
A Novel Codesign Methodology for Real-Time Embedded
COTS Multiprocessor-Based Signal Processing Systems

Randall S. Janka
Georgia Tech Research Institute
Georgia Institute of Technology
Atlanta, GA 30332-0856 USA

1-770-528-3165

randall.janka@gtri.gatech.edu

Linda M. Wills
School of Electrical & Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0250 USA

1-404-894-4565

linda.wills@ee.gatech.edu

ABSTRACT
The process of designing large real-time embedded signal
processing systems is plagued by a lack of coherent specification
and design methodology (SDM). Powerful frameworks exist for
each individual phase of this canonical design process, but no
single methodology exists which enables these frameworks to
work together coherently, i.e., allowing the output of a framework
used in one phase to be consumed by a different framework used
in the next phase. A specification and design methodology (SDM)
known as “Search-Explore-Refine” (SER) was developed by
Gajski, Vahid, et al. for an application and technology domain
that is different from that of real-time embedded signal processing
systems implemented with commercial-off-the-shelf
multiprocessing hardware and software. However, due to
similarities between the fundamental design objects of these two
domains, a new SDM was developed and prototyped based on
SER known as the MAGIC SDM. The “tools and rules” of the
MAGIC SDM are presented. The MAGIC SDM achieves a high
degree of model continuity based largely on its use of standards-
based computation (VSIPL) and communication (MPI)
middleware.

Keywords
Specification and design methodology, COTS, embedded,
multiprocessing, middleware, MAGIC, VSIPL, MPI, MPI/RT.

1. INTRODUCTION
The process of designing large real-time embedded signal
processing systems is plagued by a lack of coherent specification
and design methodology (SDM). A canonical waterfall design
process is commonly used to specify, design, and implement these
systems with commercial-off-the-shelf (COTS) multiprocessing
(MP) hardware and software. Powerful frameworks exist for each
individual phase of this canonical design process, but no single
methodology exists which enables these frameworks to work
together coherently, i.e., allowing the output of a framework used
in one phase to be consumed by a different framework used in the
next phase.

This lack of coherence usually leads to design errors that are not
caught until well into the implementation phase. Since the cost of
redesign increases as the design moves through these three stages,
redesign is the most expensive if not performed until the
implementation phase, thus making the current incoherent
methodology costly. This paper shows how designs targeting
COTS MP technologies can be improved by providing a coherent
coupling between these frameworks, a quality known as “model
continuity.”

2. SPECIFICATION & DESIGN OF COTS
MULTIPROCESSING-BASED SYSTEMS

2.1 COTS MP Technology
In recent years both market forces and technological requirements
have been driving the design process to limit hardware options to
COTS hardware. In the radar signal processing domain, this
means using a PCI or VME chassis containing multiprocessor
boards with high-speed interprocessor bandwidth and C language
support. Despite limiting the design space to a finite number of
hardware options, the design process has still been challenging,
given compressing development cycles that increase software
development productivity requirements, implicitly requiring that
software be portable, so that previous design and development
efforts can be reused. This productivity and portability must be
achievable without an appreciable loss of system performance.

2.2 CASE Frameworks
A partial response to this design challenge of real-time
multiprocessor digital signal processing systems has been the
development of different frameworks of tools, such as GEDAE1,
RIPPEN2, and PGM ACT3, to provide computer-aided system
engineering (CASE) support for system implementation. In
particular, these frameworks offer code generation that reduces
the complexity of system configuration and communication
coding, a quality known as “complexity control.” Yet no one
single framework or one single language can cover the entire
design process. Powerful implementation tools can generate
deployable application code, but are weak in capturing

1 GEDAE–Graphical Entry, Distributed Application Environment

from Lockheed Martin ATL.
2 RIPPEN–Real-time Interactive Programming and Processing

Environment from ORINCON.
3 PGM ACT–Autocoding Toolset (ACT) using the Processing

Graph Method (PGM).

requirements and are difficult to use in exploring architecture
design alternatives. Some languages, such as MATLAB, are
powerful in capturing computational requirements, but do not
readily lend themselves to being used for deployed
implementations.

2.3 Ideal COTS MP SDM Flow
Ideally, the information flow for specification and design would
occur as shown in Figure 1. In this ideal SDM, the executable
specification model is passed into the design analysis phase, and
the design model in the form of an executable design specification
is then passed into the implementation phase, where the physical
implementation occurs.

