Verification of Configurable Processor Cores

Marinés Puig-Medina Gulbin Ezer Pavlos Konas
Tensilica, Inc. Tensilica, Inc. Tensilica, Inc.
3255-6 Scott Boulevard 3255-6 Scott Boulevard 3255-6 Scott Boulevard
Santa Clara, CA 95054-3013 Santa Clara, CA 95054-3013 Santa Clara, CA 95054-3013
mari@tensilica.com ezer@tensilica.com konas@tensilica.com
ABSTRACT and comprehensive verification of the processor cores while facili-

This paper presents a verification methodology for configurable tating the system level verification process.

processor cores. The simulation-based approach uses directed di-

agnostics and pseudo-random program generators both of whichTraditionally, the functional verification of a processor relies on
are tailored to specific processor instances. A configurable and ex-extensive simulation-based testing of the processor’s RTL model
tensible test-bench serves as the framework for the verification pro- using a collection of directed and random diagnostic programs [2].
cess and offers components necessary for the complete SOC verifiCoverage analysis provides an evaluation of how well the design
cation. Coverage analysis provides an evaluation of how well a spe-has been exercised by those programs and assesses the need for
cific design has been exercised, of the breadth of the configurationfurther testing [10]. Verification of the Tensilica processors, how-
space explored, and suggests improvements to the process. Thever, is complicated by their configurability and designer-defined
results of the analysis show that our methodology achieves good extensibility. These two features create a vast number of different
verification coverage of the processor implementation. processor instances that need to be verified.

Keywo rds We have developed a robust and flexible methodology for the verifi-
cation of configurable and designer-extensible processor cores. Our
simulation-based approach employs fully configurable directed di-
agnostics for the architectural and micro-architectural testing of the
processor. Two configurable random program generators further
1. INTRODUCTION enhance the testing. We use coverage analysis to assess how well

The increased complexity of System-On-Chip (SOC) designs, com- & single processor_insta_nce has been verified and to evalua_lte the
bined with shorter time-to-market windows, have forced designers breadth of the configuration space explored. Our test-bench is tai-
to focus on the application specific parts of the system while im- lored to specmc_ processor instances, and it provides components
porting and integrating other pieces of the SOC. One component US€ful in the verification of a complete SOC.

imported in an SOC design is a processor core that controls the op- .])))

eration of the system. The processor core should contain only the The rest of this paper is organized as follows: in section 2 we pro-
necessary functionality for the given application so that it consumes Vide an overview of the Xtensa processor. In section 3 we outline
little power, it occupies a very small area, while still providing high ~ Our verification methodology, discuss the generation of diagnostics,
performance. In order to address those requirements, Tensilica ha@nd examine the co-simulation process. In section 4 we discuss the
designed a highly integrated, high performance, configurable pro- test-bench u_sed in our verification en_wronment. In se_ctlon 5 we
cessor core. The system designer includes into the configured pro-2ddress the issue of coverage analysis and the extensions required
cessor only those features required by the application, and extendd?y configurability. Finally, section 6 summarizes our approach to
the processor’s functionality by defining and incorporating new in- the verification of configurable and designer-extensible processor
structions without directly modifying the processor HDL. cores.

Design Verification, Configurable Processor Cores, Test Genera-
tion, Co-simulation, Coverage Analysis, System-On-Chip

Designing a system, however, is only a small part of the devel-
opment cycle. The major bottleneck in an SOC development is
the verification of the individual components and of the integrated

system as a single entity [4]. Hence, designers of processor coresz- XTENSA: A CONFIGURABLE AND
aimed at SOC designs need a methodology that provides a timely EXTENSIBLE PROCESSOR

Xtensa is a new instruction set architecture (ISA) designed to en-
able configurability, minimize code size, reduce power dissipation,
and maximize performance [5]. Xtensa is defined in two parts. The
base ISA provides a rich set of instructions guaranteed to exist in
all Xtensa implementations. These instructions implement power-

Permission to make digital/hardcopy of all or part of this work for personal or ful operations such as single cycle compare-and-branch and zero

