
k of
ase

be
in

l or
gh
 To
that
ms

een
 to
n.

the
ss a

ll
ide
ors

on
ne-

ld
by a
ups
3].
it
3],
is a
n-
e
en

that
SI

le
ich
m
 a

is

A Reconfigurable Logic Machine for Fast Event–Driven Simulation

Jerry Bauer, Michael Bershteyn, Ian Kaplan, Paul Vyedin
Quickturn Design Systems, Inc.

55 West Trimble Rd.
San Jose, CA 95131-1013

(408) 914-6000
jerry@quickturn.com, bmike@quickturn.com, iank@bearcave.com, paulv@quickturn.com
1. ABSTRACT
As the density of VLSI circuits increases, soft-
ware techniques cannot effectively simulate
designs through the millions of simulation
cycles needed for verification. Emulation can
supply the necessary capacity and perfor-
mance, but emulation is limited to designs that
are structural or can be synthesized. This paper
discusses a new system architecture that dra-
matically accelerates event-driven behavioral
simulation and describes how it is merged with
emulation.

1.1 Keywords
reconfigurable computing, event-driven simulation

2. Introduction
As ASIC design complexity has increased, logic simulation
has evolved. Early simulators compiled designs, written in
Verilog or VHDL hardware description languages (HDL),
into a pseudo-instruction set for interpretation by a software
“machine”. To improve performance, many simulators now
compile HDL designs directly into a microprocessor
instruction set (e.g., SPARC, HP PA-RISC, powerPC) [12].
These compiled simulators can be more than ten times the
speed of interpreted simulators. The performance
improvement yielded by compiled simulation is limited by
the overhead of event processing. Cycle-based simulators
take advantage of native code performance, but avoid event
processing overhead by only simulating synchronous
designs in structural or synthesizable form.

Although the performance of software simulators has
constantly improved, the rate of improvement falls far short
of the rate at which design density is increasing. Hardware
acceleration, usually based on a network of custom
processors, has been used to increase the speed and capacity
of simulation by up to 100 times. Hardware emulation,

where the hardware design is emulated on a large networ
programmable logic (FPGAs) [14], has been used to incre
simulation speed and capacity by up to 10,000 times [11].

Emulation sacrifices generality for performance; it cannot
used to simulate behavioral circuit models that conta
delays or other constructs that are either non-structura
cannot be synthesized [2] into gate-level circuitry. The hi
speed of emulation also introduces its own constraints.
supply data (test vectors or other system input) at a rate
matches emulation performance, existing emulation syste
must be used “in-circuit” with the target system hardware.

Both hardware accelerators and emulators have b
combined with software simulators, which can be used
simulate the behavioral component of a desig
Communication between the software simulator and
emulated design usually takes place over Ethernet or acro
system bus, like VME. This approach has drawbacks:

• The software simulation component limits the overa
verification speed. Behavioral testbenches that prov
models of hardware components or supply test vect
cannot be used without slowing hardware emulation.

• Partitioning between emulation and software simulati
must be handled explicitly, and cannot be done at a fi
grained level.

Reconfigurable computing systems using fie
programmable gate arrays (FPGAs) have been proposed
number of research groups [3, 9]. Several research gro
have coupled reconfigurable logic with processors [4, 9, 1
The HARP system [9] couples FPGAs with a 32-b
transputer microprocessor [7]. The Garp processor [1
proposed by the BRASS research group at UC Berkeley,
custom VLSI design that couples a MIPS II core with an o
chip FPGA array. However, the application of thes
techniques to event-driven simulation has not be
adequately explored.

This paper describes a reconfigurable computing system
has been applied to the event driven simulaton of large VL
circuit designs. The foundation for this reconfigurab
computing system is an FPGA-based emulator, wh
provides large blocks of reconfigurable logic. The syste
hardware is supported by a compiler that can compile
behavioral Verilog HDL description of the design. Th
system has a number of advantages:
35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

is
put
 in
ers,
d.

 in-
 to

sily
pile

 [5]

iler
and
units
unit
ign

m
nts
zed
ted
e is

nd

nts
A

or

f a
le

,
re

ely
• Logic (in the FPGA array) can be synthesized at compile
time to support event processing. This removes the event
processing overhead from behavioral simulation.

• Low overhead communication. In this system, commu-
nication between the behavioral code and the structural
portion of the design is supported by synthesized logic.

• The design testbench may be written in behavioral Ver-
ilog with none of the timing model restrictions typically
imposed by cycle-based simulation or emulation [1].

• The capacity and speed of emulation are available for
the structural or synthesizable portions of the design.

