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Abstract Table 1: Moves evaluated during an optimization step in [1].
Circuit | gates| moves | time/gate | estTime
. . . . C432 136 21554 2.03 43810
The computational complexity of a probability-based combi- C499 239 | 36756 217 | 79903
national power metric lies in the creation of a BDD for each C880 221 | 25628 1.45 37121
node in the circuit. In this paper, we formalize the problem of C1355 | 237 | 39930 141 | 56107
finding intermediate support-set which controls the size of BDD. C1908 | 288 | 34654 1.73 | 59907
We propose an exact algorithm to solve it. We also propose an C3540 | 692 | 34654 477 | 513132
heuristic solution,PowerDrive, for estimating power of large C6288 | 2341 | 151937 194 | 294063

circuits. Apart from being more accurate argbveral times

fasterthan [2, 7], PowerDrive possess the unique quality of being

canonical and of constant complexity, a very desirable quality

for a power metric guiding a synthesis tool. Finally, the proposed ~ The rest of the paper is organized as follows: We present the
power metric was able to guide the Synthesis tool [11] to Optimize related work in Section 2. Section 3 prOVideS some definitions.

large circuits which could not be synthesized by POSE [6], thus In Section 4, we solve the problem of finding support-set exactly.
proving the effectiveness of our power metric. We provide a heuristic solution in Section 5. We provide experi-

mental results in Section 6 and conclude in Section 7.

1 Introduction 2 Related Work

Accurate and fast power estimation during the design phase is|n [8], the authors proposed a solution to consider spatial corre-
required to guide power optimization techniques employed to |ation without creating global BDDs. They modeled the correla-
meet the stringent power specifications. The probabilistic tech- tjons usingag-zero Markov chairand propagated them from the
niques [4, 8, 9] are examples of such estimation techniques. Theyinputs to the outputs of the circuit. In a feasibility experiment,
use symbolic simulation in order to produce a set of boolean func- we calculated the number of candidateveswhich are consid-
tions representing conditions for switching at each gate in the cir- ered during a typical optimization step of an industrial synthesis
cuit. These techniques allow the user to cover a large set of pos-tool, BuildGates [1], for various MCNC benchmarks and tabu-
sible input patterns very quickly. Hence probabilistic techniques |ated in Table 1. The columngates time/gateand estTimere-
are used for driving power-driven logic synthesis tools [6]. port the number of gates in the circuit, the average time (in sec-
The complexity of any probability-based combinational power onds/gate) and the total estimated time (in seconds) to compute
estimator lies in the creation of BDD for each node in the circuit. average power (projected from the reported results in [8]). This
Global BDDs cannot be constructed for large circuits. Hence lo- table indicates that the technique is computationally expensive for
cal BDDs are created with an intermediate support-set. In this pa- large MCNC circuits. Moreover, the complexity of the proposed
per, we propose algorithms to identify the intermediate support- technique [8] is superlinear in the size of the circuit. Hence it
set necessary for computing power metrics guiding a logic syn- may be impractical for guiding optimizations of large industrial
thesis tool. We formulate it as a problem of finding an optimally-  circuits.
correlated L-feasible frontier. We propose an exact solution and | [7], Kapoor proposed heuristics to partition the circuit and
experimentally show that solving this problem provides good es- pyild local BDDs to calculate the switching activity of nodes. A
timate of the signal probability. We present a heuristic algorithm  grawback of the method is that the support-set contains either
that is computationally bounded, considers local convergence andjmmediate fanins of the node or the primary inputs. It ignores
is canonical (explained later). We provide experimental results on sypport-sets with internal nodes. In Figure 1, the bold line shows
a wide range of benchmarks. Our approach is general enough tothe desirable support-set since the sigmalndb are indepen-

use any of the power estimation models reported in [8, 9]. Finally gent. But the approach in [7] finds the dashed line as the support-
the scope of this work is not to perform final power estimation of - set when the limit on the support-set is set to 2.

a design but to be used for computing the power metric required |, [2], a new approach is proposed that tries to cover as much

by a low-power driven synthesis tool. reconvergent nodes as possible in order to account for the spatial
+ This research was supported in part by the National Science Foundation COITelation. The basic problem is that the heuristic stops at the
under grant MIP-9320854 and the Semiconductor Research Corporation Shallowest support-set with size larger than the specified maxi-
under contract SRC 96-DP-109. mum value as illustrated in Figure 1.
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Figure 1: Drawback of the method [2] and [7].

