Automatic architectural synthesis of VLIW and EPIC processors

Shail Aditya B. Ramakrishna Rau Vinod Kathail
{aditya,rau,kathail }@hpl.hp.com

Hewlett-Packard Laboratories
1501 Page Mill Road, MS 3L-5, Palo Alto, CA 94304

Abstract the synthesis of a VLIW processor's datapath [5, 6, 8]. The
automatic design of a non-trivial instruction format, and the

This paper describes a mechanism for automatic designsynthesis of the corresponding instruction fetch and decode
and synthesis of very long instruction word (VLIW), and micro-architecture have not been addressed for VLIW pro-
its generalization, explicitly parallel instruction computing cessors. And yet, it is these issues that consume the major
(EPIC) processor architectures starting from an abstract portion of a human designer's efforts during the architecture
specification of their desired functionality. The process of and micro-architecture phases of a VLIW design project.
architecture design makes concrete decisions regarding the In this paper, we present a fully automated system for
number and types of functional units, number of read/write designing the architecture and micro-architecture of VLIW
ports on register files, the datapath interconnect, the in- processors and their generalization, EPIC (Explicitly Par-
struction format, its decoding hardware, and the instruction allel Instruction Computing) processérsWe refer to this
unit datapath. The processor design is then automatically process aarchitecture synthesi® distinguish it from be-
synthesized into a detailed RTL-level structural model in havioral or logic synthesis which are at a lower level. In ad-
VHDL along with an estimate of its area. The system also dition to the well understood features of the VLIW style of
generates the corresponding detailed machine descriptionarchitecture, the space of processors that we are interested
and instruction format description that can be used to re- in exploring includes features such as predication, control
target a compiler and an assembler respectively. All this is and data speculation, rotating registers, and explicit source
part of an overall design system, called Program-In-Chip- and destination specifiers for load and store operations at
Out (PICO), which has the ability to perform automatic ex- various levels of the memory hierarchy [9]. Processors
ploration of the architectural design space while customiz- with these features have the ability to exploit high degrees
ing the architecture to a given application and making in- of compiler-specified ILP both in numerically-intensive ap-
telligent, quantitative, cost-performance tradeoffs. plications as well as in applications that are intensive in
branches and pointer-based memory references.

The architecture synthesis system that we describe in this
paper is part of PICO (Program-In-Chip-Out), a broader
system synthesis and design exploration tool which per-
forms hardware-software co-synthesis. In addition to the

VLIW (Very Long Instruction Word) processors have cystom VLIW processor, PICO may design one or more
started establishing themselves as the processor of choice iRon-programmable, systolic-array co-processors (ASICs)
high performance embedded computer systems, especiallyng a two-level cache hierarchy to support these proces-
in situations where an efficient compiler for a high levellan- gqrs |t partitions the given application between hardware
guage is available. Although a fair amount of work has been (the systolic arrays) and software, compiles the software to
done on providing the capability to automatically design the the custom VLIW, and synthesizes the interface between the
architecture of a sequential, application-specific instruction- processors. We refer to PICO's VLIW design capability as
set processor (ASIP) — primarily a matter of designing the pjco-vLIwW which is the subject of this paper.
opcode repertoire — there has been relatively little work in - 11,4 major contribution of the work reported here is not

the area of automatic architecture synthesis of VLIW pro- nacessarily in the specific heuristics used but in establishing
cessors or, for that matter, processors of any kind that pro-

vide significant levels of instruction-level parallelism (ILP). LFor the sake of brevity, we use the term VLIW to include EPIC as well
The work which has been done tends to focus largely uponin the rest of this paper.