3. System Architecture Overview
The reconfigurable computer system is pictured inFigure 1,
below. The system consists of one or more emulation
modules. Each emulation module consists of:

• A powerPC 403GCX processor

• Local RAM

• A local FPGA array with programmable interconnect

The FPGA array in each emulation module is
interconnected to all of the other emulation module FPGA
arrays via a programmable interconnect. The programmable
interconnect allows all FPGA arrays to be treated as if they
were a single large FPGA array. Each emulation module
runs a simple real time operating system to manage
behavioral simulation and logic netlist emulation. A control
processor (not shown) supports higher level operating
system functions such as TCP/IP network access, disk, and
the network file system (NFS).

To the user, the reconfigurable computer system appears to
be a simulation server on the local area network. However,
only one simulation may run on the system at any given
time.

4. Compiler Overview
Compiling a behavioral Verilog design can be logically
divided into two tasks: compiling behavioral Verilog into
assembly language and synthesizing a netlist to program the
FPGA array.

The Verilog [6] compiler serves as the front end for th
process. The Verilog compiler scans and parses the in
and produces an abstract syntax tree intermediate
memory. The module hierarchy is expanded; paramet
“defparams”, and hierarchical names are resolve
Semantic analysis is then performed and functions are
lined. A transformation pass does tree-to-tree translation
produce an intermediate form that can be more ea
broken up into schedulable processes. Later passes com
the processes into control flow graphs and into powerPC
assembly instructions.

Each schedulable process created by the Verilog comp
has a set of data inputs and outputs. The partitioning
netlist creation software treats the processes as design
(e.g., module instances) and enters them into a design
database. The purely structural parts of a Verilog des
skip many of these steps.

5. Data Partitioning
Event detection and scheduling logic is synthesized fro
the behavioral design. Verilog variables that are argume
to module instances or triggers for events are synthesi
into latches in the FPGA array. Other variables are alloca
in processor memory. Each variable allocated in hardwar
addressed with a unique hardware tag.

The partitioning of variables between FPGA hardware a
processor memory is illustrated bymodule sum , (see
Figure 2), below. In this module, the variablesreset and
clk are event triggers and the variablesum is a module
output. Since these variables are involved either with eve
or module interconnection, they are allocated in the FPG
hardware. The local variableval is not a trigger or a
module argument, so it is allocated in the process
memory.

module sum(reset, clk, sum);
input reset, clk;
output [7:0] sum;
reg [3:0] val;
reg [7:0] sum;

 always @(posedge clk)
 begin
 sum = sum + val;
 val = val + 1;
 end

 always @(posedge reset)
 begin
 sum = 0;
 val = 1
 end
endmodule

6. Netlist Generation
Each process created by the Verilog compiler consists o
block of code and a set of triggering conditions: for examp
@(a or b) or #4 . While translating the Verilog design
the Verilog compiler passes information to the hardwa
mapping phase. Structural module definitions are ultimat

RAM

Global
Programmable
Interconnect

Figure 1.

Local Programmable
Interconnect

CPU FPGA

FPGA array

RAM

Local Programmable
Interconnect

CPU FPGA

FPGA array

Figure 2.

are
tags
 to
the
ing
e
sents
are
nd
next
 the
trol
hen
r a
he
in

ts

are
ns
all
eds
ing
ur
at

vent
 a
 on
s are

ling
ces
e
l is
mapped directly into gate equivalents in the FPGA arrays.
For behavioral processes, the hardware mapping phase takes
the Verilog compiler’s definition for a process and creates a
data base element for it. This consists of three parts: an
interface specification (data inputs and outputs), the
triggering conditions, and a pointer to the code for the
process.

The process interface specification is compiled into a set of
addressable registers in the FPGA array. Each triggering
condition is synthesized into its hardware equivalent. When
a process is instantiated, its synthesized triggering condition
circuitry is instantiated along with it. The triggering
condition is a boolean expression with additional operators:

• anyedge(x)

• posedge(x)

• negedge(x)

• delay(value, x)

Edge operators are implemented as hardware edge
detectors. Delay is implemented as a down counter preset to
the delay value at the positive edge of its input signal.

A simulation cycle is divided into four subcycles: active,
inactive, non-blocking, and monitor. Each triggering
condition is assigned to one of these subcycles. This
information is retained for use in event queue generation.

A process may refer to variables allocated as registers in the
FPGA array or in processor memory (RAM). A two-step
process effects the transfer of variable information between
the processor and the FPGA array:

• The hardware tag of the variable is written to the tag
decoder.

