
Verification of Configurable Processor Cores

Marinés Puig-Medina
Tensilica, Inc.

3255-6 Scott Boulevard
Santa Clara, CA 95054-3013

mari@tensilica.com

Gülbin Ezer
Tensilica, Inc.

3255-6 Scott Boulevard
Santa Clara, CA 95054-3013

ezer@tensilica.com

Pavlos Konas
Tensilica, Inc.

3255-6 Scott Boulevard
Santa Clara, CA 95054-3013

konas@tensilica.com

ABSTRACT
This paper presents a verification methodology for configurable
processor cores. The simulation-based approach uses directed di-
agnostics and pseudo-random program generators both of which
are tailored to specific processor instances. A configurable and ex-
tensible test-bench serves as the framework for the verification pro-
cess and offers components necessary for the complete SOC verifi-
cation. Coverage analysis provides an evaluation of how well a spe-
cific design has been exercised, of the breadth of the configuration
space explored, and suggests improvements to the process. The
results of the analysis show that our methodology achieves good
verification coverage of the processor implementation.

Keywords
Design Verification, Configurable Processor Cores, Test Genera-
tion, Co-simulation, Coverage Analysis, System-On-Chip

1. INTRODUCTION
The increased complexity of System-On-Chip (SOC) designs, com-
bined with shorter time-to-market windows, have forced designers
to focus on the application specific parts of the system while im-
porting and integrating other pieces of the SOC. One component
imported in an SOC design is a processor core that controls the op-
eration of the system. The processor core should contain only the
necessary functionality for the given application so that it consumes
little power, it occupies a very small area, while still providing high
performance. In order to address those requirements, Tensilica has
designed a highly integrated, high performance, configurable pro-
cessor core. The system designer includes into the configured pro-
cessor only those features required by the application, and extends
the processor’s functionality by defining and incorporating new in-
structions without directly modifying the processor HDL.

Designing a system, however, is only a small part of the devel-
opment cycle. The major bottleneck in an SOC development is
the verification of the individual components and of the integrated
system as a single entity [4]. Hence, designers of processor cores
aimed at SOC designs need a methodology that provides a timely

and comprehensive verification of the processor cores while facili-
tating the system level verification process.

Traditionally, the functional verification of a processor relies on
extensive simulation-based testing of the processor’s RTL model
using a collection of directed and random diagnostic programs [2].
Coverage analysis provides an evaluation of how well the design
has been exercised by those programs and assesses the need for
further testing [10]. Verification of the Tensilica processors, how-
ever, is complicated by their configurability and designer-defined
extensibility. These two features create a vast number of different
processor instances that need to be verified.

We have developed a robust and flexible methodology for the verifi-
cation of configurable and designer-extensible processor cores. Our
simulation-based approach employs fully configurable directed di-
agnostics for the architectural and micro-architectural testing of the
processor. Two configurable random program generators further
enhance the testing. We use coverage analysis to assess how well
a single processor instance has been verified and to evaluate the
breadth of the configuration space explored. Our test-bench is tai-
lored to specific processor instances, and it provides components
useful in the verification of a complete SOC.

The rest of this paper is organized as follows: in section 2 we pro-
vide an overview of the Xtensa processor. In section 3 we outline
our verification methodology, discuss the generation of diagnostics,
and examine the co-simulation process. In section 4 we discuss the
test-bench used in our verification environment. In section 5 we
address the issue of coverage analysis and the extensions required
by configurability. Finally, section 6 summarizes our approach to
the verification of configurable and designer-extensible processor
cores.

2. XTENSA: A CONFIGURABLE AND
EXTENSIBLE PROCESSOR

Xtensa is a new instruction set architecture (ISA) designed to en-
able configurability, minimize code size, reduce power dissipation,
and maximize performance [5]. Xtensa is defined in two parts. The
base ISA provides a rich set of instructions guaranteed to exist in
all Xtensa implementations. These instructions implement power-
ful operations such as single cycle compare-and-branch and zero
overhead loops. In addition, a large set of configurable options is
available to the system designer so that she can customize the pro-
cessor to a given application.

