
1.  ABSTRACT
In this paper we present a new technology
mapping algorithm for use with complex PLDs
(CPLDs), which consist of a large number of
PLA-style logic blocks. Although the
traditional synthesis approach for such devices
uses two-level minimization, the complexity of
recently-produced CPLDs has resulted in a
trend toward multi-level synthesis. We describe
an approach that allows existing multi-level
synthesis techniques [13] to be adapted to
produce circuits that are well-suited for
implementation in CPLDs. Our algorithm
produces circuits that require up to 90% fewer
logic blocks than the circuits produced by a
recently-published algorithm.

1.1  Keywords
PLA-style logic blocks, programmable logic devices,
technology mapping.

2.  INTRODUCTION
Field-programmable gate arrays (FPGAs) and complex
programmable logic devices (CPLDs) have become widely
used for the implementation of digital circuits, with each
type of chip representing about half of a two billion dollar
industry. FPGAs and CPLDs are user-programmable chips
that consist of an array of logic blocks and a configurable
interconnection network. Most FPGAs have logic blocks
based on look-up-tables (LUTs) [14][2], and some have
multiplexer-based logic blocks [1]. CPLDs have PLA-style
logic blocks [3][2].

In recent years, synthesis for look-up-table-based FPGAs
has been an active area of research and development. Many
LUT-based technology mapping algorithms have been
proposed. Some of these algorithms focus on minimizing
either area [8][9] or depth [4][10], while others allow a user

to explore the area/depth trade-off [5]. By contrast, very little
has been published on synthesis for CPLDs. Several CAD
tool vendors offer products that can perform technology
mapping for CPLDs, but the algorithms are proprietary and
are not publicized. This paper describes a new CAD tool,
called TEMPLA, that performs technology mapping for
devices with PLA-style logic blocks.

The goal of our technology mapping algorithm is to
minimize the number of logic blocks required to implement
the resulting circuits, where each logic block has the
structure shown in Figure 1. The block is characterized by
the tuple (I, P, O) where the parametersI, P, andO represent
the number of block inputs, product terms, and outputs,
respectively. Each output of the block has an associated flip-
flop which can either be used or by-passed. Each  in the
figure represents a programmable switch. The block in the
figure can be adapted to represent the logic blocks in most
commercially-available CPLDs. As an example, in Section
4.4 we discuss using our approach to technology mapping
for the CPLDs available from Vantis (AMD) [3].

This paper is organized as follows: Background and related
work is discussed in Section 3. We present our technology
mapping algorithm in Section 4. The results of a comparative
experimental study are given in Section 5. Final remarks and
suggestions for future work are provided in Section 6.

3.  BACKGROUND AND RELATED WORK
The combinational part of a digital circuit can be represented
by a directed acyclic graph (DAG). Each node in the DAG
represents a single logic function in the circuit; the edges in
the DAG represent dependencies between logic functions.
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Figure 1. PLA-Style Logic Block.
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The logic function associated with a node in a DAG can be
represented in sum-of-products (SOP) form.

PLA-style blocks are referred to as coarse-grained logic
blocks because they typically have a large number of inputs,
and hence can realize a large number of different logic
functions. Since a PLA-style block contains a
programmable AND-array followed by an OR-array, the
traditional approach for synthesis of circuits for
implementation in such blocks uses two-level minimization.
This means that the logic functions in a circuit are collapsed
into sum-of-products form. Modern CPLDs contain a large
number of PLA-style blocks, with currently-available
devices containing up to about 100 blocks. Such large chips
allow the implementation of complex circuits for which
two-level minimization is not efficient. Hence, the recent
trend for synthesis when targeting CPLDs is to make use of
multi-level synthesis.

Our approach to synthesis of circuits for realization in PLA-
style blocks represents a combination of techniques. We use
multi-level logic optimization and traditional technology
mapping as a first step. Then, since it is not feasible to
directly use traditional technology mapping for PLA-based
architectures, as discussed below, wepartially-collapse the
resulting circuit to make efficient use of PLA-style blocks.
We describe our algorithm in detail in the next section.