• The hardware signals that represent the variable are read
or written.

When all structural and process module instantiations are
complete, a partitioning algorithm is run. This divides the
design into sections, each of which will fit onto an
emulation module (seeFigure 1). The partitioning
algorithm also defines the connections between the
emulation modules. After the process components and
structural components are placed into the emulation
modules, a levelization algorithm provides a static
prioritization which is used to generate the event queue.
The synthesized logic for each triggering condition is
connected to the associated event circuitry. Each separate
event circuit in the event queue is given a unique identifier
or tag. A software table, created by the code generation
phase of the Verilog compiler, maps each process tag to a
pointer to the start of the associated process. Each emulation
module executable (consisting of one or more processes) is
linked with a “main” section that contains a dispatch loop
that waits for a hardware event tag. When the software
dispatch loop reads the process tag from the tag register, it
fetches the process address and branches to the start of the
process.

Figure 3diagrams the event queue mechanism. The block

labeled “Event Encoder” is synthesized as part of hardw
compilation. The event encoder generates the process
that identify processes to be executed in response
hardware events. When a triggering condition is met,
event detector associated with the synthesized trigger
logic “fires”. Subject to inhibition by the synchronizer, th
asserted event captured by the event queue element pre
its associated software tag to be read by the softw
dispatch loop. After the dispatch loop reads a
acknowledges the tag, the event queue prepares the
process tag, if any other events are asserted. When
process invoked by the dispatch loop completes, con
returns to the dispatch loop and another tag is read. W
all processors have exhausted their event queues fo
particular simulation cycle, the synchronizer re-starts t
hardware simulation clock. Hardware clocking aga
proceeds until an event is triggered.

The synchronizer inFigure 3 serves two related purposes:

• It maintains the subcycle timing for the hardware even

• It enforces inter-processor lock-step synchronization.

When an event is active on any processor, the hardw
clock is halted until the event is serviced. This maintai
simulation-clock and subcycle synchrony across
emulation modules — in essence, simulation time proce
only when no event is active. This means that co-process
is limited to simultaneous execution of events that occ
during the same simulation cycle time. During the time th
a processor is executing a software process, the e
queues remain available. A process can, by writing
hardware-mapped variable, trigger another event, either
the same processor or on another processor. Processe
never interrupted; they always run to completion.

7. Limitations
Hardware support for event triggers and process schedu
increases the performance of the behavioral code, but pla
limits on the Verilog implementation. Any variable may b
allocated in hardware, so the Verilog computation mode

CPU

Oper. decoder

E
ve

nt
 E

nc
od

er

Synchronizer
To other

EMs

Event
Detector

Event Queue
Element

Event
Detector

Event Queue
Element

Event
Detector

Event Queue
Element

Subcycle
Event

acknowledge

Figure 3.

an
rt
n
e

s,

le

l

l-
limited to what can be efficiently supported in emulation.
Emulation supports binary logic, although there is some
support for tri-stated devices. The Verilog logic statex is not
supported (allx values default to zero), and the logic statez
is supported only in limited contexts: az value can be
written but will not be read asz. Verilog strength and switch
modeling are not supported.

8. Experimental Results
The performance of event-driven simulation on our
reconfigurable computing system was examined with
designs that mixed gate-level netlists and circuit blocks
implemented as behavioral models. The netlist portion of
the design is emulated in the FPGA array. The behavioral
component is compiled into powerPC object code, which
runs closely coupled with the netlist emulation.

The designs, shown inTable 1, were compiled with the
behavioral Verilog compiler, resulting in netlists that
support event detection and generation and object code that
implements all other behavioral statements. The size of
these designs, in gates, was estimated by replacing the
behavioral components with synthesizable components.

The tests were run on a reconfigurable computer with two
emulation modules (seeFigure 1).

The speed is in simulation cycles per second. In each case,
the fastest design clock had a period of two simulation
cycles. Therefore, the speed in design clock cycles is half of
the speed given in the table.

9. Conclusion
ASIC design complexity is increasing far more rapidly than
the performance delivered by software simulators.
Hardware acceleration and emulation deliver higher
performance but require synchronous, synthesizable
designs. This makes the design testbench and models of off-
chip components difficult to develop. Our work shows that a
reconfigurable computing system can be used to simulate
behavioral level VLSI designs. This approach couples the
flexibility of event driven behavioral simulation with the
capacity and speed of emulation. Although most of IEEE
standard Verilog can be supported, some limitations are
imposed by emulation.

10. Acknowledgments
Viktor Salitrennik implemented the register allocation phase
of the compiler and the runtime support for wide operations.
Peter Donovan did early work on the Verilog compiler.