1. Introduction

Spacewalker . opcode Application Microarchitecture Design Application
s Program

stats. program 1
i archspec
. Retargetable
i Abstract Controlpath Compiler
VLIW Synthesis mdes 1SA Spec design
« Architecture synthesis a
Synth. * Microarchitecture synthesis i Scheduled
stats. + mdes extraction 2 ‘ o4 Program
Elcor Comp”er : Logical instruction
i cost : format design fi
< i ' Retargetable
. Perf - | ¢ : *
. Inst. : Affinity Physical instruction Instruction
Pareto-optimal | & format Assembler : o4 Parameters format design Format)
designs |5 & Procvessor N | { Otiect Code
area object code Architecture Design Code Generation

VHDL

Figure 1. The PICO-VLIW design system. Figure 2. Design flow in PICO-VLIW.

design steps numbered in design flow sequence, and the de-
pendence relationships among them.

In manual VLIW design as well as related work on
VLIW synthesis [6, 7], the starting point is the concrete ISA
2. Overview of the PICO-VLIW System which consists of a specification of the register file structure
and an instruction format. We take a different approach,

In PICO-VLIW, we decompose the process of automat- since we yiew the concrete ISA as an overly-constraineq in-
ically designing an application-specific VLIW processor putspemf.lgatlc.)n. Instead, we s_tartwﬂh_am abstract :_alrchltec-
into three closely inter-related sub-systems as shown in Fig-{Ure specification (step 1), which specifies the desired lev-
ure 1. The first sub-system is our design space explorer?'s of concurrency and the opportunltl.e.s for resource shar-
the Spacewalker whose responsibility is to search for the "9, but which leaves the detailed decisions as to how best
Pareto-optimal architecturés., those architectures whose [0 Share register ports and instruction bits to the datapath
implementations are either cheaper or faster (or both) than2nd the concrete ISA design steps, respectively. This allows
any other architecture. In order to do this efficiently, the PICO-VLIW to go about the design in an unconventional
Spacewalker uses sophisticated search strategies and heuri@fder: first, to design a datapath that is consistent with the
tics that are, however, beyond the scope of this paper. requirements qf the abstract arcmecture. specification (step

The second sub-system is teIW architecture syn- 2); next, to design a concrete ISA in the light of the control
thesis sub-system whose responsibility is to take the ab- POrts of the datapath (steps 5-7), and to then design the con-
stract architecture specification generated by the SpacelrolPath (step 8).e, the instruction prefetch, alignmentand
walker and to create the best possible concrete architecturé€code hardware. By designing the concrete ISA after the
and micro-architecture, as well as a machine-descriptiond@t@path, we are able to achieve better trade-offs between
database used to retarget the compiler. The system outputEde Size and the complexity of the controlpath..

a RTL-level, structural VHDL description of the processor N the following sections, we focus our attention on the
and estimates the chip area consumed by it. VLIW synthe5|s.sub-system of PICO-VI__IW (steps 1-3, 5-

The third sub-system consists Blcor, our retargetable ~)- Further details of each step are provided in [1, 2].
compiler for VLIW processors whose operation repertoire
is a subset of the HPL-PD repertoire [9], and a retargetable3. Abstract architecture specification
assembler. Both are automatically retargeted by supplying
the machine-description database. Elcor's responsibility is Architecting a VLIW processor is considerably more
to generate the best possible code for the application on theeomplex than a sequential one. In addition to picking an op-
processor designed by the VLIW architecture synthesis sub-eration repertoire, one must specify the extent and nature of
system, and to evaluate its performance by counting thethe processor's ILP. A VLIW processor, when designed by
number of cycles taken to execute the program. The areaan expert architect, exhibits certain features which we want
and execution time estimates are then used by the SpacePICO-VLIW to emulate. For example, the processor may
walker to guide the next step of its search. use heterogeneous functional units — although one might
PICO-VLIW design flow. The design flow within PICO- include the ability to issue two adds every cycle, which re-
VLIW may be divided into three major activities: architec- quires two integer units, only one unit may be capable of
ture design, micro-architecture design and code generatiorshifting and the other unit able to do multiplication. The
as shown in Figure 2. The figure also shows the variousregister file ports may be shared — a multiply-add opera-

a framework which formalizes and makes algorithmic what
has thus far been an ad hoc, manual process.

