it depends on.

4 Verification–Oriented Retiming
Standard retiming algorithms may be adapted with a few modifi-
cations to our verification framework. Our present solution is an
ad hoc implementation within a BDD based traversal package.

First of all, we target minimum number of latches, without
caring about clock cycle. Secondly, we also expect benefits from
bringing latches face-to-face (a latch output directly feeding the
input of the second one). This kind of retiming has quite often
the nice effect of duplicating the information stored in two sets
of latches in relevant subsets of the reachable states. See, for
instance, Example 1: Forward retiming of the and registers
has the combined effect of reducing the number of latches, and
partially duplicating the information stored in the register.
We practically favor chains of latches by reducing, through a user
selectable weighting factor , the cost of any latch directly
feeding another latch.

Further topics we describe in the following are latch enables,
specific retiming rules for primary inputs, and some traversal re-
lated issues.

4.1 Latch Enables

In practical designs, different latches may be enabled under dif-
ferent enable conditions. Legl et al. [6] consider the problem of
retiming for latches with multiple clocks and enables. Their solu-
tion is to divide latches into classes, where latches share common
enables and clocks. Latches can be retimed (forward or back-
ward) across a gate only if they all belong to the same class. The
proposed algorithm is correct, but it may not permit all possi-
ble retimings. Consider for instance the sub-circuit of Exam-
ple 1, where the ALU combinational block is fed by latches of
two classes with mutually exclusive enables (i.e., whenever the
latches of either class are enabled, the latches of the other class
are disabled). Forward retiming is forbidden in the original for-
mulation of [6], whereas the retiming of a class of latches would
be enabled by the insertion of additional “dummy” latches: This
is achieved in Example 1 with the extra register on the opcode

input of the block. The above improvement was suggested
in [5] for multiple clock phases.

Our implementation follows [6], with the previously cited im-
provement. Moreover, we support both manual and automatic de-
tection of enables. The latter technique (automatic detection) is
derived from [7]. Any next state function is expressed as

where is the enabling function, is the data input, and
is the present state. In short, given the BDD of , we determine

and as solutions of the above equation.

4.2 Latches on Primary Input Lines

An additional degree of freedom we have with respect to tradi-
tional retiming is the ability to arbitrarily delay or anticipate sin-
gle primary input signals from their original timing behavior. A
given input line could be delayed by the insertion of a dummy
latch without enable (always enabled), to be used for forward re-
timing purposes. This would imply that the associated input sig-
nal would be anticipated of one clock cycle, to preserve the re-
quired FSM behavior, but strict input–output equivalence would
be violated.

A dual effect is produced by artificially removing latches with-
out enable originally present or appeared on input lines as a result
of backward retiming. These latches are called peripheral input
latches in [5], where retiming is targeted to producing as many
peripheral latches as possible, to be removed within a simulation
run.

Both the above optimizations are possible in our verifica-
tion framework, where retiming is only a temporary transforma-
tion, unrelated to logic synthesis steps. More specifically, latches
(without enable) on primary input lines have zero cost for retim-
ing, and dummy latches may be generated whenever useful to
make a retime feasible.

Peripheral latches may appear on the output too. In this case
the techniques presented in [5, 8] may be considered.

4.3 Transforming Transition Relations

A key issue for BDD based symbolic traversals is supporting par-
titioned/clustered transition relations, to avoid the BDD blow-up
problem often related to their monolithic counterparts.

In our case, this means to compute only partially the trans-
formed transition relation (see Equation (2)), and to keep it in a
clustered form. The above transformation consists in some state
variable substitutions, latch removals and/or appearance.

Variable substitution is straightforward (and linear in the BDD
size) if the new variables keep the relative ordering of the re-
placed ones.

A circuit point, where more latches are chained as a result of
retiming, is a source of new next state functions, which are very
simple as they are associated to couples of cascaded latches and
they can be expressed as

(where the -th latch feeds the -th one).

A circuit node, where a retimed latch is removed and no other
latch is repositioned, is a function composition point.

We keep the original relative order position for all new variables
associated to a circuit node, and we fully solve the first two cases
(which imply a negligible time and space effort), whereas we do
not explicitly perform function compositions associated to latch
disappearance. We address the latter problem by means of auxil-
iary variables, considered as pseudo-inputs or cut-point variables,
fully integrated (and quantified out) in the following verification
tasks: Transition relation clustering and image/preimage com-
putations. We operate variable substitution and auxiliary vari-
able generation on the fully partitioned transition relation

.