In traditional technology mapping, a library is used to
specify all of the logic functions that can be used in the
resulting circuit. This approach is not feasible for PLA-
based architectures, because the library would be too large
to be repetitively searched during technology mapping. One
of the few publicized approaches for mapping circuits into
PLA-style blocks is found in [11]. It adapts a LUT-based
technology mapper and sets the number of LUT inputs to
the number of PLA-style block inputs. Then, any node
containing more product terms than allowable in the PLA-
style block is decomposed into smaller nodes. Finally, the
nodes are packed into the multi-output PLA-style blocks.

4.  TEMPLA: A TECHNOLOGY
MAPPING ALGORITHM FOR LARGE
COMPLEX PLDS
In TEMPLA, the technology mapping problem is broken
into three phases: performing an optimal tree mapping,
heuristic partial collapsing, and bin packing. This
algorithmic flow is similar to that of the Chortle-crf
technology mapper [9] for LUT-based architectures.

4.1  Phase I: Optimal Tree Mapping
Technology mapping begins by partitioning a circuit’s DAG
into a forest of fanout-free trees. This is accomplished by
identifying the nodes within the DAG that have an out-
degree greater than one, and using these nodes as ‘breaking
points’, as illustrated in Figure 2. The reason for this step is
to divide the technology mapping problem into smaller and
simpler sub-problems. Technology mapping for fanout-free
trees is simpler because no node in a fanout-free tree has an
out-degree greater than one and, therefore, it is not

necessary to consider replication of logic at this juncture of
the algorithm.

Primary input nodes are added to each of the fanout-free
trees by modifying them in the following way: for each leaf
vertex, , in a fanout-free tree, , a new primary
input node, , is added to the vertex set . An edge,

, is created and added to the edge set . The
primary input node  is a dummy node and implements no
logic function. Before explaining the algorithm further, we
must define several terms:

feasible node - a node implementing a single combinational
logic function with the property that when simplified, it has
less than or equal toI inputs and less than or equal toP
product terms. We use the two-level logic minimization
provided by Espresso [7] to simplify combinational nodes.

feasible subtree - a subtree of a fanout-free tree with the
property that it can be collapsed into a single feasible node.
Feasible subtrees are not allowed to possess any of the
dummy primary input nodes.

cone at  - a subtree of a fanout-free tree consisting of a
node, , and all of ’s predecessors.

size of node  - the size of a node with  product terms and
 inputs is equal to .

After the partitioning of the DAG, dynamic programming
[6] is used to map each fanout-free tree into a new tree
possessing the minimum number of feasible nodes. The
trees in the forest can be mapped in any order.

To map a fanout-free tree, , it is traversed in a
bottom-up (leaves to root) manner. As each node, , is
visited in turn, the algorithm proceeds to find the set, ,
of all feasible subtrees of  rooted at . A cost is computed
for each feasible subtree and the feasible subtree of
minimum cost is selected and stored at node .  is
an integer that refers to this minimum cost.

Primary input nodes implement no logic function and are
assigned a cost of zero. All other nodes in  initially have
no cost assigned. Three steps are performed repetitively
until all of the nodes in  have been assigned a cost.

Step 1: Select a node, , from  that has not yet been
assigned a cost but whose fan-in nodes have been assigned a
cost (this implies a bottom-up tree traversal).
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Figure 2. Partitioning a DAG into a forest of fanout-free trees.
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Step 2: Determine  - the set of all feasible subtrees
rooted at .

Step 3: Assign a cost to node  using the expression:

where  is a feasible subtree rooted at
belonging to the set ;  is the set of nodes in the
fanout-free tree, , that are not nodes in the
feasible subtree  but that are inputs to nodes in . More
formally:

In Equation (1),  represents the minimum number
of feasible nodes needed to implement the cone at . Each
subtree, , in  can be collapsed into one feasible node
in the mapping solution; this is the reason for the 1 inside
the brackets of Equation (1). The summation term tallys the
costs of nodes inT that are inputs to nodes in the subtree .
The  function selects the feasible subtree rooted atn
that results in the minimum-cost mapping of the cone at .
Figure 3 shows a node, , along with three feasible subtrees
rooted at . The cost of each of ’s predecessors is shown
internal to each node. The last node to be assigned a cost is
the root of the fanout-free tree being mapped.