tion, which requires three register read ports, may be ac-
commodated by "borrowing” one of the ports of another gpr pr
functional unit which cannot, now, be used in parallel with 012 0123 01
the multiply-accumulate. Likewise, instruction bits may be
shared — a load or store operation, which requires a long
displacement field, might use the instruction bits that would
otherwise have been used to specify an operation on some
other functional unit. In order for PICO-VLIW to yield
well-architected processors, the Spacewalker needs to be
able to specify such architectures to the VLIW synthesis

sub-system. 230 30 5120
Our choice of the interface between the Spacewalker and Idstw_0 mpyaddw_1 addsubw_2
the VLIW synthesis sub-system is called #iwstract archi-

tecture specificatiofarchspedor short) which provides a

delicate balance between giving the Spacewalker adequate Figure 3. A datapath example.

control over the architecture, without burdening it with the

need to specify a detailed instruction format. Through the a number of “literal registers” that have fixed values. The

archspec, the Spacewalker specifies (Figure 2, step 1) the@xample shows that the above machine has a 32-bit general

register files of the target machine, its operation repertoirepurpose register file “gpr”, a 1-bit predicate register file “pr”

and the requisite level of ILP in terms of concurrent opera- and a 10-bit literal (pseudo) register file “lit”.

tion groups, and the opportunities for sharing register ports The various instances of HPL-PD opcodes for a given

and instruction bits in terms of exclusion groups. We will machine are grouped infoperation Groupgopgroupsfor

describe these components shortly. Thereafter, the Spaceshort). This example specifies six operation groups, im-

walker relies upon the concrete ISA design, the datapathplementing the operations add/subtract, multiply, multiply-

design and the controlpath design steps to use these oppomdd, load with post-increment, and load/store with displace-

tunities while honoring the requisite level of concurrency. ment respectively. Each operation group also specifies one
As an example, a simple 2-issue machine is given below: or moreOperation Formatshared by all the opcodes within

Register Files the group. These specify the desired input/output operand

| Name || Width | Registers/Literald Virtual File | connectivity to the register files of the machine. For predi-
gpr 32 r0,...,r31] cated operations, a separate predicate input is specified.
pr 1 po,...,p15 P In addition to the desired opcode repertoire, the arch-
lit 10 [-512,511] L spec also abstractly specifies the amount of parallelism to be

supported in the target machine. By definition, all opcode

Operation Groups instances within an operation group are mutually exclusive

| Name || Operations| Operation Format | while, by default, those across operation groups are allowed
addsub || ADD,SUB | pr? gpr, gpr: gpr to execute in parallel. The parallelism of the machine may
mult MPY pr ? gpr, gpr: gpr be further constrained by placing two or more operation
multadd || MPYADD | pr ? gpr, gpr, gpr: gpt groups intoExclusion Groupss shown above. All opera-
loadinc LI pr ? gpr: gpr, gpr tion groups within an exclusion group are deemed to be mu-
loaddisp || LM pr ? gpr, lit: gpr tually exclusive, a fact that can be exploited by the datapath
storedisp|| SM pr ? gpr, gpr, lit: design step to share hardware resources such as functional

. units, register file ports and buses. In the above example, the

Exclusion Groups exclusion groups “EG0” and “EG1” serve to represent the

| Name ” Op Groups | notion of one arithmetic and one memory functional units
EGO | addsub mult multadd each, while “EG2” and “EG3" allow further sharing of reg-
EG1 | loadinc loaddisp storedisp ister file ports and instruction format bits as shown later.
EG2 || addsub multloadinc
EG3 multadd loaddisp storedisp