H
ar

dw
ar

e
co

nf
ig

ur
at

io
n

S
of

tw
ar

e
co

nf
ig

ur
at

io
n

S
of

tw
ar

e-
to

-h
ar

dw
ar

e
m

ap

A
rc

h
ite

ct
u
ra

l
In

fo
rm

at
io

n

Executable Requirements Specification

Modes
Environment
Equations

Algorithms
Data

T
e
st

 v
e
ct

o
rs

C
o
n
st

a
n
ts

Executable Design Specification

Executable images
Run-time scripts

Configuration description

COTS MP Signal Processor

Data rates
Non-performance
 constraints
SWAP

C
o
m

p
u
ta

tio
n
 s

o
ftw

a
re

C
o
m

m
u
n
ic

a
tio

n
 s

o
ftw

a
re

! Design architectures
" Satisfy computational

requirements
" Meet non-performance

constraints
! Find best architecture for

each candidate technology
! Make design decisions

" Technology
" Architecture

Non-
performance
constraints
checking

D
es

ig
n

 A
n

al
ys

is

Figure 1. Basic flow of information needed to support model
continuity.

2.4 Current COTS MP SDM Flow
Unfortunately, the current state of practice in this domain does not
support model continuity, which is illustrated in Figure 2. While
the different frameworks described in §2.2 have evolved to
support the design and rapid system protyping of signal
processing systems using COTS MP technology, they are
sophisticated software development environments (SDEs)
providing a powerful framework for the codesign of a COTS MP-
based system. Codesign in this application and technology domain
consists of the following:

• Board-level hardware description capture

• Software process and function description capture

• Software-to-hardware mapping

• Generation of code, makefiles, and run-time scripts

Consequently, despite having powerful frameworks to support
codesign, specification and design still suffers from model
discontinuity as illustrated in Figure 2.

CASE Framework
or

Software Development Environment

Executable images
Run-time scripts

Configuration description

COTS MP Signal Processor

Constants

Application Software
(Computation & Communication)

Configuration
(Software-to-Hardware Mapping)

Design Specification
(Natural Language)

Requirements Specification

MATLAB
Psuedocode

Natural
Language

Tables

Implementation

Figure 2. How model continuity is currently lacking in current
COTS MP SDM.

3. THE SER SDM OF GAJSKI, VAHID et al.
Gajski, Vahid, et al. developed a hardware/software codesign
methodology appropriate to their application domain, along with
associated system design language with supporting tools [1, 2],
which they called “Search-Explore-Refine” (SER). Their
methodology is similar to describe-and-synthesize, except that the
requirements specification is captured in an executable language
called SpecCharts, which they developed. Their methodology
raised the level of abstraction in an attempt to achieve higher
productivity. The SER application domain (small-scale reactive
and embedded digital systems with at most a single processor)
differs from ours (streaming input data transformational radar
signal processing applications using parallel and distributed
processing). But, the design objects we use are logical extensions
of those considered by Gajski, Vahid, et al. See Table 1 (after
Figure 1 in [1]) for how we have extended this table to include the
COTS MP board-level hardware (in italics) used in our domain.
The SER methdology is shown in Figure 3 (after Figure 2 in [1])
along with how we’ve extended it to our domain (“Board-level
SER”).

Table 1. Extending SER design representation and abstraction
levels to our ADoI (Board Level).

Levels
Behavioral

Forms

Structural

Components

Physical

Objects

Processor
Executable

specification(s),
programs.

Processors,
controllers,

memories, ASICs.

PCB’s, MCM’s.

Board
Executable

specification(s),
programs.

Components,
connections,

ports

SBC’ s,
MP boards,
I/O boards,
high-speed

interconnections

Levels of
Abstraction

Design
Size

Methodology

Behavioral
& Logic

Synthesis

Physical
Design

System
Design

Processor-level
Specification

Transistor-level
Specification

Block-level
Behavioral
Specification

RTL/Gate-level
Specification

Inputs:
Outputs:
Function:
Computations::

HDL

HDL

HDL

ALU

Manual

Autogenerated

Executable
Specification

Layout

Synthesized
Netlist

estimation
partitioning
refinement

HDL
Description

Specify, Explore,
& Refine

(SER)

> 300k gates

estimation
 of process
 token
 delays
partitioning
 software-
 to-hardware
 mapping
refinement
 remap
 algorithms
 and
 resimulate
 network

Executable
Specification

Generated
Executables

& Scripts

HW-SW
Mapping

Processor-Level
Description

"Board-level
SER"

Multiple Boards

Figure 3. Extending SER to the board-level domain of COTS
MP-based systems.