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

Formal
Verification

ISS
(cycle accurate

C-based
reference model)

Co-Simulation
Environment

TESTBENCH

Emulated
System

Monitors

Bug Reporting / Curve Coverage Data Base

1

Microarchitecture
(Implementation)

Specification

Microarchitecture
Verification Plan

Architecture
Verification Plan AVP

MVP

Architecture
Specification

1

RandomsRandm Diag
Generator

2

2

Regressions

RTL

Figure 1: Verification of configurable cores

Xtensa supports configurability in three forms. The simplest form
is the inclusion or omission of architectural features such as inter-
rupts, DSP functionality, and JTAG-based on-chip-debug support.
A second form of configurability is provided through the numerical
scaling of features such as the number and type of interrupts, the
size and associativity of caches, and the number of registers. The
last and most complex form of configurability involves designer-
defined instruction extensions. If the features already available in
the processor do not provide the desired functionality, the designer
can define new application-specific processor states and instruc-
tions in order to speed up key parts of the application and improve
the system performance and efficiency. These new states and in-
structions are defined using the TIE language [5], and they are in-
tegrated into the processor RTL and the software tool-chain by the
TIE compiler. TIE offers significant advantages to the system de-
signer including ease of expression, seamless integration with the
processor, portability across processor implementations, and a sig-
nificant improvement in application performance.

The configuration of the processor and the generation of both hard-
ware and software are performed through a web-browser. The de-
signer selects and sizes the required features and provides any TIE-
based extensions that she wants to integrate into the processor. The
Xtensa processor generator uses the provided information to pro-
duce customized versions of the processor RTL, the verification
suite, and the system test-bench. In addition, the generator cre-
ates a customized GNU-based software environment that includes
a C/C++ compiler, an assembler, a linker, a debugger, a code pro-
filer, and an instruction set simulator (ISS), all extended with any
application specific functionality. A discussion of Xtensa and its
properties can be found in [5].

3. A FUNCTIONAL VERIFICATION
METHODOLOGY

Functional verification aims at isolating design and implementation
flaws so that the released processor design is fully functional; that
is, it exhibits the behavior specified by the ISA when it executes a
sequence of instructions [6]. However, verification of the Xtensa
processor is complicated by two important factors.

First, the configurability and designer-defined extensibility provided
by Xtensa translate into a vast number of distinct processor in-
stances that include designer-defined functionality. A traditional

TimerCount = numberOfTimers(); // how many timers
timers = timersAttributes(); // read timer attributes
for each timerf

startTimer(timer); // start counting
// Enable the interrupt associated with the i-th timer
writeInterruptEnableBit(timer!interruptNumber());
emitInstruction(waiti); // wait timer to fire
checkTrapNum(timer); // check the result

g
exit();

Figure 2: A diagnostic configuration example

verification environment, in which the methodology and the tools
are specifically designed for a single implementation of the proces-
sor, is too rigid to address the testing requirements of a customiz-
able design. Using such an environment would have required us
to develop a prohibitively large number of tools each targeted to a
different processor instance. Instead, we have developed an envi-
ronment that is automatically tailored to a particular processor in-
stance and whose components are independently configured based
on the characteristics of the design.

Second, the Xtensa core has been designed so that it can be easily
integrated into an SOC. Hence, the processor implementation has
to be verified within the context of the complete system. Tradi-
tional processor verification environments cannot be easily merged
into an SOC verification environment. In contrast, the verification
environment for the Xtensa processor has been designed so that
its components can be easily integrated into an SOC verification
framework.

Figure 1 outlines our verification methodology. The important dif-
ference with traditional verification environments is that each com-
ponent in the environment is completely configurable and it is auto-
matically customized for the processor instance under testing. We
implemented the environment using both internally-developed and
industry standard tools such as Verilog and VHDL simulators, for-
mal verification tools, and verification languages. The rest of this
paper addresses the parts of the environment appearing in shaded
boxes. The following two subsections present in more detail two of
the more interesting parts of our approach: the test program gener-
ation methodology and the co-simulation environment.

