Technology Mapping for Large Complex PLDs

Jason Helge Anderson and Stephen Dean Brown
Department of Electrical and Computer Engineering
University of Toronto
10 King’s College Road
Toronto, Ontario, Canada M5S 3G4

{janders|brown}@eecg.toronto.edu

1. ABSTRACT to explore the area/depth trade-off [5]. By contrast, very little
In this paper we present a new technology has been published on synthesis for CPLDs. Several CAD
mapping algorithm for use with complex PLDs ~ ©©° V.e”dforscc;,ﬁl_eé prgd”ﬁs tlhat can perform I?Chno'ogﬁ
CPLDs), which consist of a large number of mapping for GPLDs, but the algorithms are proprietary an

(’ g are not publicized. This paper describes a new CAD tool,

PLA_-_style logic b|0_CkS- Although the _ called TEMPLA that performs technology mapping for
traditional synthesis approach for such devices devices with PLA-style logic blocks.

uses two-level minimization, the complexity of the goal of our technology mapping algorithm is to

recently-produceo_l CPLDs has resulted ina _ minimize the number of logic blocks required to implement
trend toward multi-level synthesis. We describe the resulting circuits, where each logic block has the
an approach that allows existing multi-level structure shown in Figure 1. The block is characterized by

the tuple [, P, O) where the parametersP, andO represent
the number of block inputs, product terms, and outputs,
respectively. Each output of the block has an associated flip-

synthesis techniques [13] to be adapted to
produce circuits that are well-suited for

implementation in CPLDs. Our algorithm flop which can either be used or by-passed. Bach in the
produces circuits that require up to 90% fewer figure represents a programmable switch. The block in the
Iogic blocks than the circuits produced by a figure can be adapted to represent the logic blocks in most
recently-published algorithm. commercially-available CPLDs. As an example, in Section
4.4 we discuss using our approach to technology mapping
1.1 Keywords for the CPLDs available from Vantis (AMD) [3].
PLA-style logic blocks, programmable logic devices,this paper is organized as follows: Background and related
technology mapping. work is discussed in Section 3. We present our technology
2. INTRODUCTION mapping algorithm in Section 4. The results of a comparative

eprerimental study are given in Section 5. Final remarks and

Field-programmable gate arrays (FPGAs) and compl Suggestions for future work are provided in Section 6.

programmable logic devices (CPLDs) have become widel
used for the implementation of digital circuits, with each
type of chip representing about half of a two billion dollar
industry. FPGAs and CPLDs are user-programmable chif ;
that consist of an array of logic blocks and a configurabli
interconnection network. Most FPGAs have logic blocks
based on look-up-tables (LUTs) [14][2], and some have
multiplexer-based logic blocks [1]. CPLDs have PLA-style
logic blocks [3][2].

In recent years, synthesis for look-up-table-based FPGA ;
has been an active area of research and development. Me 1y
LUT-based technology mapping algorithms have beel
proposed. Some of these algorithms focus on minimizing I Inputs
either area [8][9] or depth [4][10], while others allow a user

Swla} 10npoid d

N
O Outputs
Figure 1. PLA-Style Logic Block.

3. BACKGROUND AND RELATED WORK

The combinational part of a digital circuit can be represented
by a directed acyclic graph (DAG). Each node in the DAG
represents a single logic function in the circuit; the edges in
the DAG represent dependencies between logic functions.

35" Design Automation Conference ®
Copyright ©1998 ACM
1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

The logic function associated with a node in a DAG can be
represented in sum-of-products (SOP) form.

Out-degree = 2

©
PLA-style blocks are referred to as coarse-grained logic
blocks because they typically have a large number of inputs, .> (D) (6)
and hence can realize a large number of different logic
functions. Since a PLA-style block contains a (5) S;g
programmable AND-array followed by an OR-array, the '>
traditional approach for synthesis of circuits for
implementation in such blocks uses two-level minimization. © @ 2 @ 3 4
This means that the logic functions in a circuit are collapsed DAG Forest of fanout-free trees
into sum-of-products form. Modern CPLDs contain a large
number of PLA-style blocks, with currently-available Figure 2. Partitioning a DAG into a forest of fanout-free trees
devices containing up to about 100 blocks. Such large chipsiecessary to consider replication of logic at this juncture of
allow the implementation of complex circuits for which the algorithm.
two-level minimization is not efficient. Hence, the recent