3 Definitions Figure 2: lllustrates graph terminologies.

In this section, we will describe the various terminologies used

and the power model assumed in the paper. n(u,Cy) = [{w: w € (fanout(u) NCy)} -1  (2)
Thesignal probabilityps (z) at a signal x is defined as the av- . )
erage fraction of clock cycles in which the steady state &f a In Figure 2, fanin(p) = {a,b}, fanout(p) = {m,n}

andd is a predecessor af. Let C, be the cone marked by
the shaded region. The subcone(f is shown in dashed re-
gion. sup(Cy) = {p,q, f}. C, is 3-feasible but not 2-feasible.

logic high. If a zero-delay model and temporal independence is
assumed, the average power consumed by a signal is given by:

1 . vol(Cy) = 7. FCy = ({q,¢,d},{e1,e2}). p andq are re-
P, = ﬁ.Vd‘d. Z 2.Ci.ps(zi)-(1 — ps(z:)) (1) convergent vertices i€,. The degree of reconvergence of g,
o i n(q, Cv) = 2.

h is the clock periodC: is th | . . | Given_a network A/ with a sources and a sinkt,_a
whereT: is the clock period(; is the total capacitance at signa cut(X, X) [3] is a partition of the vertices ifv” such thats € X

xi, Vaa 1S the supply voltage and n is the total number of signals andt € X. Thevertex cut-seof (X, X), denotedtutset(X, X),

in the circuit. In [8] and [9], the authors have reported power is the set of vertices ifX that are adjacent to some vertexXh

measures which accounts for te_mporal correlz_ition and NON-Z€r0 e ertex cut-sizen(X, X), is the sum of weight of the vertices
delay model, repsectively. In this paper, we will use Equation 1 ; a cutset. A cut X, X) is anL-cutif n(X, X) < L.
for measuring the average power, but our work is also applicable = | Figure 2, s is, the source and is ’the sink of the net-

to the other power models [8, 9]. The focus of this paper is to work. The cut corresponding to the dashed line is given by
computep; efficiently and accurately. cut(X,X) = ({v,m,n, o}, {p, 0, a,b, ¢, d, f, s}). The vertex
3.1 Definitions from Graph Theory cut-set is given byutset(X, X) = {p, ¢, f} and the vertex cut-

o size of the cutis (X, X)) = 3, assuming all vertices have weight
A combinational Boolean network/(V, E) can be represented  f 1. vol(X,X) = 4.

as a directed acyclic graph (DAG) where each verteX irepre-
sents a logic gate and a directed edge(i, riexists if the output
of gate: is an input of gatg. We defineu to be apredecessoof
v if there is a directed path fromto v. If H is a subgraph oV,
its supportsup(H), is the set oflistinctvertices inH which are
either primary inputs or have fanins outsiffe

4 Problem Formulation

The complexity of a power metric considering spatial correlation
is proportional to the BDD size. If we assume that restricting the
support-set of a BDD controls its size, our objective is to iden-