3.1 Test program generation
Our verification methodology utilizes several types of test programs
to ensure that the design is well exercised. We employ architec-
ture verification programs (AVPs) to test the execution of each in-
struction in the ISA, and micro-architecture verification programs
(MVPs) to test features of the Xtensa implementation. In contrast
to traditional AVP and MVP diagnostics, our programs are not con-
stant sequences of instructions used with every new processor de-
sign and processor instance. Instead, they are Perl scripts that uti-
lize the configuration information in order to generate high quality
tests tailored to a specific processor instance.

The configuration information is used in two ways. First, the script
that generates the diagnostic uses the configuration information to
better target the resulting test to the processor instance under test-
ing. Depending on the processor options selected by the designer,
the generator includes into the diagnostic, or omits from it, sections

$install = $debug!isConfigured() &&
$timers!areConfigured() &&
$interrupts!areConfigured();

$Interrupts = ’no’;
$RandomBusError = ’no’;

Figure 3: Database entry forwaiti diag generation

of the code, and it changes the test parameters within the code. The
example shown in Figure 2 illustrates the configuration of a diag-
nostic based on the availability of the interrupt and timer options.
The diagnostic generator computes the number of timers and their
associated interrupt levels, and creates a loop that checks whether
each timer generates the correct interrupt level when it goes off.

Second, each script is accompanied by a database entry that in-
dicates under which conditions the produced diagnostic should be
installed and used (e.g., for what configurations is it valid, which
runtime options are required, which runtime options prohibit its
use, etc). An example database entry is shown in Figure 3. The
entry indicates that the corresponding diagnostic requires the pres-
ence of timer counters, interrupts, and of the debug option (which
enables instruction-counting and breakpoint exceptions), and that
it should only be installed if all three options are available. Fur-
thermore, the database entry indicates that the run-time options of
random external interrupts and bus errors would conflict with the
diagnostic’s operation and, thus, they should not be enabled.

In addition to the directed diagnostics, we also employ random
program generators to further enhance the testing of the proces-
sor implementation. Random program generators aim at creat-
ing tests that would trigger complex interactions across different
parts of a processor [1, 7, 10]. We have implemented two config-
urable pseudo-random diagnostic generators as part of our verifica-
tion methodology. The generators are automatically customized for
each processor instance based on the configuration options selected
by the designer. One of the generators, RTPG, was developed us-
ing object-oriented Perl, whereas the second one, VSG, is based on
the Vera Stream Generator provided with the Vera verification lan-
guage [9]. Both generators employ instruction list templates that
are combined in random sequences to create interesting diagnostic
programs [1, 6]. Furthermore, both generators provide a large num-
ber of tunable parameters that allow a verification engineer to tar-
get a configured random program generator towards complex parts
of the processor implementation (e.g., branch unit, load-store unit,
etc), as well as towards complex interactions across the entire pro-
cessor (e.g., branch instructions interleaved with external interrupts
and exceptions).

One of the major weaknesses of generating and using random di-
agnostics in isolation is the potential that the programs will re-
peatedly cover the same part of the design space and, thus, waste
precious simulation cycles, while other parts of the design remain
completely uncovered or partially exercised [8]. To avoid such a
situation we use the results of the coverage analysis (discussed in
section 5) to steer the generators into new directions, hence improv-
ing the testing efficiency and verification completeness. Currently,
the feedback of the coverage analysis results into the random gen-
erators is manual. However, in the future we may implement the
infrastructure necessary for the random program generators to au-
tomatically use the coverage analysis results in the generation of
diagnostics.