trend for synthesis when targeting CPLDs is to make use of°fimary input nodes are added to each of the fanout-free
multi-level synthesis. trees by modifying them in the following way: for each leaf

vertex,n , in a fanout-free tre&, = (V, E) , a new primary
Our approach to synthesis of circuits for realization in PLA- input node,p , is added to the vertex 3t . An edge,
style blocks represents a combination of techniques. We use = (p), is created and added to the edgeBet . The
multi-level logic optimization and traditional technology primary input nodg is a dummy node and implements no
mapping as a first step. Then, since it is not feasible tojogic function. Before explaining the algorithm further, we
directly use traditional technology mapping for PLA-based must define several terms:

architectures, as discussed below, paetially-collapsethe .)) . L
resulting circuit to make efficient use of PLA-style blocks. feasible node- a node implementing a single combinational

We describe our algorithm in detail in the next section. logic function with the property that when simplified, it has
less than or equal tbinputs and less than or equal Ro

In traditional technology mapping, a library is used to product terms. We use the two-level logic minimization
specify all of the logic functions that can be used in the provided by Espresso [7] to simplify combinational nodes.
resulting circuit. This approach is not feasible for PLA- _ _

based architectures, because the library would be too largéeasible subtree- a subtree of a fanout-free tree with the
to be repetitively searched during technology mapping. OneProperty that it can be collapsed into a single feasible node.
of the few publicized approaches for mapping circuits into F€asible subtrees are not allowed to possess any of the
PLA-style blocks is found in [11]. It adapts a LUT-based dummy primary input nodes.

technology mapper and sets the number of LUT inputs to¢cone atn - a subtree of a fanout-free tree consisting of a
the number of PLA-style block inputs. Then, any node node n , and all o 's predecessors.

containing more product terms than allowable in the PLA-))

style block is decomposed into smaller nodes. Finally, theSize of noden - the size of a node with product terms and
nodes are packed into the multi-output PLA-style blocks. | inputs is equal tg x i

4. TEMPLA: A TECHNOLOGY After the partitioning of the DAG, dynamic programming

[6] is used to map each fanout-free tree into a new tree
MAPPING ALGORITHM FOR LARGE possessing the minimum number of feasible nodes. The
COMPLEX PLDS trees in the forest can be mapped in any order.
In TEMPLA, the technology mapping problem is broken

into three phases: performing an optimal tree mapping, 10 Map a fanout-free tred, = (V, E) , itis traversed in a

heuristic partial collapsing, and bin packing. This Pottom-up (leaves to root) manner. As each nade, , is
algorithmic flow is similar to that of the Chortle-crf Visitéd in turn, the algorithm proceeds to find the Sgt) :
technology mapper [9] for LUT-based architectures. of all feasible sybtreesd‘f rootedrat .Acpst is computed

for each feasible subtree and the feasible subtree of
4.1 Phase I: Optimal Tree Mapping minimum cost is selected and stored at nod€ost() is

Technology mapping begins by partitioning a circuit's DAG an integer that refers to this minimum cost.

into a forest of fanout-free trees. This is accomplished by . ; : . .

. e o Primary input nodes implement no logic function and are
|C<ijent|fy|ng t?e tnhodes W|th|ndthe_ DA&? that gave ar‘1bouti—(_ assigned a cost of zero. All other nodes/in initially have
egree greater than one, and using these nodes as ‘breaxing, ¢t assigned. Three steps are performed repetitively

points’, as illustrated in Figure _2. The reason for this step IS ntil all of the nodes iV have been assigned a cost.
to divide the technology mapping problem into smaller and

simpler sub-problems. Technology mapping for fanout-free Step 1: Select a node, , froM that has not yet been
trees is simpler because no node in a fanout-free tree has assigned a cost but whose fan-in nodes have been assigned a
out-degree greater than one and, therefore, it is notcost (this implies a bottom-up tree traversal).

Step 2: DetermineS(n) - the set of all feasible subtrees
rooted atn . Root

Feasible nodes
with < 8 inputs and 8

Step 3: Assign a cost to node using the expression: product terms

g g
Cost(n = minT.DS(n)%H ()Cosi(uod (1)
uld T

where T' = (V',E') is a feasible subtree rooted rat
belonging to the sef(n) FEI(T') is the set of nodes in the
fanout-free tree, T = (V, E) , that are not nodes in the
feasible subtred” but that are inputs to nodeE'in . More
formally:

Primary
inputs

FI(T) = {vivOV,vOV,(v,w)OE wO V} (2) Figure 4. Mapping solution for a tree in MCNC circuit
s5378 forl=8, P=8.