Steps 1 to 3 are repeated until all of the nodes have been
assigned a cost, at which point the final mapping solution
for the tree is specified according to the minimum-cost
feasible subtree stored at each node. The final solution is
extracted by first considering the root, , of the original
fanout-free tree. The minimum-cost feasible subtree stored
at the root is implemented as a new feasible node in the
mapping solution. Nodes in  that are inputs to this new
feasible node are then added to a node set,M. Mapping
proceeds by removing a node, , from , implementing
the subtree stored at  as a new node in the mapping

solution, and lastly, identifying nodes in  that are inputs to
the newly created node and adding them to the setM. This
process continues until  contains only primary input
nodes at which time a network with the minimum number of
feasible nodes has been created to implement the function of
the original tree. An example of the mapping solution
produced by phase I of TEMPLA for a tree in a real circuit
is shown in Figure 4.

One aspect of Step 2 of the algorithm has to be mentioned.
A recursive algorithm is used to find . The constraint
that a feasible subtree must have a limited number of
product terms adds substantial complexity to the problem.
For example, consider the case of finding the set of feasible
subtrees for a node, , with two fanin nodes,  and .
Assume that the subtree consisting of  and  is a feasible
subtree but that the subtree consisting of  and  is not
feasible because it has more thanP product terms.
Complexity is introduced because the infeasibility of the
and  subtree does not imply the infeasibility of the  and

 and  subtree. Specifically, then andA andB subtree
may be feasible because the subtree consisting ofn andA
may simplify into a feasible node containing fewer product
terms than were originally in noden. If we compare this
problem to technology mapping for look-up-tables, for
which only the number of inputs to the block needs to be
considered, it is clear that technology mapping for PLA-
style blocks has added complexity.

After performing phase I on all of the fanout-free trees
within a circuit’s DAG, the mapping solutions for each tree
are put back together into a complete circuit. The algorithm
then considers replacing each node in the circuit with its
complemented form. This can be beneficial if the
complemented form of a node contains fewer product terms
than its uncomplemented form, and therefore, this
optimization is considered after each of our algorithm’s
three phases. Phase II attempts to reduce the number of
nodes in the circuit by collapsing nodes across tree
boundaries.

4.2  Phase II: Heuristic Partial Collapsing
Any node that can be collapsed into all of its fanout nodes
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can be eliminated, provided that all nodes remain feasible
after the collapsing. This introduces another optimization
problem since collapsing some nodes into their fanout nodes
may preclude the possibility of collapsing other nodes into
their fanout nodes. Several criteria were studied empirically
using 30 benchmark circuits to determine how best to
choose nodes to collapse. A total of 19 of the 30 circuits
used in this study are large MCNC benchmarks [15], 10
circuits are HDL specifications developed by the authors,
and one circuit is a processor benchmark from the PREP
synthesis suite [12]. The criteria listed below refer to nodes
to be collapsed into their fanout nodes, and not the new
node(s) that would exist after collapsing is done. The
criteria considered are:

1. Inputs - prefer to collapse nodes with fewer inputs.

2. Product terms - prefer to collapse nodes with fewer
product terms.

3. Node size - prefer to collapse small nodes.

4. Fanout - prefer to collapse nodes with low fanout.

To evaluate the criteria, each was applied individually as the
selection criteria for partial collapsing. The number of
circuit nodes before and after collapsing was determined
and a percentage reduction was computed for each
benchmark circuit. These percentages were then averaged;
hence, each circuit was treated equally in the comparison.
The results of this experiment showed that each of the
criteria performed similarly, on average. We decided to use
node size as the primary criteria for selecting nodes to
collapse, with fanout used as a secondary criteria.

Since phase II uses a heuristic approach when choosing
nodes to collapse, we attempted to evaluate the quality of
our solution. To do this, we implemented an exhaustive
algorithm based on the branch-and-bound method to
perform the equivalent of phases I and II. Although the
exhaustive approach could be used only for small circuits,
due to its time-complexity, it revealed an interesting
property of the problem being solved. Recall that the PLA-
style blocks may have multiple outputs. For such blocks,
comparing our heuristic solution to the exhaustive solution
revealed that it is sometimes best to limit the size of nodes
created during phase II to better facilitate the packing of
nodes into multi-output blocks. TEMPLA was modified to
deal with this issue as discussed below.