4. Datapath design

EachRegister Filespecified in the archspec identifies its
width in bits, the registers it contains, and a virtual file spec- The datapath designed for the machine specified in Sec-
ifier that specifies the types of data it can hold. An immedi- tion 3 is shown pictorially in Figure 3 which also illustrates
ate literal field within the instruction format of an operation our general design scheme. The datapath consists of one
is also considered to be a (pseudo) register file consisting ofor more functional units selected on the basis of the desired

operation functionality connected to the specified register and augmenting them with the resource and latency con-
files via multiple buses. Each bus corresponds to a registerstraints of the surrounding hardware. The details are pro-
file read or write port. There are several important design vided in [1].

decisions to be made at this step (Figure 2, step 2) that are

outlined below. The details are provided in [1]. 6. Concrete ISA design

Functional unit allocation. The first step in datapath syn-

thesis is to select a set of functional unit macrocells from Th te ISA ists of ificati f th i
the database that can together implement all the operations € concrete consists of a specitication of the reg

specified in the archspec such that the specified ILP con—'tStE rr:'lc?irStrLt]ICt?rren??: th? 'RStrUCt'\?VE f(r)rma:.hTfllet:‘orrriner 'Sn
straints are met and the total cost (area or gates) is mini- axe ectly ro € archspec, whereas the fatter 1S ge

mized. Our strategy is to formulate it as a clique finding g:ttﬁge%l;t&rﬂzﬂcﬂgyag% |tshfth53|r\1/c:IE:(\)/\r/1 33/5;61:@%:3::;
problem on the graph of exclusion relationships among the PP

operation groups and then determining a set of minimumghsclogégzl baer;g thE Fr)thhy;rlfjaelt;'llsstglmtfgr fgr[n;]ats, which is
cost functional units that cover all cliques. Iscu W. U IS appear | :

Registrfle por alocaton. VLW proceszors pialy {008l eucton ometdesgn Theogea neton
need multi-ported register files in order to cater to the needs. q y

of multiple, concurrently-executing functional units. Multi- _1'Struction format: a set of instruction templates each con-

ported register files are very expensive (in terms of area),s:i:'nl? 2f °”e| orénorrv]e OperratJiuonn grroupﬁ thatncanrbrﬁ |fsued
and therefore a novel aspect of our system is that we auto>MuTtaneously. =ach operation group nas one or more op

matically determine the minimum number of such read and grnitcl)%ri]nfort?::t(? f:gg :;;vrﬁzhv:riijsgog::ﬁggn,zleslgseach
write ports by taking into account the exclusion constraints 9 P P) '

among the operation groups in the archspec. operation group may appear in multiple templates, yielding

For each type of port (read/write) to a register file, we mu‘ll'tﬁe(;?éigggsgfetﬁghlge:gél instruction format design
formulate a separate resource allocation problem. In each) 9 9

formulation, the desired port connectivity is determined by itesps(Fle%lijfzg dzinsiﬁz 5)r(|)s :gn?\;zgt ?ﬁge :Zzzitl??s)riuiéounsz
consulting the operation formats of the various operation PSSP prog y

groups assigned to each functional unit. A conflict graph pfa5|mpl|st|c instruction format. This code wastage comes

based on their concurrent used, two operands of a bi- P

nary operation), and mutual exclusions specified in the arch_macrocell (akin to horizontal microcade) is quite wasteful

spec. Each problem is then solved using a variation [1] of tsr:nce the ar:?hspetc an. the gatgpaltth may rIIOt wowd%" of
the graph coloring approach by Chaitin [3]. In our example 0S€ operations 1o be 1Ssued simuftaneously. WWe acdress

(refer Figure 3), the two arithmetic macrocells share all of thr']s. EY desllgnlng S;um]f’le |n§tryct|on tfmfplates,t_eacr;hoft
their register file ports. More interestingly, input 3 of the which is only capable of specifying a set of operations tha

“mpyaddw1” and input 2 of the “ldstw0” macrocells also can, in fact, be issued simultaneously. Our design strategy is

share a register file port because an exclusion was specifie%ﬁ H}eat f‘fh clique of coniutr reizt E[)rpe:iatlnotn gr;nrolmis specified
between their operations groups. € archspec as a separate Instruction tempiate.