A cone of a signalv of the networkV', C, (V', E'), isasub- iy an L-feasible support-set of a given signal, where L is an user
graph of\ such that 1) ifu € V', u is & predecessor afand 2) defined constant. We would like to find &rfeasiblecone ofv
if w € V', any path fromu to v lies entirely inCy,. A subcone that calculates the signal probability ofas accurately as possi-
of a coneC, is a cone that is also a subgraph(f. A coneC, ble. Since the accuracy ef (v) is very difficult to characterize
is L-feasibleif |sup(C',)| < L. Thevolumeof a coneC, (V; E), based on the underlying Boolean network and it is dependent on
vol(Cly) is [V|. A fanin cone of a vertexv in a network,F'Cl, the set of reconvergence pathshit,, we will use the degree of
is the cone with all the vertices isup(FC.,) being primary in- reconvergence (Equation 2) as a measure of accuracy. Larger the
puts. total degree of reconvergence, more the correlation it will contain
A vertexu is reconvergentf there are more than one disjoint  and better will be the power estimation. Hence we would like
path fromu to a given vertew € V. Ideally, we would like to {0 find that L-feasible cone that maximizes the summation of the

find the amount of spatial correlation afcaptured withina cone  degree of reconvergences and hence captures maximum spatial
Cy. Since we are not aware of an efficient metric for measuring ¢orrelations.

spatial correlation and it is caused by reconvergent paths, we de-  problem Specification An optimally correlated L-feasible

fine a metric based on the latter to measure the spatial correlation.coneof a vertexv, denotedC; (V*, E*), is an L-feasible cone,
such that there is no lesser volume L-feasible cone that has higher

Definition 1 Degree of reconvergenceT he degree of reconver-  degree of reconvergence thétj has. Thus, i, (V, E) is an L-

gence of a vertex in a coneC,, denoted;(u, Cy), is one less feasible cone ob, ) . n(u,Cv) < 3 .n(w,Cy). In

than the number of fanouts of u@,. case of equalitypol(C,) < wol(Cy). The sup(Cy) is called



theoptimal frontier In Figure 2,C, is an optimally correlated 3-
feasible cone of and{p, q, f} is an optimal frontier. In the fol-
lowing section we will describe a divide and conquer algorithm
to find the optimally correlated L-feasible cone.

4.1 Exact Algorithm

Since we will be using network flow algorithms to obtain tig,
we convert the given DAG into a network withas the sink and
connect all the primary inputs of the circuit to a dumsgurce
vertexs (shown by the dashed arrows in Figure 2).

A max-vol, min-cut (X, X), (MVMC), is a cut of a net-
work such that thevertex cut-sizés minimum and thevol(X)

is maximum. Since there can be several min-cuts in a network, NS

the MVMC identifies the one that has the largest number of @

vertices on the sink side. In Figure 2 there are two min-cuts, €] (b)

namely cut(X1,X1) = ({v},{m,n,0,p,q,a,b,c,d, f,s}) Figure 3: Diagram showing sink-chopping of a network.
andcut(X2,X2) = ({v,m,n,o},{p,q,a,b,c,d, f, s}). with

vertex cut-sizef 3. Butcut(X2, X2) is the MVMC of the net- OPTIMALLY CORRFRONTIERG)

work. [3] proved that such cut is unique for a network and de- 1 D> Divide and conquer

scribed a polynomial algorithm to obtain it. We prove the follow- g fijtgs:;joi‘;rm(”);
ing relation between MVMC and optimally correlated cone. 4 if (n=1)
Theorem 1 If C;; is an optimally correlated L-feasible cone with 2 . E‘:u;nL])B“tme;
vertex set Y andX, X) is a MVMC withn(X, X) < L, then 7 return NULL :
Xcy. 8 forj« 1ton
Proof: Excluded due to shortage of space. Refer to [10] for the 1?) ZJ} : J;?gﬁ()l,})b b
proof of all the theorems and lemmas in this paper. 11 fie Optima’”ycorrantier(G,);
From the above theorem, it follows that the cone corresponding 12 it (IsBetterFrontier(f’, BestFront))
to the MVMC (X, X) is a subgraph of the optimally correlated 13 BestFront <+ fJ;
cone. Hence, the optimal frontier is confinedXh So we can 14 retun BestFront;
remove the MVMC from the original network without losing the ) ) ] ) )
optimal frontier. Given a network’ we will define a transforma- Figure 4: An exact algorithm to find the optimal frontier.