The specify phase involves the capture of the system requirements
using an executable language. This language should be able to
accurately and completely capture the requirements, be easy to
understand, and be able to interface to CAD tools in order to
support modeling and analysis.

The explore phase consists of different mappings of the system
functionality to different hardware and software components in an
attempt to best satisfy design constraints.

The refine phase translates the explore phase decisions into
updates in the system specification. Refinement migrates the
design from a pure functional spec toward a structural
implementation. E.g., behaviors must be added to maintain correct
functionality, while defined behaviors may need to be distributed
over multiple processors. This requires variables such as data
vectors and matrices to be mapped into shared memory buffers
and communication protocols to be established, such as defining
and assigning semaphores for process synchronization.

4. THE MAGIC SDM
The new SDM that we have developed is the MAGIC SDM,
which stands for the “methodology applying generation,

integration, and continuity.” [3] The origin of this moniker will
become clear as we discuss how the MAGIC SDM is used.

Any SDM will start with some human language text requirements
specification document. The goal of SDMs is to go from this
inexact document to a design and implementation in a manner that
minimizes propagation of specification and/or design errors. We
do this with an integration of tools guided by sound rules to
capture the requirements in a format to make sure there are no
conflicts or absence of requirements, then proceed on through a
vendor-independent design phase. Without first committing to a
vendor, alternate architectures can be considered and an optimum
one decided upon. We then take code generated from
specification and software-to-hardware mapping determined from
design to provide inputs to an implementation framework.

The starting point for specification and design in our ADoI is the
set of computation requirements. These are algorithms and data
“specified” by MATLAB code, including different scenarios of
inputs and their associated outputs. The MATLAB code serves well
as an input to a framework that can use it to create an executable
specification. The scenarios will provide valuable inputs for the
generation of test data to be used downstream in the
implementation phase. Communication and control requirements
typically refer to data I/O rates as well as the signal processor
modes and the control signals that determine the processor’s mode
(state). Processors in our ADoI have few states; often there are
two: one state for initialization and setup (“outer loop”) and one
state for steady state data transformation (“inner loop”). These
modes must be defined and described, preferably in an executable
model. Constraints include SWAP, latencies, reliability, and other
“illities,” which are usually tabulated. It would be useful to have
these data encapsulated in a fashion that allows us to include their
verification during the specification and design iterations.
Recalling how we are extending the SER SDM to our domain
with a “Board-level SER” (cf. Figure 3), we now redraw it as our
new SDM, as shown in a simplified diagram of the specification
and design flow in Figure 4.

A specificiation and design methodology is comprised of “tools
and rules,” so we now lay out the frameworks (§4.1) and
middleware (§4.2) used to implement the MAGIC SDM, and
then delineate the rules (§4.3).

4.1 MAGIC SDM Tools
We have chosen the following frameworks to integrate into the
MAGIC SDM. We did not choose them because they are perfect;
almost all frameworks targeting complex systems are more
accurately described not as “frameworks” but as “frameworks-in-
progress.” We have chosen the frameworks described in this
section because they are well-matched to our application and
technology domain, as well as stable commercial products.

For requirements capture and modeling we have chosen the DSP
Workstation (DSPW) from The MathWorks as well as Excel and
Excel Link (also from The MathWorks). For design exploration
we chose eArchitect from Viewlogic, which provides a
performance modeling framework with the necessary COTS MP
component models. Characterization and features driving the
selection of The MathWorks and Viewlogic frameworks are given
in the following paragraphs where we discuss these frameworks.

Optimum architecture for
each candidate technology

Requirements Specification Document

Executable Requirements Specification

 Explore Design Alternatives:
! Explore potential architectures for candidate

technology #n.
! Make sure non-performance constraints are satisfied.
! Update Executable Requirements Specification as

necessary.
! Find optimum architecture for nth candidate technology

Reiterate for
other

candidate
technologies
n = 1, 2, ..., N

Design Specification

Implementation Specification

C
o
m

p
u
ta

tio
n
a
l M

id
d
le

w
a
re

 a
n
d
 T

e
st

 V
e
ct

o
rs

Software process description
Hardware configuration
Hardware→Software Map

 Make design decision:
! Select a technology for implementation.
! Base selection on some specific optimization criterion.

