A Reconfigurable Logic Machine for Fast Event—Driven Simulation

Jerry Bauer, Michael Bershteyn, lan Kaplan, Paul Vyedin
Quickturn Design Systems, Inc.
55 West Trimble Rd.
San Jose, CA 95131-1013
(408) 914-6000
jerry@quickturn.com, bmike@quickturn.com, iank@bearcave.com, paulv@dquickturn.com

1. ABSTRACT

As the density of VLSI circuits increases, soft-
ware techniques cannot effectively simulate
designs through the millions of simulation
cycles needed for verification. Emulation can
supply the necessary capacity and perfor-
mance, but emulation is limited to designs that
are structural or can be synthesized. This paper
discusses a new system architecture that dra-
matically accelerates event-driven behavioral
simulation and describes how it is merged with
emulation.

1.1 Keywords

reconfigurable computing, event-driven simulation

2. Introduction

As ASIC design complexity has increased, logic simulatiort
has evolved. Early simulators compiled designs, written in

where the hardware design is emulated on a large network of
programmable logic (FPGAS) [14], has been used to increase
simulation speed and capacity by up to 10,000 times [11].

Emulation sacrifices generality for performance; it cannot be
used to simulate behavioral circuit models that contain
delays or other constructs that are either non-structural or
cannot be synthesized [2] into gate-level circuitry. The high
speed of emulation also introduces its own constraints. To
supply data (test vectors or other system input) at a rate that
matches emulation performance, existing emulation systems
must be used “in-circuit” with the target system hardware.

Both hardware accelerators and emulators have been
combined with software simulators, which can be used to
simulate the behavioral component of a design.
Communication between the software simulator and the
emulated design usually takes place over Ethernet or across a
system bus, like VME. This approach has drawbacks:

The software simulation component limits the overall
verification speed. Behavioral testbenches that provide

Verilog or VHDL hardware description languages (HDL),
into a pseudo-instruction set for interpretation by a software
“machine”. To improve performance, many simulators nows
compile HDL designs directly into a microprocessor
instruction set (e.g., SPARC, HP PA-RISC, powerPC) [12].

models of hardware components or supply test vectors
cannot be used without slowing hardware emulation.

Partitioning between emulation and software simulation
must be handled explicitly, and cannot be done at a fine-
grained level.

These compiled simulators can be more than ten times “??econﬁgurable computing systems using field
speed of interpreted simulators. The performance.,qrammable gate arrays (FPGAS) have been proposed by a
improvement yielded by compiled simulation is limited by nmper of research groups [3, 9]. Several research groups
the overhead of event processing. Cycle-based simulatogs,e coupled reconfigurable logic with processors [4, 9, 13].
take advantage of native code performance, but avoid eveffo HARP system [9] couples FPGAs with a 32-bit
processing overhead by only simulating synchronougansputer microprocessor [7]. The Garp processor [13],
designs in structural or synthesizable form. proposed by the BRASS research group at UC Berkeley, is a

Although the performance of software simulators hagustom VLSI design that couples a MIPS Il core with an on-
constantly improved, the rate of improvement falls far shorghip FPGA array. However, the application of these
of the rate at which design density is increasing. Hardwar&chniques to event-driven simulation has not been
acceleration, usually based on a network of custonddequately explored.

processors, has been used to increase the speed and capagif¥ haper describes a reconfigurable computing system that

of simulation by up to 100 times. Hardware emulationag peen applied to the event driven simulaton of large VLSI
circuit designs. The foundation for this reconfigurable
computing system is an FPGA-based emulator, which
provides large blocks of reconfigurable logic. The system
hardware is supported by a compiler that can compile a
behavioral Verilog HDL description of the design. This
system has a number of advantages:

35" Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

* Logic (in the FPGA array) can be synthesized at compile The Verilog [6] compiler serves as the front end for this
time to support event processing. This removes the evenprocess. The Verilog compiler scans and parses the input
processing overhead from behavioral simulation. and produces an abstract syntax tree intermediate in

« Low overhead communication. In this system, commu- Mmeémory. The module hierarchy is expanded; parameters,
nication between the behavioral code and the structurai défparams’, and hierarchical names are resolved.