In Equation (1),Cost{) represents the minimum number solution, and lastly, identifying nodesih that are inputs to
of feasible nodes needed to implement the cone at . Eaclthe newly created node and adding them to théséthis
subtree,T' ,irS(n) can be collapsed into one feasible nodeprocess continues untiM contains only primary input
in the mapping solution; this is the reason for the 1 insidenodes at which time a network with the minimum number of
the brackets of Equation (1). The summation term tallys thefeasible nodes has been created to implement the function of
costs of nodes i that are inputs to nodes in the subffée . the original tree. An example of the mapping solution
The min function selects the feasible subtree rooted at produced by phase | of TEMPLA for a tree in a real circuit
that results in the minimum-cost mapping of the cone at .is shown in Figure 4.

FigE[Jrg 3tShOV.\|fia nodte,f ! alﬁn% with thrge feasible_sub;ree%ne aspect of Step 2 of the algorithm has to be mentioned
rooted atn . The cost of each of ’s predecessors is show . : ; . L
internal to each node. The last nqde to be assigned a cost%‘ ;tec:r?‘lav;esgllgeorslt:ggr ; ur?]idsttohg\rg 2 i rﬁijcl;:hde ﬁﬁ%sgﬁméf
the root of the fanout-free tree being mapped. product terms adds substantial complexity to the problem.
For example, consider the case of finding the set of feasible
subtrees for a nodey , with two fanin nodds, &hd
\ Noden Assume that the subtree consistinghof @&nd is a feasible
’6‘“’ a— Cost of subtree = subt_ree but that thg subtree consistinghof Bnd is not
Qv 1+1+4+6=12 feasible because it has more th&n product terms.
Cost of subtree = Complexity is introduced because the infeasibility of the
1+1+6+3=11(bes) 4ndB subtree does not imply the infeasibility of the and
A and B subtree. Specifically, tireand A andB subtree
may be feasible because the subtree consistimgaoid A
may simplify into a feasible node containing fewer product
terms than were originally in node If we compare this
problem to technology mapping for look-up-tables, for
which only the number of inputs to the block needs to be
considered, it is clear that technology mapping for PLA-
style blocks has added complexity.

Costofsubtree=1+1+1+4+6=13

Cost

Primary input .
After performing phase | on all of the fanout-free trees

Figure 3. Computation of feasible subtree cost. within a circuit's DAG, the mapping solutions for each tree
are put back together into a complete circuit. The algorithm
) . . i . ®Cthen considers replacing each node in the circuit with its
assigned a cost, at which point the final mapping solutlonComplemented form. This can be beneficial if the

for the tree is specified according to the MINIMUM-COSt ¢,)10 mented form of a node contains fewer product terms
feasible subtree stored at each node. The final solution I$han its uncomplemented form, and therefore, this
extracted by first conS|q§r|ng the roat, L of the original ptimization is considered after éach of our algor'ithm’s
fanout-free tree. The minimum-cost feasible subtree store hree phases. Phase Il attempts to reduce the number of

at thg root is 'implementeq as a new fgasible ”Od‘? in th odes in the circuit by collapsing nodes across tree
mapping solution. Nodes it that are inputs to this new boundaries

feasible node are t_hen added to a node I\ﬂe_ﬂ,\/lapping _
proceeds by removing a node, , frdvh , implementing 4.2 Phase II: Heuristic Partial Collapsing
the subtree stored ah as a new node in the mappingyny node that can be collapsed into all of its fanout nodes

can be eliminated, provided that all nodes remain feasibleis the set ofs 's fanout nodes after has been collapsed into
after the collapsing. This introduces another optimization them. The algorithm will not collapse a node into its fanout
problem since collapsing some nodes into their fanout nodesiodes if Relation (3) evaluates false.