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage, the copyright notice, thetitle of the ove_rhead |00pS. In additiom a Iarge set of configurable _options is
publication and its date appear, and noticeis given that copying is by permission of available to the system designer so that she can customize the pro-
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to cessorto a given application.

lists, requires prior specific permission and/or afee.
DAC 2000, Los Angeles, California
(c) 2000ACM 1-58113-188-7/00/0006..$5.00

Avrchitecture

Architecture

TimerCount = numberOfTimers(); // how many timers

Specification timers = timersAttributes(); I/ read timer attributes
TS —— for each timer{
Formal icroarchitecture Microarchitecture . . .
(mplementation) MVP startTimer(timer); /I start counting
— - /I Enable the interrupt associated with the i-th timer
e e @ Generator B writelnterruptEnableBit(timerinterruptNumber());
Crbaced CESTsENGH emitlnstruction(waiti); /I wait timer to fire

e mode) p— checkTrapNum(timer); Il check the result

! (")G
- exit(;

‘ Regessiors. | Figure 2: A diagnostic configuration example

o Bug Reporting / Curve Coverage Data Base —’@

verification environment, in which the methodology and the tools
are specifically designed for a single implementation of the proces-
sor, is too rigid to address the testing requirements of a customiz-
able design. Using such an environment would have required us
to develop a prohibitively large number of tools each targeted to a
different processor instance. Instead, we have developed an envi-
ronment that is automatically tailored to a particular processor in-
stance and whose components are independently configured based
on the characteristics of the design.

Figure 1: Verification of configurable cores

Xtensa supports configurability in three forms. The simplest form
is the inclusion or omission of architectural features such as inter-
rupts, DSP functionality, and JTAG-based on-chip-debug support.
A second form of configurability is provided through the numerical
scaling of features such as the number and type of interrupts, the
size and associativity of caches, and the number of registers. The,

. e : Second, the Xtensa core has been designed so that it can be easily
last and most complex form of configurability involves designer-

defined instruction extensions. If the features already available in mtegratec_i _|nto an .SOC' Hence, the processor implementation has

. . . - . to be verified within the context of the complete system. Tradi-
the processor do not provide the desired functionality, the deSIgnertional rocessor verification environments cannot be easily merged
can define new application-specific processor states and instruc-imo arﬁ) SOC verification environment. In contrast, the ver)i/ficatign
tions in order to speed up key parts of the application and improve) '

the system performance and efficiency. These new states and in_envwonment for the Xtensa processor has been designed so that

structions are defined using the TIE language [5], and they are in_:(trzr(r:]c;,nvg?knents can be easily integrated into an SOC verification
tegrated into the processor RTL and the software tool-chain by the '

TIE compiler. TIE offers significant advantages to the system de- Figure 1 outlines our verification methodology. The important dif-

signer including ease of expression, seamless integration with thel‘erence with traditional verification environments is that each com-

processor, portability across processor implementations, and a sig- :) . - .
nificant improvement in application performance ponent in the environment is completely configurable and it is auto-

matically customized for the processor instance under testing. We

The configuration of the processor and the generation of both hard_!mplemented the environment using both internally-developed and

ware and software are performed through a web-browser. The de-Industry standard tools such as Verilog and VHDL simulators, for-

signer selects and sizes the required features and provides any TIE[nal verification tools, and verlflcatlon_languages. The_ rest of this
aper addresses the parts of the environment appearing in shaded

based extensions that she wants to integrate into the processor. Th oxes. The following two subsections present in more detail two of

Xtensa processor generator uses the provided information to PrO- 41 o more interesting barts of our approach: the test program gener-
duce customized versions of the processor RTL, the verification _ . 9p ' approach. th Prog 9
ation methodology and the co-simulation environment.