Register file and interconnect generationIn the final step ilcasrefno;dﬁc;a'[kg];(/eene':csjguﬁt: Eg tgi;:gi?ﬁfgv%;g@ E%TS_
of datapath synthesis, we instantiate each register file withP!'eh may 9

the appropriate number of read and write ports and generateOf its template. The unused operation slots must specify a

the interconnect between the register file ports and the varj-0-0P, again leading to code wastage. We address this by

ous functional unit ports as specified by the port allocation. prowdl.ng. additional, narrower.templates which c;orre;pond
to statistically frequent combinations of operations in the

] scheduled code. Identifying these custom templates (Fig-
5. Mdes extraction ure 2 step 6) entails invoking the scheduler, which in turn
requires that the datapath has already been designed.
Once the datapath has been designed, our system auto- As an example, the exclusions specified in the archspec
matically extracts a compiler-oriented view of it (Figure 2, of Section 3 stipulates two instruction templates as shown
step 3) in the form of amachine descriptioimdesfor in Figure 4(a). Each template consists of a consume-to-end-
short) [10]. This is then used to re-target our VLIW com- of-packet (EOP) bit which is used for aligning branch tar-
piler, Elcor, to the target machine (Figure 2, step 4). Our gets [1, 2], a template selector field, and one or more con-
system extracts a non-structural and operation-centric mdegurrent slots encoding the various operation groups.
from the archspec and the datapath by combining the in-Physical instruction format design. Thephysical instruc-
dividual mdes contributions of the various functional units tion formatallows the fields within each template to be po-

sitioned in any convenient order, but an order that is fixed [_Template [| EOP [TSel [OpGroups| OpGroups|

for that template. Furthermore, an individual field is also | TO 0 1 aquSItUb Is?g:jeddi'ss%

. u I
permitted to cpnslst of a dlscontlguogs set o.f bit positions. — 5 i uTadd ToadinG
One of the objectives of the physical instruction format de- @

sign step (Figure 2, step 7) is to exploit these additional de- multadd: pr ? gpr, gpr, gpr : gpr
grees of freedom with a view towards minimizing the width | Template| PRED1 | SRC1 | SRC2 | SRC3 | DEST1

of each instruction template. This is done by assigning the] 58 9133|1418 35::39 | 1923
loadinc: pr ? gpr: gpr, gpr

same or overlapping bit positions to fields that cannot ap-[Template [PRED1 | SRC1 | DESTL | DEST2
pear simultaneously in the same instruction while ensur-[71 26---29 | 30--34 | 45..49 | 40 .44
ing that fields which can be present simultaneously, are as-storedisp: pr ? gpr, gpr, lit :
signed disjoint bit positions. Template | PRED1 | SRC1 SRC2 SRC3
. o) _ |0 26.--29 | 30--34 | 35..39 | 40 --49
A second, somewhat conflicting, objective at this step is ©)

to minimize the complexity of the decode and distribution

. . ; . Figure 4. Example instruction templates.
network that lies between the instruction register and the g P P

datapath control ports. This is done by minimizing, for each Neiro Winge Wigin
control port, the number of distinct bit positions, across all [11 ‘

of the templates, at which the instruction fields controlling [M| [[[TTTT]] / shift

the given port are to be found. Once again, this requires thatg| | | | T |17 7RI S

the datapath has already been designed. ‘ ‘ _____ ‘ ‘

The physical instruction format is designed using the in- T 1

struction format treelE-tree for short) data-structure which

is a hierarchical representation of the grammar of an instruc- Figure 5. The instruction fetch pipeline.

