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Abstract

The computational complexity of a probability-based combi-
national power metric lies in the creation of a BDD for each
node in the circuit. In this paper, we formalize the problem of
finding intermediate support-set which controls the size of BDD.
We propose an exact algorithm to solve it. We also propose an
heuristic solution,PowerDrive, for estimating power of large
circuits. Apart from being more accurate andseveral times
faster than [2, 7], PowerDrive possess the unique quality of being
canonical and ofconstant complexity, a very desirable quality
for a power metric guiding a synthesis tool. Finally, the proposed
power metric was able to guide the synthesis tool [11] to optimize
large circuits which could not be synthesized by POSE [6], thus
proving the effectiveness of our power metric.

1 Introduction

Accurate and fast power estimation during the design phase is
required to guide power optimization techniques employed to
meet the stringent power specifications. The probabilistic tech-
niques [4, 8, 9] are examples of such estimation techniques. They
use symbolic simulation in order to produce a set of boolean func-
tions representing conditions for switching at each gate in the cir-
cuit. These techniques allow the user to cover a large set of pos-
sible input patterns very quickly. Hence probabilistic techniques
are used for driving power-driven logic synthesis tools [6].

The complexity of any probability-based combinational power
estimator lies in the creation of BDD for each node in the circuit.
Global BDDs cannot be constructed for large circuits. Hence lo-
cal BDDs are created with an intermediate support-set. In this pa-
per, we propose algorithms to identify the intermediate support-
set necessary for computing power metrics guiding a logic syn-
thesis tool. We formulate it as a problem of finding an optimally-
correlated L-feasible frontier. We propose an exact solution and
experimentally show that solving this problem provides good es-
timate of the signal probability. We present a heuristic algorithm
that is computationally bounded, considers local convergence and
is canonical (explained later). We provide experimental results on
a wide range of benchmarks. Our approach is general enough to
use any of the power estimation models reported in [8, 9]. Finally
the scope of this work is not to perform final power estimation of
a design but to be used for computing the power metric required
by a low-power driven synthesis tool.

y This research was supported in part by the National Science Foundation
under grant MIP-9320854 and the Semiconductor Research Corporation
under contract SRC 96-DP-109.

Table 1: Moves evaluated during an optimization step in [1].
Circuit gates moves time/gate estTime
C432 136 21554 2.03 43810
C499 239 36756 2.17 79903
C880 221 25628 1.45 37121
C1355 237 39930 1.41 56107
C1908 288 34654 1.73 59907
C3540 692 34654 4.77 513132
C6288 2341 151937 1.94 294063

The rest of the paper is organized as follows: We present the
related work in Section 2. Section 3 provides some definitions.
In Section 4, we solve the problem of finding support-set exactly.
We provide a heuristic solution in Section 5. We provide experi-
mental results in Section 6 and conclude in Section 7.

2 Related Work

In [8], the authors proposed a solution to consider spatial corre-
lation without creating global BDDs. They modeled the correla-
tions usinglag-zero Markov chainand propagated them from the
inputs to the outputs of the circuit. In a feasibility experiment,
we calculated the number of candidatemoveswhich are consid-
ered during a typical optimization step of an industrial synthesis
tool, BuildGates [1], for various MCNC benchmarks and tabu-
lated in Table 1. The columnsgates, time/gateandestTimere-
port the number of gates in the circuit, the average time (in sec-
onds/gate) and the total estimated time (in seconds) to compute
average power (projected from the reported results in [8]). This
table indicates that the technique is computationally expensive for
large MCNC circuits. Moreover, the complexity of the proposed
technique [8] is superlinear in the size of the circuit. Hence it
may be impractical for guiding optimizations of large industrial
circuits.

In [7], Kapoor proposed heuristics to partition the circuit and
build local BDDs to calculate the switching activity of nodes. A
drawback of the method is that the support-set contains either
immediate fanins of the node or the primary inputs. It ignores
support-sets with internal nodes. In Figure 1, the bold line shows
the desirable support-set since the signalsa andb are indepen-
dent. But the approach in [7] finds the dashed line as the support-
set when the limit on the support-set is set to 2.