may preclude the possibility of collapsing other nodes into
their fanout nodes. Several criteria were studied empirically
using 30 benchmark circuits to determine how best to no restrictions on the size of nodes after collapsin
choose nodes to collapse. A total of 19 of the 30 circuitsH f li-output logic blocks. it m pb 9.
used in this study are large MCNC benchmarks [15], 10 Otlawever, or - mufti-output fogic I?C o | 'I?ﬁ/ N
circuits are HDL specifications developed by the authors,2dvantageous to sep to a smaller value. This was
and one circuit is a processor benchmark from the PREljnvestlgated _expenmentally in the context of the.thlrd phase
synthesis suite [12]. The criteria listed below refer to nodesmc our algorithm, and the results are shown in the next
to be collapsednto their fanout nodes, and not the new section.

node(s) that would exist after collapsing is done. The 4 3 Phase IlI: Bin Packing

criteria considered are: The final phase of TEMPLA packs circuit nodes into the
1. Inputs - prefer to collapse nodes with fewer inputs. multi-output blocks available in the target architecture. This

. is accomplished using a first-fit-decreasing bin packing
2. Product terms - prefer to collapse nodes with fewer gigorithm that attempts to maximize the number of shared

When the logic blocks in the target architecture have only
one outputf3 should be set to a large number, which places

product terms. inputs between nodes that are packed into the same logic

3. Node size - prefer to collapse small nodes. block. The bin packing algorithm used is described using
] pseudo code in Figure 5. Single input nodes that implement

4. Fanout - prefer to collapse nodes with low fanout. inverters are ignored during bin packing because signals can

To evaluate the criteria, each was applied individually as theP® inverted for ‘free’ in PLA-style logic blocks, since each

selection criteria for partial collapsing. The number of mputl to the beOCk is available in both true and
circuit nodes before and after collapsing was determinedCOmplemented form.

and a percentage reduction was computed for eachro investigate what value @ in Relation (3) is appropriate
benchmark circuit. These percentages were then averagedopr multi-output blocks,3 was varied while 30 benchmark
hence, each circuit was treated equally in the comparisoncircuits were mapped into logic blocks with the parameters
The results of this experiment showed that each of the(10, 12, 4). The number of blocks needed to implement each
criteria performed Similarly, on average. We decided to US€circuit was Compared to that attained Wl’&n was set to a
node size as the primary criteria for selecting nodes t0|arge value (unrestricted Co||apsing) and a percentage
collapse, with fanout used as a secondary criteria. decrease in the number of logic blocks was computed. The
qverage percentage decrease over all 30 circuits is shown in

Since phase Il uses a heuristic approach when choosin ble 1

nodes to collapse, we attempted to evaluate the quality of' &

our solution. To do this, we implemented an exhaustive The results in Table 1 suggest that it is not beneficial to pack
algorithm based on the branch-and-bound method toas much logic as possible into each feasible node before
perform the equivalent of phases | and II. Although the packing the nodes into multi-output logic blocks. Setfing

exhaustive approach could be used only for small circuits,equal to 1.5 is the best choice when targeting blocks with
due to its time-complexity, it revealed an interesting four outputs.

property of the problem being solved. Recall that the PLA-

style biocks may have multiple outputs. For such blocks, Table 1 Effect of restricted partial collapsing.

comparing our heuristic solution to the exhaustive solution Average %
revealed that it is sometimes best to limit the size of nodes B decrease in # of
created during phase Il to better facilitate the packing of logic blocks
nodes into multi-output blocks. TEMPLA was modified to
deal with this issue as discussed below. 10 1.4
When a node is collapsed into its fanout nodes, the sum of 125 37
the sizes of the resultant nodes after collapsing may be 15 43
larger than the sum of the sizes of nodes before collapsing. 1.75 3.6
The TEMPLA algorithm allows a user to limit this size 20 29
increase by varying the paramet@r in the following o5 20
relation: i i
0 O 4.4 Adapting TEMPLA to Target the Vantis
;SiZd <P [E‘SIZd J + g sizg 3% 3 (AMpD) g/lach 4 [3] g
t sU'S