tion for the target architecture. The leaves of the tree are

the logical instruction fields for which physical bit positions 7. Controlpath design

need to be allocated. The IF-tree is used to compute a con-

flict matrix among the instruction fields where two fields » o

are said taconflictif they can be present simultaneously in e partition the problem of controlpath design into two
the same logical template, and therefore must be assigned&i0r components: the instruction sequencer and the in-
disjoint bit positions. The allocation algorithm we use is a Struction fetch pipeline. The sequencer design is dependent
variant [2] of Chaitin's graph coloring algorithm [3] where UPON the presgnce/absence of features such as gxceptlon and
instruction bits are resources and each requesting instrucint€rrupthandling, error recovery, branch prediction etc. but
tion field may request multiple bits. Heuristics are used to IS largely !ndependent of the instruction-set archltecture.of
reduce the overall template width and the decode complex-the machine. Therefore, we assume that the appropriate
ity by packing the instruction fields to the left (leftmost allo- S€t Of sequencer macrocells is available in our macrocell
cation), assigning contiguous bit positions to multi-bit fields database. Below, we address the design of the instruction
(contiguous allocation), and aligning instruction fields cor- fetch pipeline (Figure 2, step 8) consisting of the following
responding to the same control port to the same bit posi-components (refer Figure 5).

tion (affinity allocation). Finally, the bits of each template Instruction Cache. For purpose of the instruction pipeline
are rounded up to the next multiple of a fixed quantum size design, the cache is characterized by its access timg (
(Q;) in order to simplify its alignment in the memory and and the size of an instruction pack®t () which is the unit

the instruction register as discussed in Section 7. of instruction fetching from the processor side.

The physical format for the template T1 of our example Instruction prefetch buffer. ~ An instruction packet is
machine is shown in Figure 4(b). This template consists of fetched from the instruction cache and brought into a FIFO
two concurrent operation groups “multadd” and “loadinc” queue. The prefetch policy is to keep the inventory of use-
whose various instruction fields have been assigned bit poful packets at a constant si&'a x Wrpa./Wal, where
sitions as shown in the figure. Note that the SRC3 field of the inventory of useful packets is defined as the sum of the
the “multadd” operation group is positioned in the midst of humber of packets in the prefetch buffer and the number of
the bits corresponding to the “loadinc” operation group be- outstanding cache requests. Intuitively, this is the number of
cause it has affinity with the SRC2 field of the “storedisp” Packets required to completely mask the cache latéhcy
operation group in template TO. This was due to the fact evenwhen the maximum sized’(,,.,.) instructions are be-
that these two fields drive the same register file address porting issued. This policy requires one to initiate a cache fetch
which in turn was a result of specifying a exclusion “EG3” Whenever the actual inventory falls below this size limit.
between the two operation groups in the archspec. The inventory size is also an upper bound on the size of

the prefetch buffei,e.,

[N

09 Heteroge_neous

Nrrro < [Ta X Wimaa /Wal vg | chines
A tighter upper bound is possible if more history is kept gor . .
around dynamically regarding the exact number and the § e .
timing of the outstanding cache fetches as discussed in [1]. § *° w d ¢
Instruction alignment network. In order to accommodate E“ % = Homogeneous
variable length instructions, an instruction alignment net- & ** paed Machines
work aligns the left boundary of the next instruction to the % °* A%:;—L—L
first bit position of the instruction register (IR) at each cycle. O';’ ‘ ‘ - -

40 60 80
Estimated area (mm 2
(based on parametric cost models for 0.18u process)

This network consists of a series of multiplexors controlled 0
by the states of the IR, the On-Deck register (ODR), and
the head of the FIFO queue. Not all shift increments are
necessary since the instructions sizes are guaranteed to be
multiples of a quantum siz&€);).

Instruction unit control tables. The alignment network, |

120

Figure 6. Sample PICO-VLIW machines.