When a node is collapsed into its fanout nodes, the sum of
the sizes of the resultant nodes after collapsing may be
larger than the sum of the sizes of nodes before collapsing.
The TEMPLA algorithm allows a user to limit this size
increase by varying the parameter  in the following
relation:

where  is the node to be collapsed into its fanout nodes;
is the set of ’s fanout nodes before any collapsing; and

is the set of ’s fanout nodes after  has been collapsed into
them. The algorithm will not collapse a node into its fanout
nodes if Relation (3) evaluates false.

When the logic blocks in the target architecture have only
one output,  should be set to a large number, which places
no restrictions on the size of nodes after collapsing.
However, for multi-output logic blocks, it may be
advantageous to set  to a smaller value. This was
investigated experimentally in the context of the third phase
of our algorithm, and the results are shown in the next
section.

4.3  Phase III: Bin Packing
The final phase of TEMPLA packs circuit nodes into the
multi-output blocks available in the target architecture. This
is accomplished using a first-fit-decreasing bin packing
algorithm that attempts to maximize the number of shared
inputs between nodes that are packed into the same logic
block. The bin packing algorithm used is described using
pseudo code in Figure 5. Single input nodes that implement
inverters are ignored during bin packing because signals can
be inverted for ‘free’ in PLA-style logic blocks, since each
input to the block is available in both true and
complemented form.

To investigate what value of  in Relation (3) is appropriate
for multi-output blocks,  was varied while 30 benchmark
circuits were mapped into logic blocks with the parameters
(10, 12, 4). The number of blocks needed to implement each
circuit was compared to that attained when  was set to a
large value (unrestricted collapsing) and a percentage
decrease in the number of logic blocks was computed. The
average percentage decrease over all 30 circuits is shown in
Table 1.

The results in Table 1 suggest that it is not beneficial to pack
as much logic as possible into each feasible node before
packing the nodes into multi-output logic blocks. Setting
equal to 1.5 is the best choice when targeting blocks with
four outputs.

4.4 Adapting TEMPLA to Target the Vantis
(AMD) Mach 4 [3]

As an example of how TEMPLA can be applied to a
commercial CPLD product, this section describes its use for
the Vantis (AMD) Mach 4 CPLDs [3]. Each logic block in
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the Mach 4 has 33 inputs, 90 product terms, and 16 outputs.
Eighty of the 90 product terms are grouped into 16 clusters
of five and these product terms are available to implement
combinational logic. Each of the 16 ‘OR gates’ in the logic
block is allocated a cluster of five product terms; however,
clusters may be redirected from an OR gate to another
adjacent OR gate (leaving one OR gate unused). A
maximum of 20 product terms are allowed to feed a single
OR gate.

Phases I and II of TEMPLA can be used to create nodes that
pack efficiently into Mach 4 logic blocks by settingI equal
to 33 andP equal to 20. These first two phases could be
augmented with cost functions to reflect the notion that a
node with between one and five product terms costs less to
implement than a node with between six and ten product
terms, since a product term cluster would need to be
redirected in the latter case. The cost of a node would be
proportional to the number of product term clusters that
need to be redirected to implement it. Nodes could be
packed into the Mach 4 logic blocks using a slightly
modified version of phase III of TEMPLA. Hence, we
believe that relatively few changes to our algorithm would
be required for it to efficiently target the Mach 4
architecture.

5.  EXPERIMENTAL RESULTS
Our algorithm has been implemented in the C language
within the SIS [13] framework, allowing it to access the I/O
routines and two-level logic minimization algorithms within
SIS. To assess the quality of mapping solutions produced by
our tool, it was compared with the approach used in [11],
called DDMAP. The first step of DDMAP is to apply a look-
up-table technology mapper; we used Level-Map [8], which
minimizes the number of look-up-tables needed, to perform
this initial mapping.

Table 2 shows the results when the technology mappers are
used to map circuits into PLA-style blocks with the
parameters (10, 12, 4). These parameters were chosen based
on previous research in [11], which showed that logic
blocks with 8-10 inputs, 12-13 product terms, and 3-4
outputs are the most area-efficient PLA-style logic blocks.