In [2], a new approach is proposed that tries to cover as much
reconvergent nodes as possible in order to account for the spatial
correlation. The basic problem is that the heuristic stops at the
shallowest support-set with size larger than the specified maxi-
mum value as illustrated in Figure 1.
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Figure 1: Drawback of the method [2] and [7].

3 Definitions

In this section, we will describe the various terminologies used
and the power model assumed in the paper.

Thesignal probabilityps(x) at a signal x is defined as the av-
erage fraction of clock cycles in which the steady state ofx is a
logic high. If a zero-delay model and temporal independence is
assumed, the average power consumed by a signal is given by:

Pav =
1

2:Tc
:V

2

dd:

nX

i

2:Ci:ps(xi):(1� ps(xi)) (1)

whereTc is the clock period,Ci is the total capacitance at signal
xi, Vdd is the supply voltage and n is the total number of signals
in the circuit. In [8] and [9], the authors have reported power
measures which accounts for temporal correlation and non-zero
delay model, repsectively. In this paper, we will use Equation 1
for measuring the average power, but our work is also applicable
to the other power models [8, 9]. The focus of this paper is to
computeps efficiently and accurately.

3.1 Definitions from Graph Theory

A combinational Boolean networkN (V;E) can be represented
as a directed acyclic graph (DAG) where each vertex inV repre-
sents a logic gate and a directed edge(i, j) inE exists if the output
of gatei is an input of gatej. We defineu to be apredecessorof
v if there is a directed path fromu to v. If H is a subgraph ofN ,
its support,sup(H), is the set ofdistinctvertices inH which are
either primary inputs or have fanins outsideH.

A cone of a signalv of the networkN , Cv(V
0; E0), is a sub-

graph ofN such that 1) ifu 2 V 0, u is a predecessor ofv and 2)
if u 2 V 0, any path fromu to v lies entirely inCv. A subcone

of a coneCv is a cone that is also a subgraph ofCv. A coneCv

is L-feasibleif jsup(Cv)j � L. Thevolumeof a coneCv(V;E),
vol(Cv) is jV j. A fanin cone of a vertexv in a network,FCv,
is the cone with all the vertices insup(FCv) being primary in-
puts.

A vertexu is reconvergentif there are more than one disjoint
path fromu to a given vertexv 2 V . Ideally, we would like to
find the amount of spatial correlation ofu captured within a cone
Cv. Since we are not aware of an efficient metric for measuring
spatial correlation and it is caused by reconvergent paths, we de-
fine a metric based on the latter to measure the spatial correlation.

Definition 1 Degree of reconvergence: The degree of reconver-
gence of a vertexu in a coneCv, denoted�(u; Cv), is one less
than the number of fanouts of u inCv.
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Figure 2: Illustrates graph terminologies.

�(u;Cv) = jfw : w 2 (fanout(u) \ Cv)gj � 1 (2)

In Figure 2, fanin(p) = fa; bg, fanout(p) = fm;ng

and d is a predecessor ofo. Let Cv be the cone marked by
the shaded region. The subcone ofCv is shown in dashed re-
gion. sup(Cv) = fp; q; fg. Cv is 3-feasible but not 2-feasible.
vol(Cv) = 7. FCq = (fq; c; dg; fe1; e2g). p and q are re-
convergent vertices inCv. The degree of reconvergence of q,
�(q; Cv) = 2.

Given a networkN with a source s and a sink t, a
cut(X;X) [3] is a partition of the vertices inV such thats 2 X

andt 2 X. Thevertex cut-setof (X;X), denotedcutset(X;X),
is the set of vertices inX that are adjacent to some vertex inX.
Thevertex cut-size, n(X;X), is the sum of weight of the vertices
in a cutset. A cut(X;X) is anL-cut if n(X;X) � L.

In Figure 2, s is the source andv is the sink of the net-
work. The cut corresponding to the dashed line is given by
cut(X;X) = (fv;m; n; og; fp; q; a; b; c; d; f; sg). The vertex
cut-set is given bycutset(X;X) = fp; q; fg and the vertex cut-
size of the cut isn(X;X) = 3, assuming all vertices have weight
of 1. vol(X;X) = 4.