. : . : lined. A transformation pass does tree-to-tree translation to

« The design testbench may be written in behavioral Ver-

ilog with none of the timing model restrictions typically produce an intermediate form that can be more easily

imposed by cycle-based simulation or emulation [1] broken up into schedulable processes. Later passes compile
P y y) S the processes into control flow graphs and into powerPC [5]
+ The capacity and speed of emulation are available foragssembly instructions.

the structural or synthesizable portions of the design. i i
Each schedulable process created by the Verilog compiler

3. System Architecture Overview has a set of data inputs and outputs. The partitioning and

The reconfigurable computer system is pictureigure 1, netlist creation software treats the processes as design units
below. The system consists of one or more emulation(e.g., module instances) and enters them into a design unit
modules. Each emulation module consists of: database. The purely structural parts of a Verilog design

» A powerPC 403GCX processor skip many of these steps.

+ Local RAM 5. Data Partitioning

Event detection and scheduling logic is synthesized from
the behavioral design. Verilog variables that are arguments
to module instances or triggers for events are synthesized
P opEpesszeseooo-- - into latches in the FPGA array. Other variables are allocated

* Alocal FPGA array with programmable interconnect

. Global : in processor memory. Each variable allocated in hardware is
! Programmable - addressed with a unique hardware tag.
' Interconnect !

. The partitioning of variables between FPGA hardware and
Pottommmommmomoe e o processor memory is illustrated byodule sum, (see
Local Programmable | Local Programmable | Figure 2, below. In this module, the variablesset and

Interconnect Interconnect ' clk are event triggers and the varialslem is a module
: Lo ; output. Since these variables are involved either with events
: Lo ' or module interconnection, they are allocated in the FPGA

hardware. The local variablal is not a trigger or a

' | RAM I cpU _l FPGA[: | RAM I cpu _l FPGA|. module argument, so it is allocated in the processor
L. .. Le/——. memory.
Figure 1. module sum(reset, clk, sum);

input reset, clk;

The FPGA array in each emulation module is ?égp[gt:(g]?:voa]“;sum;

interconnected to all of the other emulation module FPGA req [7:0] sum;
arrays via a programmable interconnect. The programmable
interconnect allows all FPGA arrays to be treated as if they =~ always @(posedge clk)

were a single large FPGA array. Each emulation module bggﬁ = sum + val'
runs a simple real time operating system to manage val=val +1;
behavioral simulation and logic netlist emulation. A control end

processor (not shown) supports higher level operating

system functions such as TCP/IP network access, disk, and E'Wf?‘ys @(posedge reset)
. egin

the network file system (NFS). sum = 0

To the user, the reconfigurable computer system appears to val =1

. . nd
be a simulation server on the local area network. However, endmodule
only one simulation may run on the system at any given

time. Figure 2.

4. Compiler Overview 6. Netlist Generation

Compiling a behavioral Verilog design can be logically Each process created by the Verilog compiler consists of a

divided into two tasks: compiling behavioral Verilog into block of code and a set of triggering conditions: for example

assembly language and synthesizing a netlist to program thé(a or b) or#4. While translating the Verilog design,

FPGA array. the Verilog compiler passes information to the hardware
mapping phase. Structural module definitions are ultimately

mapped directly into gate equivalents in the FPGA arrays.

For behavioral processes, the hardware mapping phase takes Dlgeec?ttor — EVEelgtheﬁue

the Verilog compiler’s definition for a process and creates a | | 5

data base element for it. This consists of three parts: an Ever Event Queue o

interface specification (data inputs and outputs), the Detector [Element 8

triggering conditions, and a pointer to the code for the g

process. | | <
. L o Event Event Queue e

The process interface specification is compiled into a set of Detector | Element w

addressable registers in the FPGA array. Each triggering

condition is synthesized into its hardware equivalent. When Subcycle

a process is instantiated, its synthesized triggering condition @ Event

circuitry is instantiated along with it. The triggering To other acknowledge

condition is a boolean expression with additional operators: EMs Oper. %

e anyedge(x)

e posedge(x) CPU

negedge(x) Figure 3.

« delay(value, x)

Edge operators are implemented as hardware edgéabeled “Event Encoder” is synthesized as part of hardware
detectors. Delay is implemented as a down counter preset t§0ompilation. The event encoder generates the process tags

the delay value at the positive edge of its input signal. that identify processes to be executed in response to
hardware events. When a triggering condition is met, the

A simulation cycle is divided into four subcycles: active, event detector associated with the synthesized triggering
inactive, non-blocking, and monitor. Each triggering |ogic “fires”. Subject to inhibition by the synchronizer, the
condition is assigned to one of these subcycles. Thisasserted event captured by the event quete element presents
information is retained for use in event queue generation. its associated software tag to be read by the software

A process may refer to variables allocated as registers in th&lispatch loop. — After the dispatch loop reads and
FPGA array or in processor memory (RAM). A two-step acknowledges the tag, the event queue prepares the next

process effects the transfer of variable information betweenProcess tag, if any other events are asserted. When the
the processor and the FPGA array: process invoked by the dispatch loop completes, control

) _) returns to the dispatch loop and another tag is read. When
+ The hardware tag of the variable is written to the tag all processors have exhausted their event queues for a

decoder. particular simulation cycle, the synchronizer re-starts the
« The hardware signals that represent the variable are reafiardware simulation clock. Hardware clocking again
or written. proceeds until an event is triggered.