5 Experimental Results
The experiments we present here are limited to reachability anal-
ysis, as a first and general experimental setup, unrelated from the
verification of specific properties. Our main goal is to prove that
the sequential behavior of the circuits presented can be analyzed
with relevant improvements by using retiming. Some of the ad-
vantages we attained could be (partially or totally) denied by ver-
ifying properties related to retimed latches.

The presented technique is implemented within an home-made
reachability analysis tool, built on top of the Colorado University
Decision Diagram (CUDD) package.

We compare traversal performance on the original circuits
and on the retimed ones. In all the cases we try to optimize perfor-
mance using appropriate settings (clustering threshold, variable
reordering threshold, etc.). The initial variable ordering is a good
one, computed either manually or automatically. We usually en-
able dynamic reordering with the default settings of the CUDD
package.

Our experiments ran on the following machines: a 266 MHz
Pentium II with a 384 Mbyte main memory, a 400 MHz Pentium
II with a 128 Mbyte main memory, and a 400 MHz Pentium II
with a 1 Gbyte main memory, all running RedHat Linux. To sim-
plify direct comparison we have normalized all CPU times to the
fastest machine, with a normalization factor of (derived ex-
perimentally) for the 266 MHz machine.

We present data for a few ISCAS’89, ISCAS’89-addendum
benchmarks, and some other circuits [9]. They have different
sizes, within the range of circuits manageable by state-of-the-art
reachability analysis techniques. We only report here data for the
circuits we could retime and traverse with some gain. The bench-
mark circuits we tried without any significant result are: s1269,
s1423, s1512, s3330, s3271. Our technique did not reduce
the number of memory elements of circuits s1423, s1512, and
s3271, practically leaving the circuits unchanged. In the case of
circuits s1269, and s3330, the number of memory elements was
reduced, but with slight improvement in the efficiency of reacha-
bility analysis.

Table 1 collects statistics on the circuit used, and the retiming
process.

For each circuit it shows the number of primary inputs, # I,
and some statistics before and after retiming. # L indicates the
number of latches, D the sequential depth, and States the final
number of reached states. We present here partial reachability
analysis results, as on both the circuits, original and retimed, we
were unable to complete the analysis.

Palu [9] is a pipelined circuit with an ALU and a register

Circuit # I Original Circuit Retimed Circuit
L D States # L D States

s3384 43 183 147
s4863 49 104 4 2.19 96 3 2.20
s5378 35 164 44 3.17 131 44 2.21
s5378 35 179 44 3.17 144 43 4.39
Palu 17 165 88 10 7.77
vsaR 17 66 36 1.62 62 36 2.89
Rotator 20 32 2 1.00 32 2 1.00
Rotator 37 64 2 1.00 64 2 1.00

Table 1: Retiming for reachability analysis. means data not
computed.

file. At each clock cycle the pipeline starts the execution of an
instruction, which completes in three cycles unless stalled: Read
the operands from the register file, perform the ALU operation,
write result back to the register file. The pipeline supports bypass
of the write-back stage. Therefore, if an instruction depends on
the result of the one immediately preceding it, the pipeline needs
to stall for just one cycle.

vsaR [9] is a very simple microprocessor with no pipelining
and no interrupts. The instruction set is limited to basic operations
(load, store, add, sub, etc.). All instructions are specified by a
bit operating code. There are 3 general-purpose 5-bit registers
that can act as source or destinations for the various instructions.
All instructions execute in exactly 5 clock cycles. The program
counter has only 5 bits to reduce the sequential depth of the FSM.

Rotator [9] has two stages. An input register is fed by pri-
mary inputs. An output register stores a rotated copy of the inputs
register. The number of rotated bits is determined by a control
value of five bits. Every bit of the output register depends on ev-
ery other bit of the input register. All states are reachable.

More specifically, s3384, s5378, and Palu circuits show rel-
evant reductions of number of latches, moderate reductions are
attained with s4863 and vsaR. No reduction is presented by Ro-
tator.

Table 2 collects reachability analysis statistics. For each cir-
cuit (retimed and not), it shows the size (in terms of number of
BDD nodes) of the largest (R. Peak), and the final (R. Final)
reachable state set, the largest partial product created during im-
age computations (BDD Peak), the memory used by the entire
process (Mem., in Mbytes [Mb]), and the CPU time (in seconds
[sec]).