Optimum candidate
technology and architecture

N

Figure 4. Simplified view of new MAGIC SDM.

4.1.1 DSP Workstation
MATLAB is the de facto lingua franca of algorithm developers,
including radar signal processing system analysts. Simulink is a
system modeling framework strongly tied to MATLAB, allowing
MATLAB expressions to be used explicitly in Simulink blocks.
Supplemented by the DSP Blockset, Simulink has become a
viable rapid prototyping environment for DSP applications. The
Real-Time Workshop (RTW) is the C code generation facility
complementing Simulink. It is especially useful because The
MathWorks is moving towards adding VSIPL computational
middleware support to RTW, an effort we are supporting.

4.1.2 Excel and Matlab Excel Link
Excel provides the framework needed for requirements tabulation
and analysis. The Excel spreadsheet is a commodity productivity
application familiar to all, and in the same way that many analysis
and design frameworks provide support for MATLAB, tabular data-
oriented frameworks provide support for Excel. Excel Link is a
facility rather than a framework. It is a channel to allow Excel to
copy data into MATLAB and execute on it in MATLAB while
remaining in Excel. Many requirements are easily “captured” in a
spreadsheet, and depending on the sophistication of the
computation required to iterate between requirements modeling
and design analysis, Excel or MATLAB may be required. Excel
Link allows the specifier to remain in a single framework.

4.1.3 eArchitect
Performance modeling was chosen for design exploration and
analysis since it supports architectural trade-off analysis without
prematurely committing to a given vendor’s hardware and
software. The COTS performance modeling framework that is
best matched to our domain will provide support for the
technologies most likely to be used for implementing the signal

processor. There are few embedded multiprocessing performance
modeling frameworks available commercially. We are only aware
of one that supports VME and at least two of the COTS MP
interconnection technologies (RACEway and Myrinet), and that is
eArchitect from Viewlogic.

4.2 Model Continuity via Middleware
Model continuity is achieved in large part through the use of
middleware for computation and communication. Open standards-
based middleware supports computation and communication
software portability, which means that middleware written for one
vendor’s hardware should run on another vendor’s platform.
Consequently, middleware code that constitutes the inner-loop
software implementation can be used for different vendors’
platforms for design analysis using performance modeling.
Critical to making the use of middleware a strong thread of model
continuity is the autogeneration of middleware code, since
automating the generation of software by a framework that is
correct in specification reduces the chance of error in the design
and implementation.

Simulink’s Real-Time Workshop generates middleware for
computation using VSIPL, MPI for communication, and/or
MPI/RT for communication and control produces code for both
design and implementation. The generated middleware is then
used to quantify process delays in the performance model
framework and as the core for signal processing implementation
application software.

Our reasons for choosing VSIPL and MPI are very similar to our
reasons for choosing the frameworks discussed above. They are
stated here in order of importance with the most important reason
stated first:

• Acceptable performance–These middlewares deliver
high-performance because they are tightly integrated
with the vendors’ computation and communication
libraries.

• Standards-based–Since all the COTS MP vendors in our
domain space support these middleware and actively
participate in their standardization processes,
frameworks that generate VSIPL and MPI code will be
consumable by all of the hardware vendors’ SDEs
considered in the design phase.

• COTS–They are now becoming commercially available
and therefore stable and supported.

VSIPL is an API supporting portability for COTS users of real-
time embedded multicomputers that has been produced by a
national forum of government, academia, and industry
participants [4]. VSIPL is computational middleware, which also
supports interoperability with interprocessor communication
(IPC) middleware such as MPI and MPI/RT. Commercial
implementations are just now becoming available (early 2000).
Earnest consideration by various defense programs as well as
other commercial projects is underway and early adoption has
begun. The VSIPL API standard provides hundreds of functions
to the application software developer to support computation on
scalars, vectors, or dense rectangular arrays.

Message passing is a powerful and very general method of
expressing parallelism and can be used to create extremely
efficient parallel applications. High-performance implementations

of MPI are now available, including implementations for COTS
MP platforms. The leading vendor is MPI Software Technology,
Inc. (MSTI) who provides high-performance implementations of
MPI under the commercial trademark MPI/PRO, including two of
the three leading COTS MP vendors in our technology space
(RACEway and Myrinet). There is another standards effort
underway to specify a real-time version of MPI with a guaranteed
quality-of-service (QoS) called MPI/RT [5]. Non-QoS beta
versions of MPI/RT are just now (early 2000) beginning to
appear.