When all structural and process module instantiations areThe synchronizer ifigure 3serves two related purposes:

complete, a partitioning algorithm is run. This divides the o .
design into sections, each of which will fit onto an °* It maintains the subcycle timing for the hardware events

emulation module (sedrigure 1). The partitioning » It enforces inter-processor lock-step synchronization.

algorithm also defines the connections between thewhen an event is active on any processor, the hardware
emulation modules. After the process components andgiock is halted until the event is serviced. This maintains
structural components are placed into the emulationgjmylation-clock and subcycle synchrony across all
modules, a levelization algorithm provides a static emylation modules — in essence, simulation time proceeds
prioritization which is used to generate the event queue.gnly when no event is active. This means that co-processing
The synthesized logic for each triggering condition is js fimited to simultaneous execution of events that occur
connected to the associated event circuitry. Each separatgyring the same simulation cycle time. During the time that
event circuit in the event queue is given a unique identifier 5 processor is executing a software process, the event
or tag. A software table, created by the code generationgueues remain available. A process can, by writing a
phase of the Verilog compiler, maps each process tag to &ardware-mapped variable, trigger another event, either on
pointer to the start of the associated process. Each emulatioghe same processor or on another processor. Processes are

mOdule eXeCUtabIe (ConSiSting Of one or more processes) i%ever interrupted; they a|WayS run to Comp|etion_
linked with a “main” section that contains a dispatch loop

that waits for a hardware event tag. When the software7. Limitations

dispatch loop reads the process tag from the tag register, iHardware support for event triggers and process scheduling
fetches the process address and branches to the start of thacreases the performance of the behavioral code, but places
process. limits on the Verilog implementation. Any variable may be

Figure 3diagrams the event queue mechanism. The bIOCkaIIocated in hardware, so the Verilog computation model is

limited to what can be efficiently supported in emulation. Youngmin Hur helped us with testing. Arun Ramachandran
Emulation supports binary logic, although there is some did early work on Verilog system functions and PLI support

support for tri-stated devices. The Verilog logic staienot
supported (alk values default to zero), and the logic state
is supported only in limited contexts: mvalue can be
written but will not be read as Verilog strength and switch
modeling are not supported.]
8. Experimental Results

The performance of event-driven simulation on our
reconfigurable computing system was examined with
designs that mixed gate-level netlists and circuit blocks
implemented as behavioral models. The netlist portion of [2]
the design is emulated in the FPGA array. The behavioral
component is compiled into powerPC object code, which [3]
runs closely coupled with the netlist emulation.

The designs, shown ifable 1 were compiled with the
behavioral Verilog compiler, resulting in netlists that 4
support event detection and generation and object code that
implements all other behavioral statements. The size of
these designs, in gates, was estimated by replacing the
behavioral components with synthesizable components. [5]

The tests were run on a reconfigurable computer with two
emulation modules (sdggure J). [6]

Testcase Size Speed]
test35 35KG 200K 8]
test150 150KG 175.2K

test210 210KG 170.2K [9]

Table 1: Simulation Speed Measurements

which was continued by Jay Deleanu. David Morrison
implemented networking support. Without their efforts, the
results reported here would not have been possible.

11. References

Casaubieilh, F., Mclsaac, A., Benjamin, M., Bartley, M.,
Pogodalla, F., Rocheteau, F., Belhadj, M., Eggleton, J., Mas,
G., Barrett, G., Berhet, G-unctional Verification Methodol-
ogy of Cameleon Processétroc. 33ed ACM/IEEE Design
Automation Conference, 1996, pp 421-426.

De Micheli, G.Synthesis and Optimization of Digital Cir-
cuits McGraw-Hill, 1994

DeHon, A.DPGA Utilization and ApplicationProceedings

of the 1996 International Symposium on Field Programmable
Gate Arrays, available from URttp://wwwai.mit/projects/
transit/tn129/tn129.html

DeHon, A. DPGA-Coupled Microprocessors: Commodity
ICs for the Early 21st Century, MIT Transit Project technical
note 100, Jan. 1994, available from URttp://www.ai.mit/
projects/transit/tn100/tn100.htm.