3.2 Co-simulation (Cosim)
Co-simulation is the process of running the RTL and the ISS sim-
ulators in parallel, and comparing the architecturally visible states
at the boundaries defined by instruction retirement and by external
event occurrences. We have implemented the comparison process
(Cosim) in Vera-VHL [9]. Vera was chosen because it is easy to
use, it is portable across HDLs and simulators, and it provides the
appropriate abstraction level for developing sophisticated test envi-
ronments. Cosim acts as the synchronizer and the gateway between
the RTL simulator and the ISS, and it also includes monitor and
checker tasks that are executed in parallel. A diagnostic program
executing under Cosim fails as soon as a mismatch occurs between
the RTL and the ISS or when an assertion checker detects a failure.
The assertion checkers are Vera tasks that continuously monitor a
set of RTL signals or conditions (sequence of events) and terminate
the simulation when they detect a violation of the design rules.

There are three major advantages of co-simulation over self-checking
diagnostics. First, it allows fine-grain checking through observabil-
ity of the processor state during the program simulation. In con-
trast, a self-checking diagnostic can only compare a limited amount
of state to pre-computed results and may not detect cases that cre-
ate erroneous intermediate results while producing a correct final
result. Second, constructing a comprehensive self-checking diag-
nostic is considerably more time consuming and harder to auto-
mate, whereas the Cosim mechanism is well suited to random and
directed diagnostic generation schemes. Finally, Cosim stops the
simulation at, or near, the cycle where the problem appears, which
significantly reduces debugging time and effort. The main advan-
tage of self-checking diagnostics over Cosim is their ability to de-
tect problems that exist in both the RTL and the ISS models. How-
ever, this advantage can be minimized by thoroughly verifying the
ISS model through the execution of extensive test suites and appli-
cation code before using it as the golden model in the verification
of a processor implementation.

One of the biggest challenges of any co-simulation methodology
is finding the appropriate synchronization points between models
at different levels of abstraction as they respond to asynchronous
events. We have designed into Cosim the mechanisms necessary
to resolve the ambiguities between the RTL and the ISS models.
When an asynchronous event, such as an external interrupt, occurs,
Cosim communicates the required state information from the RTL
model (which is more detailed) to the ISS model (which is more ab-
stract). In the Xtensa implementation the interrupt latency depends
on the non-architectural state of the RTL and cannot be reproduced
by ISS since it does not model the Xtensa pipeline. Thus, when
an interrupt occurs, Cosim monitors the exact boundary at which it
is acknowledged by the RTL model and creates a synchronization
boundary between the RTL and ISS. Then, it presents the interrupt
information to ISS and compares the resulting state changes due to
this event. From this point onwards, the comparison proceeds once
again at the instruction retirement boundary. The exchange of in-
formation between the two models reduces their independence and
could potentially mask off some bugs. To address this issue, we
have minimized the information transfered from the RTL model
to ISS, and we have augmented the asynchronous event genera-
tor programs with monitoring capabilities. For example, when the
test program issues multiple interrupts to the processor, the only
piece of information conveyed from the RTL to ISS is the instruc-
tion boundary at which the interrupt needs to be acknowledged; the
type, number, and priority of the actual interrupt is determined in-
dependently by each model. At the same time, the test program

Mem check
Module

Cosim
Module

Checkers
Module

JTAG
Module

Functional
Coverage
Module

Project File

1

2

3

5

4

Bus Interface

TAP
Controller

CLKGEN

Monitors

1 2 3 54

PLI

Test-bench

Xtensa

ICache IRAM IROM

DCache DRAM DROM

Figure 4: A configurable test-bench

keeps track of the interrupts it has issued and verifies that all of
them are acknowledged.

Another co-simulation challenge involves masking off comparisons
when the processor state is architecturally undefined. For example,
upon reset most of the Xtensa registers are undefined. HDL lan-
guages model this value as “x.” ISS, on the other hand, uses a
sequence of 0’s and 1’s to represent the corresponding state. Cosim
resolves this ambiguity by tagging each register with a valid bit and
turning off comparisons until the first change in the register value
occurs either in the ISS or in the RTL model.