To generate the steady-state inner-loop middleware-based C code
from Simulink, the DSP Blockset is translated into VSIPL or MPI
function calls with the arguments determined by the parameters
contained in the Simulink blocks. Basically, Simulink “boxes” are
transformed into VSIPL computation function calls, while the
“arrows” are transformed into MPI communication function calls.

4.3 MAGIC SDM Rules
We lay out here the specification and design rules of the MAGIC
SDM. We assume that a natural language (e.g., English)
requirements specification document exists that contains the
system requirements, interfaces, data rates, etc. We do not assume
that the algorithms have been coded in MATLAB, though it would
be very unusual for them not to be.

1) Tabulate requirements–Identify and cull details of the
requirements from the requirements specification document.

2) Capture non-constraint requirements in an executable
model–Describe computation, communication, and control
requirements in an executable model.

3) Build executable workbook with requirements–Put all the
requirements into a tabular form to facilitate computational
manipulation, e.g., in a worksheet/workbook environment
such as Excel.

4) Gather benchmarks for tokens–Gather benchmarks of the
middleware functions that are likely to be used in design and
implementation and enter them into the executable
workbook.

5) Explore alternative architectures and technologies–Use
performance modeling to explore potential architectures for a
given technology, then determine the best architecture for
that technology. Repeat as necessary for other candidate
technologies.

6) Make design decisions–Decide which technology and
architecture to use in implementing the signal processor.

7) Create implementation specification–Pass along architectural
details to the system implementation specification based on
the design exploration.

5. CONCLUSION
A new specification and design methodology has been developed
and prototyped. The MAGIC SDM has been analytically
evaluated and benchmarked using a synthetic array radar
application. It has been shown to possess a high degree of both
model continuity and complexity control [3]. It effectively allows
the designer to evaluate candidate architectures and technologies
before committing to a technology and be confident that an
optimum design has been obtained.

.m,.mat

To Workspace

Simulation results

Timing parameters
Token delays

VSIPL functions
MPI functions

Architecture
parameters

(Matrices)

(Cells)

eArchitect

(.prj)

MATLAB

(.m,.mat)

Simulink
Stateflow

(.mdl)

Excel

(.xls)

Software processes
Parameters

CASE Framework
or

Software Development Environment

Hardware & software configuration
Software-to-hardware map

VSIPL functions
MPI functions

Test vectors
Constants

E
x

e
c

u
ta

b
le

 R
e

q
u

ir
e

m
e

n
ts

S
p

e
c

if
ic

a
ti

o
n

D
e

s
ig

n
A

n
al

ys
is

Executable Design Specification

Executable images
Run-time scripts

Configuration description

COTS MP Signal Processor

Modes
Environment
Equations

Algorithms
Data

Data rates
Non-performance constraints
SWAP

Requirements Specification

MATLAB
Psuedocode

Natural
Language

Tables

E
xe

cu
ta

b
le

 W
o

rk
b

o
o

k

Figure 5. MAGIC SDM information flow and illustration of
model continuity.

6. REFERENCES
[1] D. D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and P.

Fung, “System Design Methodologies: Aiming at the 100 h
Design Cycle,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 4, pp. 70-82, 1996.

[2] F. Vahid, S. Narayan, and D. D. Gajski, “SpecCharts: A
VHDL Front-End for Embedded Systems,” IEEE
Transactions on CAD, vol. 14, pp. 694-706, 1996.

[3] R. S. Janka, “A Model-Continuous Specification and Design
Methodology for Embedded Multiprocessor Signal
Processing Systems,” a Ph.D. dissertation in the School of
Electrical and Computer Engineering. Atlanta, Georgia:
Georgia Institute of Technology, 1999, pp. xxiii, 225.

[4] VSIPL Forum, “VSIPL v1.0 API Standard Specification,”
DARPA and the Navy, Draft
http://www.vsipl.org/PubInfo/pubdrftrev.html, 1999.

[5] Real-Time Message Passing Interface (MPI/RT) Forum,
“Document for the Real-Time Message Passing Interface
(MPI/RT-1.0) Draft Standard,” DARPA, Draft
http://www.mpirt.org/drafts.html, February 1, 1999.

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