IBM Corporation,PPC403GA Embedded Controller User's
Manual Second Edition, March 1995

IEEE, Standard Verilog HDL Language Reference Manual
IEEE Standard 1364, 1995

Inmos, The Transputer Databopknmos document 72 TRN
203 02. Order code DBTRANST/3.

McGeer,P. C., McMillan,K.L., Saldanha, A., Sangiovanni-
Vincentelli, A.L., Scaglia, Frast Discrete Function Evalua-
tion using Decision Diagram$EEE/ACM International Con-
ference on Computer Aided Design, 1995, pp. 402-407

Page, |.The HARP Reconfigurable Computing System
Oxford University Hardware Compilatoin Group, 1994, avail-
able fromURL:http://wwwcomlabox.ac.uk/oucl/users/
ian.page/papers.html

The speed is in simulation cycles per second. In each casd]0] Page, IReconfigurable Processorsivited Keynote Address

the fastest design clock had a period of two simulation
cycles. Therefore, the speed in design clock cycles is half of
the speed given in the table.

for Heathrow PLD Conference, April 1995, available from
URL:http://www.comlabox.ac.uk/oucl/users/ian.page/

papers.html

[11] Rowson, J. AHardware/Software Co-SimulatipRroc. 31st

9. Conclusion
ASIC design complexity is increasing far more rapidly than

ACM/IEEE Design Automation Conference, 1996, pp 439-
440

the performance delivered by software simulators. [12] Sanguinetti, JLanguage Considerations and Experimental

Hardware acceleration and emulation deliver higher
performance but require synchronous, synthesizable

Results Using A Verilog Compile2nd Annual International
Verilog HDL Conference, 1993.

designs. This makes the design testbench and models of off13] Hauser, J. R and Wawrzynek, Jar: A MIPS Processor

chip components difficult to develop. Our work shows that a
reconfigurable computing system can be used to simulate
behavioral level VLSI designs. This approach couples the
flexibility of event driven behavioral simulation with the
capacity and speed of emulation. Although most of IEEE
standard Verilog can be supported, some limitations are
imposed by emulation.

10. Acknowledgments

Viktor Salitrennik implemented the register allocation phase
of the compiler and the runtime support for wide operations.
Peter Donovan did early work on the Verilog compiler.

with a Reconfigurable Coprocess@roceedings of the IEEE
Symposium on Field Programmable Custom Computing
Machines, April 1997, pgs 24-33.

[14] Varghese J., Butts M., and BatchellerAh,Efficient Logic

Emulation SystemEEE Trans. on VLSI Systems, vol. 1, No.
2, June 1993, pgs 171-174.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

	41_3.pdf
	A Reconfigurable Logic Machine for Fast Event–Driv...
	Jerry Bauer, Michael Bershteyn, Ian Kaplan, Paul V...
	Quickturn Design Systems, Inc.
	55 West Trimble Rd.
	San Jose, CA 95131-1013
	(408) 914-6000

	jerry@quickturn.com, bmike@quickturn.com, iank@bea...
	1. ABSTRACT
	As the density of VLSI circuits increases, softwar...
	1.1 Keywords

	2. Introduction
	3. System Architecture Overview
	Figure 1.

	4. Compiler Overview
	5. Data Partitioning
	6. Netlist Generation
	7. Limitations
	8. Experimental Results
	Testcase
	Size
	Speed
	test35
	35KG
	200K
	test150
	150KG
	175.2K
	test210
	210KG
	170.2K
	9. Conclusion
	10. Acknowledgments
	11. References
	[1] Casaubieilh, F., McIsaac, A., Benjamin, M., Ba...
	[2] De Micheli, G. Synthesis and Optimization of D...
	[3] DeHon, A. DPGA Utilization and Application, Pr...
	[4] DeHon, A. DPGA-Coupled Microprocessors: Commod...
	[5] IBM Corporation, PPC403GA Embedded Controller ...
	[6] IEEE, Standard Verilog HDL Language Reference ...
	[7] Inmos, The Transputer Databook, Inmos document...
	[8] McGeer,P. C., McMillan,K.L., Saldanha, A., San...
	[9] Page, I. The HARP Reconfigurable Computing Sys...
	[10] Page, I. Reconfigurable Processors, Invited K...
	[11] Rowson, J. A. Hardware/Software Co-Simulation...
	[12] Sanguinetti, J. Language Considerations and E...
	[13] Hauser, J. R and Wawrzynek, J., Garp: A MIPS ...
	[14] Varghese J., Butts M., and Batcheller J., An ...