Parameter | Range | Parameter | Range |

the prefetch buffer, and the instruction fetch from the cache

. . predication | yes,no | speculation| yes, no
are controlled by logic whose specification as a control table integer FUs | 1-3 float FUs | 1-5
is generated automatically according to the prefetch policy memory FUs | 1-2 branch EUs| 1
described above. This logic is responsible for the following integer regs. | 16-64(8)| floatregs. | 16-64(4)
tasks at each cycle: predicate regs| 256 branch regs] 8-16(4)

e keeping track of the width of the instruction as well as
the unused bits in the instruction register and at the head
of the prefetch buffer,

e issuing instruction cache fetches, prefetch buffer writes
and instruction register fills at the appropriate times, and

e generating the appropriate shift signal for the alignment
network to align the next instruction.

Instruction decode tables. At each cycle, the left aligned

It is very hard to characterize the “quality” of an ar-
chitecture objectively other than its cost and performance

for a given application. In that spirit, Figure 6 shows the
cost/performance characteristics of a number of machines
in the design space that the Spacewalker actually considered
to find 68 pareto-optimal designs. The machines displayed
in Figure 6 fall in two categories. Machines represented
by black circles arechomogeneoumachines which have

instruction in the instruction register is decoded to yield the general-purpose functional units and in which all functional
appropriate control signals for the various datapath controlunits of a specific type (e.g., integer) are identical. Ma-
ports. A control table specification for this decode logic is chines represented by grey circles aeterogeneouma-
generated automatically by walking the IF-tree. This may chines in which functional units have been specialized to
then be implemented either as random logic or as a PLAthe needs of the application and in which all units of a spe-
using standard logic synthesis tools. cific type are not necessarily identical. The results confirm
the intuition that for a given performance, good heteroge-
neous designs are cheaper than good homogeneous designs,

8. Experimental Results neol
in this case by up to 50%.

PICO-VLIW has been operational as a research proto-
type since late 1997. It allows us to explore hundreds or 9. Related work
thousands of architectural alternatives in designing ASIPs,
something that is very hard or impossible to do withoutan The related work focuses on either the datapath design
automated system. At this point, we have exercised it with using a Spacewalker or the processor design from a con-
several applications ranging from loop-intensive algorithms crete instruction set architecture (ISA). The MOVE project
for signal and image processing to less structured ones sucht Delft University falls in the first category. The emphasis
as compress and ghostscript. As an example, we presens on the design of processor datapathsTi@nsport Trig-
some of the results from the design space exploration forgered Architecturefs]. The datapath template used by the
an application whose time-consuming part consists of a fi- Spacewalker consists of a set of functional units, a set of
nite impulse response (FIR) filter. The following table lists register files and a set of buses connecting the functional
the parameter ranges that define the design space to be exmits and the register files. The Spacewalker works with a
plored; the number in parentheses are the step sizes. Thistructural representation of the datapath, adding and delet-
design space contains 17640 different machines. ing register files, functional units, buses and interconnection

points to come up with a set of pareto-optimal datapaths. matter, a human being) to specify the former. Starting from

The philosophy for designing the control is simple, similar this specification, PICO-VLIW automatically generates,

to horizontal microprogra.mmi'nge., gach cqntrol point is 1. the concrete ISA for the processor,

controlled by a separate field in the instruction word. Thus, 5 " he getailed micro-architecture including the datapath

t_he work doesn _taddress the des!gn of sophisticated mst_ruc- and the controlpath output in the form of RTL-level

tion formats optimized for code size and the corresponding structural VHDL,

instruction fetch apd decode logic within the.pro'ce'sso.r. 3. a machine description for use by our retargetable com-
The work by Fisheret al at.HP Labs [6] is similar in piler, assembler and simulator, and,

nature and focuses on the design of processor datapath for gy 5, architecture manual and detailed statistics for the

clustered VLIW architecture, similar to the Multiflow Trace Spacewalker.

architecture [4]. The datapath template used in the design

process is highly stylized; for example, it doesn't permit Acknowledgements

register port sharing and assumes that each functional unit tha authors would like to thank Mike Schlansker for his

has dedicated ports to register files. A major component.qnyihytions to the archspec definition, and Richard John-
of their work is directed towards understanding how a pro- ¢4, for his help in custom instruction template design.

cessor designed for an application or a group of applications
performs on other applications in the same domeig, im-
age processing.