tion that removes the sink partition of MVMCX, X) of G and

connects the sink vertaxto cutset(X, X). . . L
cutset(X, X) Theorem 2 The optimal frontier of7 is either fanin(v) or one

Definition 2 Sink-chopping: GivengG, if (X, X) is the MVMC of the optimal frontier op(G*7), whereu; € fanin(v).

of G, the sink-chopped graph, denote@), contains vertices

V = X U {v} and edgesF consists of all the edges ii con- Figure 4 describes the exact algorithm to find the optimal fron-
necting the vertice and extra edges fromutset(X, X) to v. tier of a given graph. It is based on a divide-and-conquer tech-
nique. Based on Theorem 2, the optimal frontier is either the
fanin(v) or one of the optimal frontier g(G*7), that is found
recursively. IsBetterFrontiercomputes the number of reconver-
gent paths in the cone cut by and if it is same as that of the
previousBestFront it compares the volume of the two cones. If
the new frontier is better, it is assignBeéstFront BestFront con-
tains the best amongst the optimal frontiersp¢f*7), for all

Figure 3 illustrates sink-chopping. Given the network, the
MVMC is shown by the shaded region in Figure 3(a). This region
is chopped out and the nodeis added to get the sink-chopped
network as shown in Figure 3(b).

We will now describe the basic principle of the exact algorithm.
We start with the original networl,, performsink-choppingo u; € fanin(v). We returnBestFrontto the previous level of

getGi. If th_? rhnln-cut Size Ity &S Iﬁsz thha_m L we continue the recursion. When the recursion ends, we obtain the optimal fron-
phrocehss _untl t € cut-ﬁlze_excefeM?/MCttl IS P?}'”‘f we may%ssumetier of the original solution. If the original graph had min-cutsize
that the iterative application o algorithm can provide us larger than L fanin(v) is returned.

the optimal frontier. A closer look reveals that the MVMC of
p(G) is always the immediate fanins of since it was the deep- | emma 1 The algorithm described in Figure 4 finds the optimal
est min-cut inG. Figure 3(a) shows the original network with  frontier.

the cutset of the MVMC in dashed bold line. The sink-chopped

network is shown in Figure 3(b). As mentioned above, the min-  The complexity of the above algorithm &l.k|E| for a k-
cutset of the network in Figure 3(b) is the fanin(v) as shown by the feasible graphG with E edges. Although it is polynomial in
dashed line. We overcome this problem by artificially increasing problem size (size of circuit), the constant is large for large val-
the weight of one of the vertices (shaded vertex in Figure 3(b) ) ues of L. We use the above algorithm to validate our problem

in the fanin ofv to infinity. This forces the cut-size gfanin(v) formulation in Section 4. We show in Section 6 that solving the
to infinity and leads to a new cutset (bold line in Figure 3(b)). formulated problem, leads to very accurate estimate of the power.
If w € fanin(v) in G, thenG*" represents the grap@# with In the next section, we describe a heuristic solution to the above

wi(u) = oco. problem.



HEURISTICCORRFRONTIER F'Cy, d, L)
1 D> Ad-deep BFS is performed

2 LabelVertsTill Depth(d);

3 fori <« 1;i < dji++

C? « FindDdeepCone(i);

f « FindCheapestCFF(C});

5.2 Canonical

During optimization, it is desirable that if two candidates for a
transformation are identical but are represented by different in-
put orders, the power metric should be same for both of them.

4
5 . . .
6 Let us consider two n-input AND gate, one connected to signals
7
8

if <L
gc‘*ﬂ:_f;) z1,...,Z, and the other ta:,, ..., z;. If the power estimation
return f*. is non-canonical, it is possible that it could potentially identify

two different frontiers for the two AND gates. In fact, for thé
combinations of the input, it can potentially producedifferent
power metric value resulting in the synthesis tool to waste time
proportional ton!. Hence it is desirable that the power metric is
invariant of the input ordering of the circuit.