suite, and the system test-bench. In addition, the generator cre-
ates a customized GNU-based software environment that includes

a C/C++ compiler, an assembler, a linker, a debugger, a code pro-3 1 Test program generation

filer, and an instruction set simulator (ISS), all extended with any o yerification methodology utilizes several types of test programs
appllca_tlon specific func'tlonallty. A discussion of Xtensa and its 14 ensure that the design is well exercised. We employ architec-
properties can be found in [5]. ture verification programs (AVPs) to test the execution of each in-
struction in the ISA, and micro-architecture verification programs
3. AFUNCTIONAL VERIFICATION (MVPs) to test features of the Xtensa implementation. In contrast
METHODOLOGY to traditional AVP an_d MVP _diagnostics,_our programs are not con-
stant sequences of instructions used with every new processor de-
Functional verification aims at isolating design and implementation sign and processor instance. Instead, they are Perl scripts that uti-
flaws so that the released processor design is fully functional; that lize the configuration information in order to generate high quality
is, it exhibits the behavior specified by the ISA when it executes a tests tailored to a specific processor instance.
sequence of instructions [6]. However, verification of the Xtensa
processor is complicated by two important factors. The configuration information is used in two ways. First, the script
that generates the diagnostic uses the configuration information to
First, the configurability and designer-defined extensibility provided better target the resulting test to the processor instance under test-
by Xtensa translate into a vast number of distinct processor in- ing. Depending on the processor options selected by the designer,
stances that include designer-defined functionality. A traditional the generator includes into the diagnostic, or omits from it, sections

$install= $debugsisConfigured() && 3.2 Co-simulation (Cosim)
$timers—~areConfigured() && Co-simulation is the process of running the RTL and the ISS sim-
$interrupts~areConfigured() ulators in parallel, and comparing the architecturally visible states
$interrupts = 'no’; at the boundaries defined by instruction retirement and by external
$RandomBusError = 'no’; event occurrences. We have implemented the comparison process
(Cosim) in Vera-VHL [9]. Vera was chosen because it is easy to
Figure 3: Database entry forwaiti diag generation use, it is portable across HDLs and simulators, and it provides the

appropriate abstraction level for developing sophisticated test envi-
ronments. Cosim acts as the synchronizer and the gateway between
ethe RTL simulator and the ISS, and it also includes monitor and
checker tasks that are executed in parallel. A diagnostic program
executing under Cosim fails as soon as a mismatch occurs between
the RTL and the ISS or when an assertion checker detects a failure.
p’he assertion checkers are Vera tasks that continuously monitor a
set of RTL signals or conditions (sequence of events) and terminate
the simulation when they detect a violation of the design rules.

of the code, and it changes the test parameters within the code. Th
example shown in Figure 2 illustrates the configuration of a diag-
nostic based on the availability of the interrupt and timer options.
The diagnostic generator computes the number of timers and their
associated interrupt levels, and creates a loop that checks whethe
each timer generates the correct interrupt level when it goes off.

Second, each script is accompanied by a database entry that in:l_h th ior advant f imulati If-checki
dicates under which conditions the produced diagnostic should be ere are three major advantages of co-simuiation over sefl-checking

installed and used (e.g., for what configurations is it valid, which .diagnOStiCS' First, it allows fin_e-grain checking th_rough_ observabil-
runtime options are required, which runtime options prohibit its ity of the processor state durl_ng the program S|mule_1t|c_)n. In con-
use, etc). An example database entry is shown in Figure 3. Thetrast, a self-checking diagnostic can only compare a limited amount
entry indicates that the corresponding diagnostic requires the pres-Of state to pre-computed resuilts and may not detect cases that cre-

ence of timer counters, interrupts, and of the debug option (which ate erroneous intermediate results while producing a correct final
enables instruction-counting and breakpoint exceptions), and thatreSl:.lt' _Secon(_:id COET"UCt'ngt‘.”‘ compreher_wswe sglfr-lchgcklpg d'?g'
it should only be installed if all three options are available. Fur- nos; Ic |shcon5| tiracy more wae gons_umlnﬁ; ant d?r er do au O-d
thermore, the database entry indicates that the run-time options ofg?a et’ Vg de_reas t'e osim Tec ar;:sm IS WE. Slljl' eC o ran tom "’:E

random external interrupts and bus errors would conflict with the Irected diagnostic generation schemes. Finally, Losim stops the

diagnostic’s operation and, thus, they should not be enabled. s?mu_l_ation at, or near, the cy(_:le W_here the problem appears, which
' ' significantly reduces debugging time and effort. The main advan-