The approach presented by Hadjiyianatsal. [8] uses
Instruction Set Description Language (ISDL) [7] to specify [1] S. Aditya gnd B. R. Ra_lu. Automatic architectural synthesis
a concrete ISA, which includes not only the desired oper- and CC_)mp”er retargeting for VLIW and EPIC processors.
ations but also the detailed instruction format and the con- ;zhgggéReport HPL-1999-93, Hewlett-Packard Laborato-
stralnt_s on instruction issue. The s.pecn‘lcatlon is then usgd [2] S. A:ditya, B. R. Rau, and R. C. Johnson. Automatic design
to design the processor hardware in the form of synthesiz- of VLIW and EPIC instruction formats. Technical Report
able Verilog and to retarget various tools, such as a code- HPL-1999-94, Hewlett-Packard Laboratories, 1999.
generator, assembler and simulator, needed to evaluate the[3] G. J. Chaitin. Register allocation and spilling via graph col-
performance. ISDL is a very general language capable of oring. In Proceedings of the 1982 SIGPLAN Symposium
specifying many different types of architectures. Since an on Compiler Constructionpages 98-105, Boston, Mas-
ISDL specification is at the level of a concrete ISA, the de- sachusetts, June 23-25, 1982.
signer (either a person or a Spacewalker) has to do most of [4] R.P-Colwell, R. P. Nix, J. J. ©'Donnell, D. P. Papworth, and
the work €.g, instruction format design) that our system P. K. Rodman. A VLIW architecture for a trace scheduling

. . - . o compiler. InSecond Intl. Conf. on Architectural Support for
does automatically. In our opinion, this makes it less suit Programming Languages and Operating Systems (ASPLOS

References

able as a tool for comprehensive design space exploration Il), pages 180—192, Palo Alto, CA, October 1987

and more suitable for a design process that requires only [5] H. Corporaal and R. Lamberts. TTA Processor Synthesis. In

small incremental changes to an existing specification. First Annual Conf. of ASCIHeijen, The Netherlands, May
1995.

[6] J. A. Fisher, P. Faraboschi, and G. Desoli. Custom-Fit
Processors: Letting Applications Define Architectures. In
29" Annual IEEE/ACM Symposium on Microarchitecture

PICO-VLIW is a synthesis system for automatically de- (MICRO-29) pages 324-335, Paris, December 1996.

signing the architecture and micro-architecture of VLIW [7] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An
and EPIC processors. It designs sophisticated processors instruction set description language for retargetability. In
with non-trivial requirements and constraints upon their ACM/IEEE Design Automation Conferend®97.

ILP, shared register ports, variable-length multi-template in- [8] G- Hadjiyiannis, P. Russo, and S. Devadas. A Methodology
struction formats that minimize code size, an instruction for Accurate Performance Evaluation in Architecture Explo-
prefetch unit that covers the instruction cache latency, and ~ "2uen: InDesign Automation Conferenddew Orleans, LA,

10. Conclusions

instruction alignment and distribution networks to deal with [9] \J/TJIQZtﬁiﬁ?M. Schlansker, and B. R. Rau. HPL PlayDoh ar-

the variable length instructions. A novel aspect of our ap- chitecture specification: Version 1.0. Technical Report HPL-

proach is the distiction we make between the logical and the 93-80, Hewlett-Packard Laboratories, Feb. 1994.

physical instruction formats. [10] B. R. Rau, V. Kathail, and S. Aditya. Machine-description
PICO-VLIW was designed with automatic design space driven compilers for EPIC and VLIW processorfesign

exploration in mind; the VLIW synthesis in PICO-VLIW Automation for Embedded Systeds1-118, 1999.

is driven by an abstract rather than a concrete ISA speci-
fication, since it is easier for the Spacewalker (or, for that

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