4 Problem Formulation

The complexity of a power metric considering spatial correlation
is proportional to the BDD size. If we assume that restricting the
support-set of a BDD controls its size, our objective is to iden-
tify an L-feasible support-set of a given signal, where L is an user
defined constant. We would like to find anL-feasiblecone ofv
that calculates the signal probability ofv as accurately as possi-
ble. Since the accuracy ofps(v) is very difficult to characterize
based on the underlying Boolean network and it is dependent on
the set of reconvergence paths inFCv, we will use the degree of
reconvergence (Equation 2) as a measure of accuracy. Larger the
total degree of reconvergence, more the correlation it will contain
and better will be the power estimation. Hence we would like
to find that L-feasible cone that maximizes the summation of the
degree of reconvergences and hence captures maximum spatial
correlations.

Problem Specification: An optimally correlated L-feasible
coneof a vertexv, denotedC�

v (V
�; E�), is an L-feasible cone,

such that there is no lesser volume L-feasible cone that has higher
degree of reconvergence thanC�

v has. Thus, ifCv(V;E) is an L-
feasible cone ofv,

P
u2V

�(u; Cv) �
P

w2V �
�(w;C�

v ). In
case of equality,vol(C�

v ) � vol(Cv). The sup(C�
v ) is called



theoptimal frontier. In Figure 2,Cv is an optimally correlated 3-
feasible cone ofv andfp; q; fg is an optimal frontier. In the fol-
lowing section we will describe a divide and conquer algorithm
to find the optimally correlated L-feasible cone.
4.1 Exact Algorithm

Since we will be using network flow algorithms to obtain theC�
v ,

we convert the given DAG into a network withv as the sink and
connect all the primary inputs of the circuit to a dummysource
vertexs (shown by the dashed arrows in Figure 2).

A max-vol, min-cut (X;X), (MVMC ), is a cut of a net-
work such that thevertex cut-sizeis minimum and thevol(X)
is maximum. Since there can be several min-cuts in a network,
the MVMC identifies the one that has the largest number of
vertices on the sink side. In Figure 2 there are two min-cuts,
namely cut(X1; X1) = (fvg; fm;n; o; p; q; a; b; c; d; f; sg)
andcut(X2; X2) = (fv;m; n; og; fp; q; a; b; c; d; f; sg). with
vertex cut-sizeof 3. But cut(X2; X2) is the MVMC of the net-
work. [3] proved that such cut is unique for a network and de-
scribed a polynomial algorithm to obtain it. We prove the follow-
ing relation between MVMC and optimally correlated cone.

Theorem 1 If C�
v is an optimally correlated L-feasible cone with

vertex set Y and(X;X) is a MVMC withn(X;X) � L, then
X � Y .

Proof: Excluded due to shortage of space. Refer to [10] for the
proof of all the theorems and lemmas in this paper.2

From the above theorem, it follows that the cone corresponding
to the MVMC (X;X) is a subgraph of the optimally correlated
cone. Hence, the optimal frontier is confined inX. So we can
remove the MVMC from the original network without losing the
optimal frontier. Given a networkG we will define a transforma-
tion that removes the sink partition of MVMC(X;X) of G and
connects the sink vertexv to cutset(X;X).

Definition 2 Sink-chopping: GivenG, if (X;X) is the MVMC
of G, the sink-chopped graph, denoted�(G), contains vertices
V = X [ fvg and edgesE consists of all the edges inG con-
necting the verticesX and extra edges fromcutset(X;X) to v.

Figure 3 illustrates sink-chopping. Given the network, the
MVMC is shown by the shaded region in Figure 3(a). This region
is chopped out and the nodev is added to get the sink-chopped
network as shown in Figure 3(b).