More importantly, if the power metric is not canonical, the syn-
In this section, we will describe a constant complexity algo- thesis results may not be reproducible. In an industrial flow, while
rithm of the problem defined in Section 4. The algorithm to find synthesizing large circuits, the synthesis is interrupted periodi-
support-set is local, canonical and bounded in complexity. We cally for various reasons and restarted. The input ordering of the
will gradually explain the importance of each of these properties circuit in the internal database may be different before and after
for a power estimation algorithm guiding a power optimization the interruption, although the circuit is logically identical. Hence
tool. To our knowledge, we are the first to report such an estima- a non-canonical power metric may drive the synthesis to take two
tion algorithm. The algorithm is based on the breadth first search different optimization paths for the uninterrupted and interrupted
and the algorithm described in [5] to find the cheapest correlation flow and the synthesis process becomes irreproducible. This is
free frontier. Acorrelation free frontie{ CFF) of a DAG is a cut- very undesirable since it affects the design convergence cycle ad-
set such that the signals in the cutset are not spatially-correlated.versely and also makes debugging impossible. The importance of

Figure 5: A heuristic algorithm to find the optimal frontier.

5 A Heuristic Solution

The cheapest CFF corresponds to that CFF that has the least vola canonical power metric for driving optimization are:

ume in the sink side of the corresponding cut. The dashed line in
the Figure 2 is the cheapest CFF whereas the c{iisefd, f} is
not.

5.1 Locality of Solution

A depth, denoted d(u,v), for a predecessor u of v is the length of
the longest path from to v. In Figure 3(a), d(q, v)=2 and d(b,
v)=3. The depth of all the nodes in the fanin cone;p#'C,, can

be found by a breadth-first traversal of the fanin cone.

Definition 3 m-deep cone An m-deep cone, denoté&d, of a
node v in a graphG, is a cone of v inG with every node in the
support ofC]* having depth greater than d from v.

The shaded portion in Figure 3(a) is a 1-deep conevdfiereas
the cone ofv above and including the dashed lingdg. We will
confine our search of the optimal frontier within a d-deep cone
of v, thereby capturing all the local spatial correlation without
compromising on the complexity.

Figure 5 describes the heuristic algorithm to find the optimal
frontier. We first find the depth of all the nodes till d-level deep
by performing a d level breadth first traversal. Next, we find the
i-deep cone for eachand assume that the support of it is inde-

pendent. We find the cheapest CFF for the i-deep cone and if its

size is smaller than L, it is assigned f6. We continue till we
find the deepest CFF within the d-deep cone with size less than
L.

We will apply the above algorithm to the graph in Figure 2
for finding a 3-feasible optimal frontier with the maximum depth,
d = 3. In the first iteration of the algorithm, we comput&
(dashed area). We find the cheapest CFEbthat is{m, n, 0}.
In the next iteration, we find'? (shaded area). The cheapest CFF
for C2 is shown by the dashed line. Although? is the entire
graph, the final solution is the same dashed line since the circuit
below it is spatially independent. In the next section, we will
describe an important property of the above algorithm.

1. It avoids unnecessary optimization moves that does not

change the circuit.

. Itallows the designer to interrupt the optimization at various
stages and obtain the same final result.

3. It enables designers to debug designs from a previous
checkpoint rather than from the beginning thus saving sev-

eral hours to days of synthesis effort.

Definition 4 Structural canonicity: A power metric is
structurally-canonical if its value for any signal of two circuits,
with isomorphic underlying DAGs, are identical, assuming iden-
tical input probabilities on the primary inputs of both circuits.

Thus if we compute the power metric of any node in a cir-
cuit and then permute its primary inputs, a structurally-canonical
power metric would produce the same value. In simple terms,
the power metric does not depend on the input ordering. One
of the biggest drawback of the previous techniques [7, 2] was that
their power metric were not structurally-canonical. The following
lemmas and theorem prove that our power metric is structurally-
canonical.