As an example of how TEMPLA can be applied to a

is the set ofv ’s fanout nodes before any collapsing; Bnd the Vantis (AMD) Mach 4 CPLDs [3]. Each logic block in

the Mach 4 has 33 inputs, 90 product terms, and 16 outputsThe results for 15 of the 30 circuits used in this study are
Eighty of the 90 product terms are grouped into 16 clustersshown in the table. Before applying TEMPLA or DDMAP,
of five and these product terms are available to implementeach of the circuits was synthesized using the Synopsys
combinational logic. Each of the 16 ‘OR gates’ in the logic Design Compiler. This resulted in an optimized multi-level
block is allocated a cluster of five product terms; however, netlist of gates from an intermediate library. The
clusters may be redirected from an OR gate to anotherintermediate library consists of elements suitable for
adjacent OR gate (leaving one OR gate unused). Amapping circuits into PLA-based architectures. The first
maximum of 20 product terms are allowed to feed a singlecolumn in the table lists the name of each benchmark
OR gate. circuit. The second lists the number of logic blocks needed
0 implement each circuit when TEMPLA is used. The third
olumn shows the running time in seconds for TEMPLA on
a 300 MHz SPARCstation. The fourth column gives the
results for DDMAP; a percentage is given in brackets which

Phases | and Il of TEMPLA can be used to create nodes th
pack efficiently into Mach 4 logic blocks by settihgqual
to 33 andP equal to 20. These first two phases could be

augmented with cost functions to reflect the notion that a . cants the amount of additional logic blocks needed to
node with between one and five product terms costs less t%plement each circuit in comparison with TEMPLA. On
implement than a node with between six and ten prOdUCtaverage, when the 15 circuits shown in Table 2 are mapped

terms, since a product term cluster would need to beusing DDMAP, they require 90% more blocks than when

redirected in the latter case. The cost of a node would beTEMPLA is used. Over all 30 circuits considered. the
proportional to the number of product term clusters that jo\ b olutions contained 93.8% more blocks on
need to be redirected to implement it. Nodes could beaverage '

packed into the Mach 4 logic blocks using a slightly
modified version of phase Ill of TEMPLA. Hence, we Notice that TEMPLA performs poorly for the benchmark
believe that relatively few changes to our algorithm would ‘ex5p’. For this circuit, DDMAP produces a solution with
be required for it to efficiently target the Mach 4 nearly 80% fewer blocks than TEMPLA. The ex5p circuit is

architecture. a combinational circuit possessing 8 primary inputs, and 63
primary outputs. Since the number of inputs to the circuit is
5. EXPERIMENTAL RESULTS less than the number of inputs to the logic blocks in the (10,

O_ur_algorithm has been implemen_ted_in the C language12, 4) architecture, Level-Map produces a mapping
within the SIS [13] framework, allowing it to access the 1/O containing 63 nodes: one node for each primary output.
routines and two-level logic minimization algorithms within Level-Map produces such a mapping because it is able to
SIS. To assess the quality of mapping solutions produced byjeal effectively with reconvergent paths within circuits.
our tool, it was compared with the approach used in [11], Furthermore, for this circuit, most of the nodes in the Level-
called DDMAP. The first step of DDMAP is to apply a look- Map solution happen to be feasible nodes. Many of the
up-table technology mapper; we used Level-Map [8], which nodes have common inputs, allowing several nodes to be
minimizes the number of look-up-tables needed, to performpacked into each 4-output logic block. To verify that the
this initial mapping. exploitation of reconvergent paths was the reason for the
Table 2 shows the results when the technology mappers argUPerior mapping, the circuit was mapped with the LUT-
used to map circuits into PLA-style blocks with the Pased technology mapper, Chortle-crf [9], which deals with
parameters (10, 12, 4). These parameters were chosen basggFonvergence in only a limited way. Chortle-crf produced a
on previous research in [11], which showed that logic MaPPiNg containing 363 nodes which is significantly greater
blocks with 8-10 inputs, 12-13 product terms, and 3-4 than the 63 nodes in the Level-Map solution. Since

outputs are the most area-efficient PLA-style logic blocks. 1 EMPLA breaks up a circuit into fanout-free trees, it is not
able to exploit reconvergent paths effectively, and hence,

nodeSet— Set of all nodes in network (minus single input inverters)
while (nodeSet is not empty) {
plaBlock — empty block /* allocate a new PLA-style logic block */
nodeSel~ largest node in nodeSet (node size = number of inputaber of product terms)
Add nodeSel to plaBlock
Remove nodeSel from nodeSet
while (nodeSet is not empty and there are nodes in nodeSet that can fit into plaBlock) {
nodeSel—~ node from nodeSet that has the largest number of inputs in common with the nodes
already in plaBlock; the node must be able to fit into plaBlock; use node size to break ties
Add nodeSel to plaBlock
Remove nodeSel from nodeSet

}

Figure 5. Maximum shared input bin packing algorithm.

produces an inferior solution for this circuit.