4. A TEST-BENCH FOR SOC
VERIFICATION

In order to verify a configured Xtensa processor we build a system
emulation test-bench around the processor (Figure 4). We have de-
veloped our test-bench using the Veraproject mechanism. This
mechanism enables individual verification programs (calledmod-
ules) to be independently developed and compiled, and to be dy-
namically linked into the verification test-bench. The use of mod-
ules provides a flexible and extensible environment for verification,
and facilitates the integration of our test-bench into an SOC verifi-
cation environment.

Each module is described by separately defining its interface and
its connection to the simulation. The interface definition specifies
which signals will be observed and controlled, it maps those sig-
nals from the RTL domain into the Vera domain, and it determines
the flow of data between the RTL and Vera. The connectivity infor-
mation, on the other hand, describes the complete HDL hierarchy
path for each signal in a module’s interface. Because our test-bench
is described completely in terms of modules, integrating it into an
SOC verification test-bench is as simple as modifying the mod-
ules’ connectivity information to reflect the new design hierarchy;
it is not necessary to recompile the source code and a runtime Vera
license is not required.

Our test-bench also contains models of components that enable the
simulation of a wide variety of diagnostic programs. The compo-
nents modeled in our test-bench include caches, processor RAMs
and ROMs, a TAP controller for JTAG, and a bus interface that
connects the processor to system resources. In addition, we have
implemented interrupt and bus error generators, peripherals, and
system memory through PLI calls. All the test-bench components,
except the processor, are behavioral models implemented at var-

Vera-based Coverage
Coverage Target AVP+MVP RTPG VSG Total

Exception 100 40 40 100
Interrupt 100 75 79 100
Bubble 100 88 100 100
Bypass 100 100 100 100

MiscEvents 100 14 85 100
FSM 100

ISS Coverage
Coverage Target AVP+MVP RTPG VSG Total

Instructions 100 95 88 100
Cache assoc. N/A N/A N/A N/A
Branch align. 94 48 80 100

Window overflow 95 14 0 100
Hazards 100 15 10 100

HDLScore
Coverage Target AVP+MVP RTPG VSG Total

Expression 95

Table 1: Coverage ofproc1configuration

ious abstraction levels including RTL, C, and Vera, and they are
automatically adapted to the configuration under testing.

5. COVERAGE
Our methodology uses a variety of tools and metrics to address cov-
erage from different perspectives. We employ ISS monitors (writ-
ten in Perl) that check the architectural level coverage by tracking
all the configured instructions and architectural features as spec-
ified by the ISA. In addition, we use Vera monitors to track the
RTL state and to evaluate the correct implementation of micro-
architectural features by determining the coverage of fine-grain cycle-
dependent events. Furthermore, we use HDLScore, a program-
based coverage tool [3], to check how well the RTL model has been
exercised. HDLScore gathers and reports several metrics including
block, path, and expression coverage. Finally, we use Vera FSM
monitors to measure coverage of the finite state machines (FSM)
in the design by checking the states of each FSM that were visited
and the transitions between states that were followed during the ex-
ecution of the diagnostics. This approach has the added advantage
that assertion checkers, introduced as part of the coverage analysis
methodology, can halt the simulation if any illegal state is reached
or an illegal transition is followed.

The cumulative reports of each coverage tool for three Xtensa con-
figurations are presented in Tables 1, 2, and 3. These reports are
representative of data collected on numerous configurations that
are generated and regressed daily.Proc1represents a configuration
where only part of the available options were included,proc2 rep-
resents a maximum configuration where all available options were
included, andproc3represents a randomly generated configuration.