o : . ; tage of self-checking diagnostics over Cosim is their ability to de-

In addition to the directed diagnostics, we also employ random o

program generators to further enhance the testing of the proces-tECt pro_blems that exist in both_ the_RTL and the 1SS mod_els_. How-
ever, this advantage can be minimized by thoroughly verifying the

sor implementation. Random program generators aim at creat-
ing tests that would trigger complex interactions across different ISS.’ model through the. ex_ecut|on of extensive tes_t suites af‘?' appll-
cation code before using it as the golden model in the verification

parts of a processor [1, 7, 10]. We have implemented two config- f imol tati
urable pseudo-random diagnostic generators as part of our verifica-0' & ProCessorimpiementation.

8)ne of the biggest challenges of any co-simulation methodology

by the designer. One of the generators, RTPG, was developed us'S finding the appropriate synchronization points between models
! ' different levels of abstraction as they respond to asynchronous

ing object-oriented Perl, whereas the second one, VSG, is based onat
the Vera Stream Generator provided with the Vera verification lan- events. We have d_eS|_g_ned into Cosim the mechanisms necessary
guage [9]. Both generators employ instruction list templates that to resolve the ambiguities between the RTL and t_he ISS models.

are combined in random sequences to create interesting diagnostieNhen an asynchronous event, such as an external interrupt, occurs,

programs [1, 6]. Furthermore, both generators provide a large num- Cosdlrr; cot:nrﬂgmcates dthte _rlegu;retc:] Stgg |nfoc;rr:at|%r_1 ft:c?m the R-LL
ber of tunable parameters that allow a verification engineer to tar- model (which is more detailed) to the model (which is more ab-

get a configured random program generator towards complex par,[Sstract). In the Xtensa implementation the interrupt latency depends

of the processor implementation (e.g., branch unit, load-store unit, °" the non-architectural state of the RTL and cannot be reproduced

etc), as well as towards complex interactions across the entire pro-by .ISS since it does no_t model_ the Xtensa pipeline. Thus, v_vhe_n
an interrupt occurs, Cosim monitors the exact boundary at which it

Zizsg;c(sb%i.ér?g?.mh instructions interleaved with external |nterruptsis acknowledged by the RTL model and creates a synchrqnization
boundary between the RTL and ISS. Then, it presents the interrupt
_information to ISS and compares the resulting state changes due to
this event. From this point onwards, the comparison proceeds once
t gain at the instruction retirement boundary. The exchange of in-

ormation between the two models reduces their independence and

One of the major weaknesses of generating and using random di
agnostics in isolation is the potential that the programs will re-
peatedly cover the same part of the design space and, thus, was
recious simulation cycles, while other parts of the design remain . i
Eompletely uncoveredy or partially exercri)sed [8]. To avo?d such a could p(_)t_en_tlally mas_k off some bugs. To address this issue, we
situation we use the results of the coverage analysis (discussed ir{""“’e minimized the information transfered from the RTL model
section 5) to steer the generators into new directions, hence improv- 0 ISS, and we have aug_mented th(_e_asynchronous event genera-
ing the testing efficiency and verification completeness. Currently, tor programs with monitoring capabilities. For example, when the

the feedback of the coverage analysis results into the random gen-te.ESt program ISsues multiple interrupts to the procgssor,‘the only
erators is manual. However, in the future we may implement the piece of information conveyed from the RTL to ISS is the instruc-

infrastructure necessary for the random program generators to aulion boundary at which the interrupt needs to be acknowledged; the

tomatically use the coverage analysis results in the generation oftype' number, and priority of the actual mterr_upt is determined in-
diagnostics. dependently by each model. At the same time, the test program