We will now describe the basic principle of the exact algorithm.
We start with the original network,G0, performsink-choppingto
getG1. If the min-cut size inG1 is less than L, we continue the
process until the cut-size exceeds L. At this point, we may assume
that the iterative application of MVMC algorithm can provide us
the optimal frontier. A closer look reveals that the MVMC of
�(G) is always the immediate fanins ofv, since it was the deep-
est min-cut inG. Figure 3(a) shows the original network with
the cutset of the MVMC in dashed bold line. The sink-chopped
network is shown in Figure 3(b). As mentioned above, the min-
cutset of the network in Figure 3(b) is the fanin(v) as shown by the
dashed line. We overcome this problem by artificially increasing
the weight of one of the vertices (shaded vertex in Figure 3(b) )
in the fanin ofv to infinity. This forces the cut-size offanin(v)
to infinity and leads to a new cutset (bold line in Figure 3(b)).
If u 2 fanin(v) in G, thenGu represents the graphG with
wt(u) =1.
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Figure 3: Diagram showing sink-chopping of a network.

OPTIMALLY CORRFRONTIER(G)
1 . Divide and conquer
2 BestFront = fanin(v);
3 n jBestFrontj

4 if (n = L)
5 return BestFront;
6 if (n > L)
7 return NULL ;
8 for j  1 to n

9 uj  fanin(v)[j];
10 G0  �(Guj );
11 fj  OptimallyCorrFrontier(G0);
12 if (IsBetterFrontier(fj ; BestFront))
13 BestFront fj ;
14 return BestFront;

Figure 4: An exact algorithm to find the optimal frontier.

Theorem 2 The optimal frontier ofG is eitherfanin(v) or one
of the optimal frontier of�(Guj ), whereuj 2 fanin(v).

Figure 4 describes the exact algorithm to find the optimal fron-
tier of a given graph. It is based on a divide-and-conquer tech-
nique. Based on Theorem 2, the optimal frontier is either the
fanin(v) or one of the optimal frontier of�(Guj ), that is found
recursively. IsBetterFrontiercomputes the number of reconver-
gent paths in the cone cut byf j and if it is same as that of the
previousBestFront, it compares the volume of the two cones. If
the new frontier is better, it is assignedBestFront. BestFront con-
tains the best amongst the optimal frontiers of�(Guj ), for all
uj 2 fanin(v). We returnBestFrontto the previous level of
recursion. When the recursion ends, we obtain the optimal fron-
tier of the original solution. If the original graph had min-cutsize
larger than L,fanin(v) is returned.

Lemma 1 The algorithm described in Figure 4 finds the optimal
frontier.

The complexity of the above algorithm isL!:kjEj for a k-
feasible graphG with E edges. Although it is polynomial in
problem size (size of circuit), the constant is large for large val-
ues ofL. We use the above algorithm to validate our problem
formulation in Section 4. We show in Section 6 that solving the
formulated problem, leads to very accurate estimate of the power.
In the next section, we describe a heuristic solution to the above
problem.



HEURISTICCORRFRONTIER(FCv; d; L)
1 . A d-deep BFS is performed
2 LabelV ertsT illDepth(d);
3 for i 1; i < d; i++
4 Ci

v  FindDdeepCone(i);
5 f  FindCheapestCFF (Ci

v);
6 if (jf j � L)
7 f� = f ;
8 return f�:

Figure 5: A heuristic algorithm to find the optimal frontier.

5 A Heuristic Solution

In this section, we will describe a constant complexity algo-
rithm of the problem defined in Section 4. The algorithm to find
support-set is local, canonical and bounded in complexity. We
will gradually explain the importance of each of these properties
for a power estimation algorithm guiding a power optimization
tool. To our knowledge, we are the first to report such an estima-
tion algorithm. The algorithm is based on the breadth first search
and the algorithm described in [5] to find the cheapest correlation
free frontier. Acorrelation free frontier(CFF) of a DAG is a cut-
set such that the signals in the cutset are not spatially-correlated.
The cheapest CFF corresponds to that CFF that has the least vol-
ume in the sink side of the corresponding cut. The dashed line in
the Figure 2 is the cheapest CFF whereas the cutsetfp; c; d; fg is
not.