The advantages obtained on the retimed circuits are evident
both in terms of memory and of CPU time.

The traversal of the retimed circuit s3384 was stopped at
level for time limit. We know from a guided search exper-
iment that the sequential depth of the circuit has an upper bound
of . Since our traversal data showed a counter-like behavior
we expect we could complete the experiment with a larger time
limit.

For circuit vsaR the larger number of reachable states in the
retimed version is due to the insertion of a bit dummy register
before retiming. A fair comparison would imply accounting this
register in the original circuit. Both versions of s5378 and Palu
show relevant memory and CPU time gain. In particular the Palu
example shows that retiming can be very effective with pipelining

Circuit Original Circuit Retimed Circuit
R. Peak R. Final BDD Peak Mem. Time R. Peak R. Final BDD Peak Mem. Time

[Mb] [sec] [Mb] [sec]

s3384 164343 138276 433623 172 3058 114395 74750 321323 164 2513
s3384 485242 314395 672634 195 475772
s4863 8241 8241 17709 14 24 5183 5183 18160 14 21
s5378 125326 46981 761569 55 29997 35324 24763 145421 26 3402
s5378 376219 117086 992340 67 25283 84928 62746 464937 36 6752
Palu 101857 756 406186 35 625
vsaR 4540095 335694 8524412 648 6975 2478336 49494 4029557 288 1148
Rotator 17 1 111263 8 1 17 1 33 1 0
Rotator 33 1 65 1 0

Table 2: Reachability analysis comparison. means data not computed for memory overflow.

units.
Rotator is a very particular case. With this circuit a backward

retiming of the output register across the rotating logic makes
reachability a trivial task (an input register directly feeding an
output register with no intermediate logic). The bit version
of the original circuit could not be completed with the available
resources. We should expect a verification performance ranging
between the two extreme cases depending on the verified prop-
erty.

6 Conclusions and Future Work
We present a new approach to improve reachability analysis, and
possibly all verification problems based on reachability analysis.

We exploit retiming as a property preserving transformation
to reduce the number of latches of a FSM, and to reposition them
to obtain a simplified state set representation. In this framework
retiming is seen as a temporary transformation to be applied to
the FSM, and to the property as well.

Experimental results on benchmark and home made circuits
show lower image computation costs, and reduced state set repre-
sentation sizes.

Future works will investigate new heuristics, and optimality
criteria for retiming to further improve reachability analysis ef-
ficiency. Moreover, we will move toward property verification,
e.g., model-checking, by transforming properties as well.

References
[1] D. Stoffel and W. Kunz. Record & Play: A structural Fixed Point

Iteration for Sequential Circuit Verification. In Proc. IEEE/ACM IC-
CAD’97, pages 394–399, San Jose, California, November 1997.

[2] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal Imple-
mentation Verification of the Bus Interface Unit for the Alpha 21264
Microprocessor. In Proc. IEEE ICCD’97, Austin, Texas, October
1997.

[3] R. K. Ranjan, V. Singhal, F. Somenzi, and R. K. Brayton. Using Com-
binational Verification for Sequential Circuits. In Proc. IEEE/ACM
DATE’99, pages 138–144, Munich, Germany, March 1999.

[4] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model Check-
ing the IBM Gigahertz Processor: An Abstraction Algorithm for
High-Performance Netlists. In Eleventh Conference on Computer
Aided Verification (CAV’99), pages 72–83, Berlin, 1999. Springer-
Verlag. LNCS 1633.

[5] A. Gupta, P. Ashar, and S. Malik. Exploiting retiming in a guided
simulation based validation methodology. In Correct Hardware

Design and Verification Methods (CHARME’99), pages 350–353,
Berlin, September 1999. Springer-Verlag. LNCS 1703.

[6] C. Legl, P. Vanbekbergen, and A. Wang. Retiming of Edge–Triggered
Circuits with Multiple Clocks and Load Enables. In IWLS’99: IEEE
International Workshop on Logic Synthesis, May 1999.

[7] K. Ravi. Improvements to Reachability Analysis. Unpublished
manuscript, October 1997.

[8] G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis
of Large Finite State Machine. In Proc. IEEE/ACM ICCAD’96, pages
354–360, San Jose, California, November 1996.

[9] K. Ravi and F. Somenzi. Hints to Accelerate Symbolic Traversal. In
Correct Hardware Design and Verification Methods (CHARME’99),
pages 250–264, Berlin, September 1999. Springer-Verlag. LNCS
1703.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