The tables present the results of five different types of Vera cover-
age monitors. The “exception” monitor covers the instructions that
cause exceptions and the special instructions used to return from
exception handler routines. The “interrupt” monitor tracks exter-
nal interrupts and their interactions with different processor states.
The “bubble” monitor covers the instruction issue and the hazard
detection logic. The “bypass” monitor covers operand bypassing

Vera-based Coverage
Coverage Target AVP+MVP RTPG VSG Total

Exception 100 20 46 100
Interrupt 73 73 83 98
Bubble 80 80 90 100
Bypass 100 100 100 100

MiscEvents 100 0 70 100
FSM 100

ISS Coverage
Coverage Target AVP+MVP RTPG VSG Total

Instructions 100 91 85 100
Cache assoc. 100 100 100 100
Branch align. 94 37 82 100

Window overflow 100 9 0 100
Hazards 100 16 10 100

HDLScore
Coverage Target AVP+MVP RTPG VSG Total

Expression 95

Table 2: Coverage ofproc2configuration

between dependent instructions. Finally, the “miscEvents” monitor
accounts for corner cases such as write buffer overflow and simul-
taneous assertion of exceptions and interrupts.

The tables also present the results of five different types of ISS
coverage monitors. The “instructions” monitor checks that all con-
figured instructions have been executed. The “cache associativ-
ity” monitor makes sure that all the cache sets have been accessed
and that the line replacement algorithm has been verified. The
“branch alignment” monitor checks that all permutations of in-
struction equivalence classes on different address alignments on
the target and fall-through paths of branch and jump instructions
have been exercised. The “window overflow” monitor examines
the type and number of overflow exceptions produced by different
instruction classes. Finally, the “hazards” monitor checks for dis-
tinct permutations of instructions issued sequentially.

The results show that our methodology achieves good verification
coverage of the processor implementation. Furthermore, the cov-
erage achieved for random configurations, an example of which is
shown in Table 3, leads us to believe that our methodology will
result in similar coverage for any processor configuration. Re-
sults from prototypes of a large number of configurations have
further raised our confidence on the effectiveness of our verifica-
tion methodology. We were able to boot and use the VxWorks
real-time operating system on our FPGA-based evaluation boards
without any problems. In addition, SOC developers who are using
Xtensa in their systems, have been developing applications using
those evaluation boards. No bugs have been reported by the system
developers. Furthermore, an ASIC implementation of a configura-
tion has been on the field for almost a year without any bugs having
been found.

The tools we mentioned so far provide coverage analysis for each
configured processor instance. To address the issue of configura-
tion space coverage we have used a two-fold approach. First, we
have developed a coverage tool that profiles the pre-configured RTL
source code and determines which code segments have not been
used under a set of configurations. Based on initial results produced

Vera-based Coverage
Coverage Target AVP+MVP RTPG VSG Total

Exception 100 20 33 100
Interrupt 100 71 79 100
Bubble 88 77 100 100
Bypass 100 100 100 100

MiscEvents 100 14 42 100
FSM 99

ISS Coverage
Coverage Target AVP+MVP RTPG VSG Total

Instructions 100 95 88 100
Cache assoc. 100 100 100 100
Branch align. 99 76 96 100

Window overflow 100 11 0 100
Hazards 100 15 9 100

HDLScore
Coverage Target AVP+MVP RTPG VSG Total

Expression 92

Table 3: Coverage ofproc3configuration

by the tool, we augmented the basic set of configurations used in
our daily regressions so that the entire source code is now covered.
Second, we have developed a random configuration generator and
we have used it extensively. The generator utilizes knowledge of
the configuration space in order to generate legal random configu-
rations and to test the design using these configurations. Moreover,
we have created tools that measure the coverage of key configura-
tion parameters across the verification of different configurations.
One such tool is an active configuration matrix that enables the vi-
sual analysis of the configuration space explored and suggests ways
to improve its coverage.

Measuring coverage is only useful if the results of the analysis are
conveyed back to the verification and design teams and they are
used to improve the verification process. We use a web-based man-
agement tool to handle the large amount of data generated by the
analysis process. This tool, which uses a database to store the re-
sults of the analyses, provides different views of the coverage of
a single configuration as well as multiple views of the combined
coverage across configurations. At the same time, it serves as a
collaboration framework among hardware designers, verification
engineers, and software developers.