Prqed,:”e Te=diEdh Vera-based Coverage
: i Coverage Target| AVP+MVP | RTPG | VSG | Total
e Memerenc [| fLiCahe K RAM [RO] Exception | 100 40 |40 | 100
;] [DCache || DRAM || DRoMm | Interrupt | 100 75 |79 | 100
Cosm |« " s Interface Bubble 100 88 100 | 100
@ ¥ Module '—I_ Bypass 100 100 | 100 | 100
[checkers |1 MiscEvents | 100 14 85 | 100
@ mode i Xtensa FSM 100
@ L) Functiond [PLI
{| Coverage [1 Monitors ISS Coverage
¢ |_Module |5 Coverage Target] AVP+MVP | RTPG | VSG | Total
G- A TAP Instructions | 100 95 88 100
1| mowie |5]| conrater | (XIS Cache assoc. | N/A NA | N/A | N/A
""""""""" ' Branch align. | 94 48 80 100
. .) Window overflow | 95 14 0 100
Figure 4: A configurable test-bench Hazards 100 15 10 100
keeps track of the interrupts it has issued and verifies that all of HDLScore
them are acknowledged. Coverage Target] AVP+MVP | RTPG| VSG | Total
Expression 95

Another co-simulation challenge involves masking off comparisons

when the processor state is architecturally undefined. For example, Table 1: Coverage ofproclconfiguration

upon reset most of the Xtensa registers are undefined. HDL lan-

guages model this value as “x.” ISS, on the other hand, uses a

sequence of 0's and 1's to represent the corresponding state. Cosinous abstraction levels including RTL, C, and Vera, and they are
resolves this ambiguity by tagging each register with a valid bit and automatically adapted to the configuration under testing.

turning off comparisons until the first change in the register value

occurs either in the ISS or in the RTL model. 5. COVERAGE

4. A TEST-BENCH FOR SOC Our methodo_logy uses avarie_ty of tools and metrics to a(_jdress cov-
VERIEICATION erage from different perspectives. We employ ISS monitors (writ-

ten in Perl) that check the architectural level coverage by tracking
In order to verify a configured Xtensa processor we build a system all the configured instructions and architectural features as spec-
emulation test-bench around the processor (Figure 4). We have de-fied by the ISA. In addition, we use Vera monitors to track the
veloped our test-bench using the Vgyeject mechanism. This RTL state and to evaluate the correct implementation of micro-
mechanism enables individual verification programs (cattexdi- architectural features by determining the coverage of fine-grain cycle-
uleg to be independently developed and compiled, and to be dy- dependent events. Furthermore, we use HDLScore, a program-
namically linked into the verification test-bench. The use of mod- based coverage tool [3], to check how well the RTL model has been
ules provides a flexible and extensible environment for verification, exercised. HDLScore gathers and reports several metrics including
and facilitates the integration of our test-bench into an SOC verifi- block, path, and expression coverage. Finally, we use Vera FSM
cation environment. monitors to measure coverage of the finite state machines (FSM)
in the design by checking the states of each FSM that were visited
Each module is described by separately defining its interface andand the transitions between states that were followed during the ex-
its connection to the simulation. The interface definition specifies ecution of the diagnostics. This approach has the added advantage
which signals will be observed and controlled, it maps those sig- that assertion checkers, introduced as part of the coverage analysis
nals from the RTL domain into the Vera domain, and it determines methodology, can halt the simulation if any illegal state is reached
the flow of data between the RTL and Vera. The connectivity infor- or an illegal transition is followed.
mation, on the other hand, describes the complete HDL hierarchy
path for each signal in a module’s interface. Because our test-benchThe cumulative reports of each coverage tool for three Xtensa con-
is described completely in terms of modules, integrating it into an figurations are presented in Tables 1, 2, and 3. These reports are
SOC verification test-bench is as simple as modifying the mod- representative of data collected on numerous configurations that
ules’ connectivity information to reflect the new design hierarchy; are generated and regressed dédipclrepresents a configuration
it is not necessary to recompile the source code and a runtime Verawhere only part of the available options were includeac?2 rep-
license is not required. resents a maximum configuration where all available options were
included, angroc3represents a randomly generated configuration.
Our test-bench also contains models of components that enable the
simulation of a wide variety of diagnostic programs. The compo- The tables present the results of five different types of Vera cover-
nents modeled in our test-bench include caches, processor RAMsage monitors. The “exception” monitor covers the instructions that
and ROMs, a TAP controller for JTAG, and a bus interface that cause exceptions and the special instructions used to return from
connects the processor to system resources. In addition, we haveexception handler routines. The “interrupt” monitor tracks exter-
implemented interrupt and bus error generators, peripherals, andnal interrupts and their interactions with different processor states.
system memory through PLI calls. All the test-bench components, The “bubble” monitor covers the instruction issue and the hazard
except the processor, are behavioral models implemented at var-detection logic. The “bypass” monitor covers operand bypassing