Lemma 2 A m-deep conef a hode v in a grapld7 is unique.
Lemma 3 The cheapest CFF for a fanin conewfs unique.

Theorem 3 If two graphs are isomorphic, the algorithm de-
scribed in Figure 5 will produce frontiers equivalent to isomor-
phism.

5.3 Constant Complexity

Lemma 4 The complexity of the algorithm described in Figure 5
is k.m.|V’|?, where V' is the set of vertices in tid&" cone and
k is the maximum fanin size of any vertex(ff'.



Comparison of error in probabilities Comparison of PowerShake with POSE
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Figure 6: Figure to validate our problem formulation. Figure 7: Efficacy of PowerDrive in driving optimization.

(Numbers in top of bar are run time in seconds.)

The value of is equal to the number of input pins of the larg

cell in a technology library and is fixed for a given library. . converge. Being deep inside the circuit, it could not be included
|V'| is bounded by:“ andd is a user-defined constant,| does and hence it leads to the inaccuracy in the probability value. The

not depend on the circuit size. Hence our algorithm has conswn number of BDDs used by all the three methods were comparable
complexity (in size of the circuit) for a given technology library.  znd were less than 3000 nodes.

In the second experiment, we establish the efficacy of our
6 Experimental Results algorithm PowerDrive described in Figure 5. We computed
the probabilities of all the primary outputs 56 MCNC bench-
In this section, we will describe the results of the several experi- marks using PowerDrivePpwDr), Feather [Feath) [2] and Cam
ments we performed. We implemented the exact and the heuristic(Can) [7]. Table 2 tabulates the mean error (scaled.by), the
algorithms described in Section 4 and Section 5 respectively into bdd size to compute it and the runtime of each of the above al-
a tool calledPowerDrive. In the experimental results, we will  gorithms for 15 of the circuits. The complete table is excluded
use mean error to measure the accurddgan error of an al- due to shortage of space and is reported in [@fbal tabulates
gorithm for a circuit corresponds to tlaverage absolute error statistics corresponding to the global bdds. The table shows that
of the signal probability of all its primary outputs with respectto the mean error of Feather [2] and Cam [7] aexeral timesnore
the accurate probabilitieB..) obtained using global BDDs. For  than the mean error of PowerDrive. On an average 60atir-
example, letP,,.(x) be the signal probability of based on the  cuits, the mean errors of Feather and Cam &6& and 28%
support-set obtained by Figure 4 aRr@ be the primary outputs more than that of PowerDrive(C'432 produces the maximum
of a circuit. Then the mean error of the algorithm in Figure 4 is error among all the 50 circuits. PowerDrive 19 times faster
given by:mean error = ﬁ Z abs(Popi () — Pace(w)) than _Feather an'd\{ice as fast as Cam on an average over the 50
oy circuits. The runtime of PowerDrive is lesser because it uses a
whereabs computes the absolute difference. Since primary out- constant complexity algorithm compared to the linear complex-
puts are expected to have the maximum error, the results reportedty algorithms used by the other two techniques. Also, the BDD
are pessimistic. In all our experiments the size of the support-set Size for calculating the power metric is slightly smaller than that
was limited to 12. of the previous approaches. The above experiment demonstrates
The first experiment was conducted to validate the problem for- that PowerDrive is a superior technique compared to Feather and
mulation in Section 4. The results are shown in Figure 6. We Cam both in accuracy and speed.
implemented the exact algorithm described in Figure 4 to find the  In the final experiment, we integrated PowerDrive into the low
intermediate support-set of all the primary outputs of the various power driven synthesis tool PowerShake [12, 11]. We used Pow-
MCNC circuits and then computed the probabiliy:) based erShake driven by PowerDrive and POSE [6] to optimize the
on it. The bars labele®ptimal Feathand Camrepresent the MCNC benchmark circuits, mapped to mcnc.genlib using the
mean error computed from the support-set obtained from the al- technology mapper present in SIS [13] and used the power es-
gorithms described in Figure 4, reported in [2] and [7] respec- timator in SIS to estimate the power(f=20MHZ;; = 5V"). The
tively. The mean error obtained using our optimal algorithm is bar chart in Figure 7 reports the power consumed by circuits op-
less than 0.005 for all circuits but C432. This shows that our timized by POSE and PowerShake normalized with respect to the
problem formulation was appropriate since solving it restrains the power of the original circuit. The objective of the experiment is
mean error of node specific power within 0.005. C432 contains not to compare between PowerShake and POSE (comparison re-
couple of nodes close to the primary inputs where at least 30 pathsported in [11, 12]) but to show the effectiveness of PowerDrive