5.1 Locality of Solution

A depth, denoted d(u,v), for a predecessor u of v is the length of
the longest path fromu to v. In Figure 3(a), d(q, v)=2 and d(b,
v)=3. The depth of all the nodes in the fanin cone ofv, FCv can
be found by a breadth-first traversal of the fanin cone.

Definition 3 m-deep cone: An m-deep cone, denotedCm
v , of a

node v in a graphG, is a cone of v inG with every node in the
support ofCm

v having depth greater than d from v.

The shaded portion in Figure 3(a) is a 1-deep cone ofv whereas
the cone ofv above and including the dashed line isC2

v . We will
confine our search of the optimal frontier within a d-deep cone
of v, thereby capturing all the local spatial correlation without
compromising on the complexity.

Figure 5 describes the heuristic algorithm to find the optimal
frontier. We first find the depth of all the nodes till d-level deep
by performing a d level breadth first traversal. Next, we find the
i-deep cone for eachi and assume that the support of it is inde-
pendent. We find the cheapest CFF for the i-deep cone and if its
size is smaller than L, it is assigned tof�. We continue till we
find the deepest CFF within the d-deep cone with size less than
L.

We will apply the above algorithm to the graph in Figure 2
for finding a 3-feasible optimal frontier with the maximum depth,
d = 3. In the first iteration of the algorithm, we computeC1

v

(dashed area). We find the cheapest CFF ofC1

v that isfm; n; og.
In the next iteration, we findC2

v (shaded area). The cheapest CFF
for C2

v is shown by the dashed line. Although,C3

v is the entire
graph, the final solution is the same dashed line since the circuit
below it is spatially independent. In the next section, we will
describe an important property of the above algorithm.

5.2 Canonical

During optimization, it is desirable that if two candidates for a
transformation are identical but are represented by different in-
put orders, the power metric should be same for both of them.
Let us consider two n-input AND gate, one connected to signals
x1; : : : ; xn and the other toxn; : : : ; x1. If the power estimation
is non-canonical, it is possible that it could potentially identify
two different frontiers for the two AND gates. In fact, for then!
combinations of the input, it can potentially producen! different
power metric value resulting in the synthesis tool to waste time
proportional ton!. Hence it is desirable that the power metric is
invariant of the input ordering of the circuit.

More importantly, if the power metric is not canonical, the syn-
thesis results may not be reproducible. In an industrial flow, while
synthesizing large circuits, the synthesis is interrupted periodi-
cally for various reasons and restarted. The input ordering of the
circuit in the internal database may be different before and after
the interruption, although the circuit is logically identical. Hence
a non-canonical power metric may drive the synthesis to take two
different optimization paths for the uninterrupted and interrupted
flow and the synthesis process becomes irreproducible. This is
very undesirable since it affects the design convergence cycle ad-
versely and also makes debugging impossible. The importance of
a canonical power metric for driving optimization are:

1. It avoids unnecessary optimization moves that does not
change the circuit.

2. It allows the designer to interrupt the optimization at various
stages and obtain the same final result.

3. It enables designers to debug designs from a previous
checkpoint rather than from the beginning thus saving sev-
eral hours to days of synthesis effort.

Definition 4 Structural canonicity : A power metric is
structurally-canonical if its value for any signal of two circuits,
with isomorphic underlying DAGs, are identical, assuming iden-
tical input probabilities on the primary inputs of both circuits.

Thus if we compute the power metric of any node in a cir-
cuit and then permute its primary inputs, a structurally-canonical
power metric would produce the same value. In simple terms,
the power metric does not depend on the input ordering. One
of the biggest drawback of the previous techniques [7, 2] was that
their power metric were not structurally-canonical. The following
lemmas and theorem prove that our power metric is structurally-
canonical.

Lemma 2 A m-deep coneof a node v in a graphG is unique.

Lemma 3 The cheapest CFF for a fanin cone ofv is unique.

Theorem 3 If two graphs are isomorphic, the algorithm de-
scribed in Figure 5 will produce frontiers equivalent to isomor-
phism.