6. SUMMARY
We have presented a verification methodology that was designed
to address the increased complexity introduced by configurability.
We have addressed this issue by extending and enhancing the tra-
ditional verification methodology to create a configurable environ-
ment that is not only robust but flexible enough to be employed
in the verification of configurable processor cores. We have pre-
sented a methodology for generating AVP and MVP diagnostics
tailored to the configured processor under verification. We have in-
troduced two random generator families that produce high quality
diagnostics targeted to a given processor instance. We have also
presented our modular and extensible test-bench that facilitates the
easy migration of our models and tools into an SOC verification
environment. In order to address the questions of how well a single
processor has been verified and how well the verification space has

been explored, we have outlined our coverage analysis methodol-
ogy which is based on Vera and which employs a large number of
tools and metrics to approach the problem from different perspec-
tives.

The collection of methodologies and tools we have presented com-
prise a powerful environment that not only addresses successfully
the challenges of configurability, but also supports reuse for ease of
integration into an SOC verification methodology.

We are currently working on expanding our coverage analysis frame-
work with even more metrics and tools. Furthermore, we are ex-
tending our verification methodology to address the verification of
designer-defined extensibility expressed in the TIE language. Fi-
nally, we are developing new random diagnostic generators that
provide yet another source of high quality test programs. These
generators include the capability of automatically using the results
of the coverage analysis tools in the construction of the diagnostics.

7. ACKNOWLEDGEMENTS
This paper is based on the creative work of several individuals at
Tensilica. The authors are especially grateful to the entire hard-
ware team for building this verification methodology and for their
insightful comments on drafts of the paper.

8. REFERENCES
[1] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein,

Y. Malka, C. Metzger, M. Molcho, and G. Shurek. Test
Program Generation for Functional Verification of PowerPC
Processors in IBM. InProceedings of the 32nd ACM/IEEE
Design Automation Conference, pages 279–285, June 1995.

[2] N. Dohm, C. Ramey, D. Brown, S. Hildebrandt, J. Huggins,
M. Quinn, and S. Taylor. Zen and the Art of Alpha
Verification. InProceedings of the International Conference
on Computer Design, October 1998.

[3] L. Fournier, A. Koyfman, and M. Levinger. Developing an
Architecture Validation Suite. InProceedings of the 36th
ACM/IEEE Design Automation Conference, pages 189–194,
June 1999.

[4] D. Geist, G. Biran, T. Arons, M. Slavkin, Y. Nustov,
M. Farkas, and K. Holtz. A Methodology For the Verification
of a “System on Chip”. InProceedings of the 36th
ACM/IEEE Design Automation Conference, pages 574–579,
June 1999.

[5] R. Gonzalez. Xtensa: A Configurable and Extensible
Processor.IEEE Micro, 20(2), March/April 2000.

[6] A. Hosseini, D. Mavroidis, and P. Konas. Code Generation
and Analysis for the Functional Verification of
Microprocessors. InProceedings of the 33rd ACM/IEEE
Design Automation Conference, pages 305–310, June 1996.

[7] S. Mangelsdorf, R. Gratias, R. Blumberg, and R. Bhatia.
Functional Verification of the HP PA 8000 Processor.
Hewlett-Packard Journal, 48(4), August 1997.

[8] J. McLeod, N. Azarakhsh, G. Ewing, P. Gingras,
S. Reedstrom, and C. Rowen. Panel: Functional Verification
- Real Users, Real Problems, Real Opportunities. In
Proceedings of the 36th ACM/IEEE Design Automation
Conference, pages 260–261, June 1999.

[9] Synopsys Inc., Mountain View, California.VeraTM
Verification System, User’s Manual, 1999.

[10] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt,
J. Huggins, and C. Ramey. Functional Verification of a
Multiple-issue, Out-of-Order, Superscalar Alpha Processor–
The DEC Alpha 21264 Microprocessor. InProceedings of
the 35th ACM/IEEE Design Automation Conference, pages
638–643, June 1998.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