Table 2: Comparison of PowerDrive with previous approaches.

Circuit Mean Error (scaled by03) Bdd size Time (seconds)

PowDr Feath Cam | PowDr | Feath| Cam Global | PowDr Feath Cam Global
cml150a 0.00 | 29.80| 39.10 3 3 5 34 | 0.0018 | 0.0578 | 0.0025 0.0115
pcler8 0.03 7.49 6.61 158 159 123 240 | 0.0235| 0.0532| 0.0198 0.0383
C432 115.66 | 134.54 | 115.30 41 170 103 62,681 | 0.0237 | 1.6006 | 0.0525 34.7953
C499 0.00 1.98 0.00 195 | 1080 242 186,864 | 0.1261| 4.4875| 0.2960 19.7204
C880 1.38 | 14.00 9.31 349 525 419 525,001 | 0.0495| 0.6850| 0.0753 36.9677
C1355 0.00 0.00 0.00 269 915 469 | 4,296,288 0.1452 | 11.5992 | 0.4450 706.2347
C1908 0.77 | 16.99 0.92 80 685 326 98,566 | 0.0659 | 4.0065 | 0.2604 18.0691
my-adder 0.00 | 60.06 | 21.27 34 34 181 476 | 0.0148 | 0.9659 | 0.0892 0.2822
multl6a 0.00 | 54.15| 1231 34 34 236 2,911 | 0.0181| 1.2371| 0.0977 1.0970
shc 3.00 | 10.48 4.12 176 176 936 2,577 | 0.0758 | 0.4223| 0.1686 0.3579
terml 6.38 | 19.89 | 15.12 47 94 119 403 | 0.0187| 0.9299 | 0.0663 0.2191
misex3c 13.76 | 32.17 | 14.06 221 288 297 704 | 0.0892| 0.5597 | 0.1017 0.3191
cps 23.72 | 111.03| 189.37 957 | 1470 | 1306 2,871 | 0.3077 | 1.9195| 0.4537 1.0273
i9 4427 | 65.11| 65.43 1918 | 1785 | 4663 15,575 | 0.3250 | 5.9688 | 1.0391 1.7016
i10 5.01 | 24.84| 23.53 883 | 1517 813 | 8,166,267| 0.2977| 8.2351| 0.5137 | 1,267.4235
Total 213.98 | 582.53 | 516.45 5365 | 8935 | 10238 | 13,361,458| 1.5827 | 42.7281 | 3.6815 | 2,088.2647

in guiding PowerShake. First, we notice that PowerDrive has [3] J. Cong and Y. Ding. FlowMap: An optimal technology
successfully guided PowerShake to reduce the powet8df by mapping algorithm for delay optimization in lookup-table
95%. Second PowerShake was able to synthesize all the circuits based FPGA designs.IEEE Transactions on Computer
where POSE (which uses global BDD to estimate power of newly Aided Design13(1):1-12, Jan. 1994.

created nodes during synthesis) could not optinoig4, i4, mi- [4] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estima-
sex3cafter 10 hours. Since PowerDrive uses local BDDs based tion of average switching activity in combinational and se-
on the intermediate support-set, it could estimate power of those quential circuits. InProceedings of the Design Automation
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