5.3 Constant Complexity

Lemma 4 The complexity of the algorithm described in Figure 5
is k:m:jV 0

j
2, where V’ is the set of vertices in theCm

v cone and
k is the maximum fanin size of any vertex inCm

v .
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Figure 6: Figure to validate our problem formulation.

The value ofk is equal to the number of input pins of the largest
cell in a technology library and is fixed for a given library. As
jV 0

j is bounded bykd andd is a user-defined constant,jV 0
j does

not depend on the circuit size. Hence our algorithm has constant
complexity (in size of the circuit) for a given technology library.

6 Experimental Results

In this section, we will describe the results of the several experi-
ments we performed. We implemented the exact and the heuristic
algorithms described in Section 4 and Section 5 respectively into
a tool calledPowerDrive. In the experimental results, we will
use mean error to measure the accuracy.Mean error of an al-
gorithm for a circuit corresponds to theaverage absolute error
of the signal probability of all its primary outputs with respect to
the accurate probabilities(Pacc) obtained using global BDDs. For
example, letPopt(x) be the signal probability ofx based on the
support-set obtained by Figure 4 andPO be the primary outputs
of a circuit. Then the mean error of the algorithm in Figure 4 is

given by:mean error = 1

jPOj

X

x2PO

abs(Popt(x)� Pacc(x))

whereabs computes the absolute difference. Since primary out-
puts are expected to have the maximum error, the results reported
are pessimistic. In all our experiments the size of the support-set
was limited to 12.

The first experiment was conducted to validate the problem for-
mulation in Section 4. The results are shown in Figure 6. We
implemented the exact algorithm described in Figure 4 to find the
intermediate support-set of all the primary outputs of the various
MCNC circuits and then computed the probability(Popt) based
on it. The bars labeledOptimal, Feath and Cam represent the
mean error computed from the support-set obtained from the al-
gorithms described in Figure 4, reported in [2] and [7] respec-
tively. The mean error obtained using our optimal algorithm is
less than 0.005 for all circuits but C432. This shows that our
problem formulation was appropriate since solving it restrains the
mean error of node specific power within 0.005. C432 contains
couple of nodes close to the primary inputs where at least 30 paths
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Figure 7: Efficacy of PowerDrive in driving optimization.
(Numbers in top of bar are run time in seconds.)

converge. Being deep inside the circuit, it could not be included
and hence it leads to the inaccuracy in the probability value. The
number of BDDs used by all the three methods were comparable
and were less than 3000 nodes.

In the second experiment, we establish the efficacy of our
algorithm (PowerDrive) described in Figure 5. We computed
the probabilities of all the primary outputs of50 MCNC bench-
marks using PowerDrive (PowDr), Feather (Feath) [2] and Cam
(Cam) [7]. Table 2 tabulates the mean error (scaled by103), the
bdd size to compute it and the runtime of each of the above al-
gorithms for 15 of the circuits. The complete table is excluded
due to shortage of space and is reported in [10].Global tabulates
statistics corresponding to the global bdds. The table shows that
the mean error of Feather [2] and Cam [7] areseveral timesmore
than the mean error of PowerDrive. On an average over50 cir-
cuits, the mean errors of Feather and Cam are85% and 28%
more than that of PowerDrive.C432 produces the maximum
error among all the 50 circuits. PowerDrive is19 times faster
than Feather andtwice as fast as Cam on an average over the 50
circuits. The runtime of PowerDrive is lesser because it uses a
constant complexity algorithm compared to the linear complex-
ity algorithms used by the other two techniques. Also, the BDD
size for calculating the power metric is slightly smaller than that
of the previous approaches. The above experiment demonstrates
that PowerDrive is a superior technique compared to Feather and
Cam both in accuracy and speed.