6. FINAL REMARKS AND FUTURE WORK 1
In this paper we presented a new technology mapping CAD
tool for CPLDs with a large number of PLA-style logic [2]
blocks. Our algorithm breaks the technology mapping [3]
problem into three phases: optimal tree mapping, heuristic
partial collapsing, and bin packing. The experimental study[4]
described in the previous section shows that our tool
produces mapping solutions containing fewer logic blocks
than solutions produced by a recently-published technique.

One direction for future work is to modify our algorithm to
target a specific commercially available CPLD, as discussed
in Section 4.4, and compare the mapping results to thosg5]
produced by existing commercial CAD tools. Since
development of CPLDs that contain sufficient numbers of
PLA-style blocks to benefit from multi-level synthesis has
only recently come about, we believe that synthesis issuegeg]
for such chips is an important area for future research.

Table 2: Experimental results for (10, 12, 4) architecture.

[7]

| TENPLA | g | OORERD | g
(# blocks) time (% more))
(seconds)
alu4 155 29.3 199 (28.4)
apex4 193 30.2 193 (0.0)
clma 957 815.4 1458 (52.4) [9]
cps 120 18.3 159 (32.5)
dalu 64 9.0 102 (59.4)
ex5p 132 18.8 27 (-79.5)
misex3 154 27.8 214 (39.0) [10]
pdc 618 281.6 1221 (97.6)
s38417 603 495.2 1208 (100.3)
seq 229 52.8 337 (47.2) [11]
fir 249 123.3 1424 (471.9)
fsm8_8_13 49 55 58 (18.4)
pmac 237 126.6 911 (284.4) [12]
psdes 151 37.0 301 (99.3)
sort 138 29.8 275 (99.3) [13]
Average over 15
circuits above:
90%
Average over all
30 circuits: 93.8% [14]
7. ACKNOWLEDGMENTS [15]

The authors gratefully acknowledge the financial support of
Chip Express Corporation and the Government of Ontario.
Thanks to Dr. Jack Kouloheris for providing code for the
DDMAP [11] algorithm.

8. REFERENCES

ACT 1 Series FPGAs Data SheAttel Corporation,
1996.

The Altera Data BogkAltera Corporation, 1996.

The MACH 4 Family Data Sheef\ddvanced Micro
Devices, 1996.

J. Cong and Y. Ding, “FlowMap: An Optimal
Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs”,
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and System&ol. 13, No. 1,
January 1994, pp. 1-11.

J. Cong and Y. Hwang, “Simultaneous Depth and Area
Minimization in LUT-based FPGA Mappingl)CLA
Department of Computer Science Technical Report
CSD TR-9500001.

T. H. Cormen, C. E. Leiserson and R. L. Rivest,
Introduction to Algorithms McGraw-Hill Book
Company, Toronto, 1994.

Giovanni De Micheli,Synthesis and Optimization of
Digital Circuits, McGraw-Hill Inc., Toronto, 1994.

A. H. Farrahi and M. Sarrafzadeh, “Complexity of the
Lookup-Table Minimization Problem for FPGA
Technology Mapping”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems\ol. 13, No. 11, November 1994, pp. 1319-
1332.

R.J Francis, J. Rose and Z. Vranesic, “Chortle-crf: Fast
Technology Mapping for Lookup Table-Based
FPGAs”, 28th ACM/IEEE Design Automation
ConferenceJune 1991, pp. 227-233.

R. J. Francis, J. Rose and Z. Vranesic, “Technology
Mapping of Lookup Table-Based FPGAs for
Performance” 1991 IEEE Conference on Computer-
Aided Designpp. 568-571.

J. L. Kouloheris, “Empirical Study of the Effect of Cell
Granularity on FPGA Density and Performance”,
Ph.D. ThesisDepartment of Electrical Engineering,
Stanford University, 1993.

Programmable Electronics Performance Corporation
Test Benchesttp://www.prep.org, 1996.

E. M. Sentovice et al., “SIS: A System for Sequential
Circuit Synthesis” Technical Report UCB/ERL M92/
41, Electronics Research Laboratory, Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, 1992.

The Programmable Logic Data BaqokXilinx
Corporation, 1994.

S. Yang, “Logic Synthesis and Optimization
Benchmarks”, Technical Report, Microelectronics
Center of North Carolina, 1991.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