Vera-based Coverage Vera-based Coverage
Coverage Target| AVP+MVP | RTPG | VSG | Total Coverage Target| AVP+MVP | RTPG | VSG | Total
Exception 100 20 46 100 Exception 100 20 33 100
Interrupt 73 73 83 98 Interrupt 100 71 79 100
Bubble 80 80 90 100 Bubble 88 77 100 | 100
Bypass 100 100 100 | 100 Bypass 100 100 100 | 100
MiscEvents 100 0 70 100 MiscEvents 100 14 42 100
FSM 100 FSM 99
ISS Coverage ISS Coverage
Coverage Target| AVP+MVP | RTPG | VSG | Total Coverage Target| AVP+MVP | RTPG | VSG | Total
Instructions 100 91 85 100 Instructions 100 95 88 100
Cache assoc. | 100 100 100 | 100 Cache assoc. | 100 100 100 | 100
Branch align. | 94 37 82 100 Branch align. | 99 76 96 100
Window overflow | 100 9 0 100 Window overflow | 100 11 0 100
Hazards 100 16 10 100 Hazards 100 15 9 100
HDLScore HDLScore
Coverage Target] AVP+MVP | RTPG| VSG | Total Coverage Target] AVP+MVP | RTPG| VSG | Total
Expression 95 Expression 92
Table 2: Coverage ofproc2 configuration Table 3: Coverage ofproc3configuration

between dependent instructions. Finally, the “miscEvents” monitor by the tool, we augmented the basic set of configurations used in
accounts for corner cases such as write buffer overflow and simul- our daily regressions so that the entire source code is now covered.
taneous assertion of exceptions and interrupts. Second, we have developed a random configuration generator and
we have used it extensively. The generator utilizes knowledge of
The tables also present the results of five different types of ISS the configuration space in order to generate legal random configu-
coverage monitors. The “instructions” monitor checks that all con- rations and to test the design using these configurations. Moreover,
figured instructions have been executed. The “cache associativ-we have created tools that measure the coverage of key configura-
ity” monitor makes sure that all the cache sets have been accessedion parameters across the verification of different configurations.
and that the line replacement algorithm has been verified. The One such tool is an active configuration matrix that enables the vi-
“branch alignment” monitor checks that all permutations of in- sual analysis of the configuration space explored and suggests ways
struction equivalence classes on different address alignments onto improve its coverage.
the target and fall-through paths of branch and jump instructions
have been exercised. The “window overflow” monitor examines Measuring coverage is only useful if the results of the analysis are
the type and number of overflow exceptions produced by different conveyed back to the verification and design teams and they are
instruction classes. Finally, the “hazards” monitor checks for dis- used to improve the verification process. We use a web-based man-
tinct permutations of instructions issued sequentially. agement tool to handle the large amount of data generated by the
analysis process. This tool, which uses a database to store the re-
The results show that our methodology achieves good verification sults of the analyses, provides different views of the coverage of
coverage of the processor implementation. Furthermore, the cov-a single configuration as well as multiple views of the combined
erage achieved for random configurations, an example of which is coverage across configurations. At the same time, it serves as a
shown in Table 3, leads us to believe that our methodology will collaboration framework among hardware designers, verification
result in similar coverage for any processor configuration. Re- engineers, and software developers.
sults from prototypes of a large number of configurations have
further raised our confidence on the effectiveness of our verifica-
tion methodology. We were able to boot and use the VxWorks 6. SUMMARY
real-time operating system on our FPGA-based evaluation boardsWe have presented a verification methodology that was designed
without any problems. In addition, SOC developers who are using to address the increased complexity introduced by configurability.
Xtensa in their systems, have been developing applications usingWe have addressed this issue by extending and enhancing the tra-
those evaluation boards. No bugs have been reported by the systenditional verification methodology to create a configurable environ-
developers. Furthermore, an ASIC implementation of a configura- ment that is not only robust but flexible enough to be employed
tion has been on the field for almost a year without any bugs having in the verification of configurable processor cores. We have pre-
been found. sented a methodology for generating AVP and MVP diagnostics
tailored to the configured processor under verification. We have in-
The tools we mentioned so far provide coverage analysis for eachtroduced two random generator families that produce high quality
configured processor instance. To address the issue of configuradiagnostics targeted to a given processor instance. We have also
tion space coverage we have used a two-fold approach. First, wepresented our modular and extensible test-bench that facilitates the
have developed a coverage tool that profiles the pre-configured RTLeasy migration of our models and tools into an SOC verification
source code and determines which code segments have not beeenvironment. In order to address the questions of how well a single
used under a set of configurations. Based on initial results producedprocessor has been verified and how well the verification space has