In the final experiment, we integrated PowerDrive into the low
power driven synthesis tool PowerShake [12, 11]. We used Pow-
erShake driven by PowerDrive and POSE [6] to optimize the
MCNC benchmark circuits, mapped to mcnc.genlib using the
technology mapper present in SIS [13] and used the power es-
timator in SIS to estimate the power(f=20MHz,Vdd = 5V ). The
bar chart in Figure 7 reports the power consumed by circuits op-
timized by POSE and PowerShake normalized with respect to the
power of the original circuit. The objective of the experiment is
not to compare between PowerShake and POSE (comparison re-
ported in [11, 12]) but to show the effectiveness of PowerDrive



Table 2: Comparison of PowerDrive with previous approaches.
Circuit Mean Error (scaled by103) Bdd size Time (seconds)

PowDr Feath Cam PowDr Feath Cam Global PowDr Feath Cam Global
cm150a 0.00 29.80 39.10 3 3 5 34 0.0018 0.0578 0.0025 0.0115
pcler8 0.03 7.49 6.61 158 159 123 240 0.0235 0.0532 0.0198 0.0383
C432 115.66 134.54 115.30 41 170 103 62,681 0.0237 1.6006 0.0525 34.7953
C499 0.00 1.98 0.00 195 1080 242 186,864 0.1261 4.4875 0.2960 19.7204
C880 1.38 14.00 9.31 349 525 419 525,001 0.0495 0.6850 0.0753 36.9677
C1355 0.00 0.00 0.00 269 915 469 4,296,288 0.1452 11.5992 0.4450 706.2347
C1908 0.77 16.99 0.92 80 685 326 98,566 0.0659 4.0065 0.2604 18.0691
my adder 0.00 60.06 21.27 34 34 181 476 0.0148 0.9659 0.0892 0.2822
mult16a 0.00 54.15 12.31 34 34 236 2,911 0.0181 1.2371 0.0977 1.0970
sbc 3.00 10.48 4.12 176 176 936 2,577 0.0758 0.4223 0.1686 0.3579
term1 6.38 19.89 15.12 47 94 119 403 0.0187 0.9299 0.0663 0.2191
misex3c 13.76 32.17 14.06 221 288 297 704 0.0892 0.5597 0.1017 0.3191
cps 23.72 111.03 189.37 957 1470 1306 2,871 0.3077 1.9195 0.4537 1.0273
i9 44.27 65.11 65.43 1918 1785 4663 15,575 0.3250 5.9688 1.0391 1.7016
i10 5.01 24.84 23.53 883 1517 813 8,166,267 0.2977 8.2351 0.5137 1,267.4235
Total 213.98 582.53 516.45 5365 8935 10238 13,361,458 1.5827 42.7281 3.6815 2,088.2647

in guiding PowerShake. First, we notice that PowerDrive has
successfully guided PowerShake to reduce the power oft481 by
95%. Second PowerShake was able to synthesize all the circuits
where POSE (which uses global BDD to estimate power of newly
created nodes during synthesis) could not optimizeo64, i4, mi-
sex3cafter 10 hours. Since PowerDrive uses local BDDs based
on the intermediate support-set, it could estimate power of those
nodes while optimization in PowerShake. Finally, we can see,
certain circuits, (i3, C432, comp), optimized by POSE consume
more power than the initial circuit. This is due to the inaccurate
power estimate based on immediate fanins of nodes in POSE.
PowerDrive, which considers certain amount of local correlation,
does not suffer from the problem. Hence we can conclude that
PowerDrive is an efficient and accurate power estimation tool to
guide power optimization.

7 Summary

In this paper, we proposed a probability-based power metric for
guiding a low power driven synthesis tool. We formally defined
the problem of finding the optimally-correlated L-feasible fron-
tier. We also showed experimentally that solving this problem
exactly provides good estimate of the probability. We also pro-
vided a heuristic solution,PowerDrive to the above problem with
constant complexity. PowerDrive iscanonical, a property very
essential for a power metric used by a power optimization tool.
We showed experimentally on 50 benchmark circuits that our ap-
proach is at leasttwo times faster and28% more accurate than
the best known approach [7]. PowerDrive was able to guide our
low-power driven logic synthesis tool [11] to optimize large cir-
cuits which could not be synthesized by previous reported ap-
proaches [6], thus proving the effectiveness of our power metric.
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