The results for 15 of the 30 circuits used in this study are
shown in the table. Before applying TEMPLA or DDMAP,
each of the circuits was synthesized using the Synopsys
Design Compiler. This resulted in an optimized multi-level
netlist of gates from an intermediate library. The
intermediate library consists of elements suitable for
mapping circuits into PLA-based architectures. The first
column in the table lists the name of each benchmark
circuit. The second lists the number of logic blocks needed
to implement each circuit when TEMPLA is used. The third
column shows the running time in seconds for TEMPLA on
a 300 MHz SPARCstation. The fourth column gives the
results for DDMAP; a percentage is given in brackets which
represents the amount of additional logic blocks needed to
implement each circuit in comparison with TEMPLA. On
average, when the 15 circuits shown in Table 2 are mapped
using DDMAP, they require 90% more blocks than when
TEMPLA is used. Over all 30 circuits considered, the
DDMAP solutions contained 93.8% more blocks on
average.

Notice that TEMPLA performs poorly for the benchmark
‘ex5p’. For this circuit, DDMAP produces a solution with
nearly 80% fewer blocks than TEMPLA. The ex5p circuit is
a combinational circuit possessing 8 primary inputs, and 63
primary outputs. Since the number of inputs to the circuit is
less than the number of inputs to the logic blocks in the (10,
12, 4) architecture, Level-Map produces a mapping
containing 63 nodes: one node for each primary output.
Level-Map produces such a mapping because it is able to
deal effectively with reconvergent paths within circuits.
Furthermore, for this circuit, most of the nodes in the Level-
Map solution happen to be feasible nodes. Many of the
nodes have common inputs, allowing several nodes to be
packed into each 4-output logic block. To verify that the
exploitation of reconvergent paths was the reason for the
superior mapping, the circuit was mapped with the LUT-
based technology mapper, Chortle-crf [9], which deals with
reconvergence in only a limited way. Chortle-crf produced a
mapping containing 363 nodes which is significantly greater
than the 63 nodes in the Level-Map solution. Since
TEMPLA breaks up a circuit into fanout-free trees, it is not
able to exploit reconvergent paths effectively, and hence,

nodeSet  Set of all nodes in network (minus single input inverters)
while (nodeSet is not empty) {

plaBlock  empty block /* allocate a new PLA-style logic block */
nodeSel  largest node in nodeSet (node size = number of inputsx number of product terms)
Add nodeSel to plaBlock
Remove nodeSel from nodeSet
while (nodeSet is not empty and there are nodes in nodeSet that can fit into plaBlock) {

nodeSel  node from nodeSet that has the largest number of inputs in common with the nodes
already in plaBlock; the node must be able to fit into plaBlock; use node size to break ties

Add nodeSel to plaBlock
Remove nodeSel from nodeSet
}

}
Figure 5. Maximum shared input bin packing algorithm.
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produces an inferior solution for this circuit.

6.  FINAL REMARKS AND FUTURE WORK
In this paper we presented a new technology mapping CAD
tool for CPLDs with a large number of PLA-style logic
blocks. Our algorithm breaks the technology mapping
problem into three phases: optimal tree mapping, heuristic
partial collapsing, and bin packing. The experimental study
described in the previous section shows that our tool
produces mapping solutions containing fewer logic blocks
than solutions produced by a recently-published technique.

One direction for future work is to modify our algorithm to
target a specific commercially available CPLD, as discussed
in Section 4.4, and compare the mapping results to those
produced by existing commercial CAD tools. Since
development of CPLDs that contain sufficient numbers of
PLA-style blocks to benefit from multi-level synthesis has
only recently come about, we believe that synthesis issues
for such chips is an important area for future research.
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Table 2: Experimental results for (10, 12, 4) architecture.

Circuit
TEMPLA
(# blocks)

TEMPLA
running

time
(seconds)

DDMAP [11]
(# blocks

(% more))

alu4 155 29.3 199 (28.4)

apex4 193 30.2 193 (0.0)

clma 957 815.4 1458 (52.4)

cps 120 18.3 159 (32.5)

dalu 64 9.0 102 (59.4)

ex5p 132 18.8 27 (-79.5)

misex3 154 27.8 214 (39.0)

pdc 618 281.6 1221 (97.6)

s38417 603 495.2 1208 (100.3)

seq 229 52.8 337 (47.2)

fir 249 123.3 1424 (471.9)

fsm8_8_13 49 5.5 58 (18.4)

pmac 237 126.6 911 (284.4)

psdes 151 37.0 301 (99.3)

sort 138 29.8 275 (99.3)

Average over 15
circuits above:

90%

Average over all
30 circuits: 93.8%
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