been explored, we have outlined our coverage analysis methodol- [3] L. Fournier, A. Koyfman, and M. Levinger. Developing an

ogy which is based on Vera and which employs a large number of
tools and metrics to approach the problem from different perspec-

tives.

The collection of methodologies and tools we have presented com- (4]
prise a powerful environment that not only addresses successfully
the challenges of configurability, but also supports reuse for ease of

integration into an SOC verification methodology.

We are currently working on expanding our coverage analysis frame- 5]
work with even more metrics and tools. Furthermore, we are ex-
tending our verification methodology to address the verification of

Architecture Validation Suite. IRroceedings of the 36th
ACM/IEEE Design Automation Conferengages 189-194,
June 1999.

D. Geist, G. Biran, T. Arons, M. Slavkin, Y. Nustov,

M. Farkas, and K. Holtz. A Methodology For the Verification
of a “System on Chip”. IrProceedings of the 36th
ACM/IEEE Design Automation Conferengages 574-579,
June 1999.

R. Gonzalez. Xtensa: A Configurable and Extensible
ProcessornEEE Micro, 20(2), March/April 2000.

designer-defined extensibility expressed in the TIE language. Fi- [6] A. Hosseini, D. Mavroidis, and P. Konas. Code Generation

nally, we are developing new random diagnostic generators that
provide yet another source of high quality test programs. These
generators include the capability of automatically using the results
of the coverage analysis tools in the construction of the diagnostics.

7. ACKNOWLEDGEMENTS

This paper is based on the creative work of several individuals at
Tensilica. The authors are especially grateful to the entire hard-
ware team for building this verification methodology and for their

insightful comments on drafts of the paper.

8. REFERENCES

[1] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein,
Y. Malka, C. Metzger, M. Molcho, and G. Shurek. Test

Program Generation for Functional Verification of PowerPC

Processors in IBM. IfProceedings of the 32nd ACM/IEEE

Design Automation Conferencgages 279-285, June 1995.
[2] N. Dohm, C. Ramey, D. Brown, S. Hildebrandt, J. Huggins,

M. Quinn, and S. Taylor. Zen and the Art of Alpha

Verification. InProceedings of the International Conference

on Computer DesigrOctober 1998.

and Analysis for the Functional Verification of
Microprocessors. liProceedings of the 33rd ACM/IEEE
Design Automation Conferencpeages 305-310, June 1996.

7] S. Mangelsdorf, R. Gratias, R. Blumberg, and R. Bhatia.

Functional Verification of the HP PA 8000 Processor.
Hewlett-Packard Journak48(4), August 1997.

[8] J. McLeod, N. Azarakhsh, G. Ewing, P. Gingras,

S. Reedstrom, and C. Rowen. Panel: Functional Verification
- Real Users, Real Problems, Real Opportunities. In
Proceedings of the 36th ACM/IEEE Design Automation
Conferencepages 260-261, June 1999.

Synopsys Inc., Mountain View, CalifornigeraT™M
Verification System, User’s Manydl999.

S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt,

J. Huggins, and C. Ramey. Functional Verification of a
Multiple-issue, Out-of-Order, Superscalar Alpha Processor—
The DEC Alpha 21264 Microprocessor. Rroceedings of

the 35th ACM/IEEE Design Automation Conferenuages
638-643, June 1998.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