Youngmin Hur helped us with testing. Arun Ramachandr
did early work on Verilog system functions and PLI suppo
which was continued by Jay Deleanu. David Morriso
implemented networking support. Without their efforts, th
results reported here would not have been possible.

11. References
[1] Casaubieilh, F., McIsaac, A., Benjamin, M., Bartley, M.,

Pogodalla, F., Rocheteau, F., Belhadj, M., Eggleton, J., Ma
G., Barrett, G., Berhet, C.,Functional Verification Methodol-
ogy of Cameleon Processor, Proc. 33ed ACM/IEEE Design
Automation Conference, 1996, pp 421-426.

[2] De Micheli, G.Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994

[3] DeHon, A.DPGA Utilization and Application, Proceedings
of the 1996 International Symposium on Field Programmab
Gate Arrays, available from URL:http://www.ai.mit/projects/
transit/tn129/tn129.html

[4] DeHon, A. DPGA-Coupled Microprocessors: Commodity
ICs for the Early 21st Century, MIT Transit Project technica
note 100, Jan. 1994, available from URL:http://www.ai.mit/
projects/transit/tn100/tn100.htm.

[5] IBM Corporation,PPC403GA Embedded Controller User’s
Manual, Second Edition, March 1995

[6] IEEE, Standard Verilog HDL Language Reference Manual,
IEEE Standard 1364, 1995

[7] Inmos,The Transputer Databook, Inmos document 72 TRN
203 02. Order code DBTRANST/3.

[8] McGeer,P. C., McMillan,K.L., Saldanha, A., Sangiovanni-
Vincentelli, A.L., Scaglia, P.Fast Discrete Function Evalua-
tion using Decision Diagrams, IEEE/ACM International Con-
ference on Computer Aided Design, 1995, pp. 402-407

[9] Page, I.The HARP Reconfigurable Computing System,
Oxford University Hardware Compilatoin Group, 1994, avai
able from URL:http://www.comlab.ox.ac.uk/oucl/users/
ian.page/papers.html

[10] Page, I.Reconfigurable Processors, Invited Keynote Address
for Heathrow PLD Conference, April 1995, available from
URL:http://www.comlab.ox.ac.uk/oucl/users/ian.page/
papers.html

[11] Rowson, J. A.Hardware/Software Co-Simulation, Proc. 31st
ACM/IEEE Design Automation Conference, 1996, pp 439-
440

[12] Sanguinetti, J.Language Considerations and Experimental
Results Using A Verilog Compiler, 2nd Annual International
Verilog HDL Conference, 1993.

[13] Hauser, J. R and Wawrzynek, J., Garp: A MIPS Processor
with a Reconfigurable Coprocessor, Proceedings of the IEEE
Symposium on Field Programmable Custom Computing
Machines, April 1997, pgs 24-33.

[14] Varghese J., Butts M., and Batcheller J.,An Efficient Logic
Emulation System, IEEE Trans. on VLSI Systems, vol. 1, No.
2, June 1993, pgs 171-174.

Testcase Size Speed

test35 35KG 200K

test150 150KG 175.2K

test210 210KG 170.2K

Table 1: Simulation Speed Measurements

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

	41_3.pdf
	A Reconfigurable Logic Machine for Fast Event–Driv...
	Jerry Bauer, Michael Bershteyn, Ian Kaplan, Paul V...
	Quickturn Design Systems, Inc.
	55 West Trimble Rd.
	San Jose, CA 95131-1013
	(408) 914-6000

	jerry@quickturn.com, bmike@quickturn.com, iank@bea...
	1. ABSTRACT
	As the density of VLSI circuits increases, softwar...
	1.1 Keywords

	2. Introduction
	3. System Architecture Overview
	Figure 1.

	4. Compiler Overview
	5. Data Partitioning
	6. Netlist Generation
	7. Limitations
	8. Experimental Results
	Testcase
	Size
	Speed
	test35
	35KG
	200K
	test150
	150KG
	175.2K
	test210
	210KG
	170.2K
	9. Conclusion
	10. Acknowledgments
	11. References
	[1] Casaubieilh, F., McIsaac, A., Benjamin, M., Ba...
	[2] De Micheli, G. Synthesis and Optimization of D...
	[3] DeHon, A. DPGA Utilization and Application, Pr...
	[4] DeHon, A. DPGA-Coupled Microprocessors: Commod...
	[5] IBM Corporation, PPC403GA Embedded Controller ...
	[6] IEEE, Standard Verilog HDL Language Reference ...
	[7] Inmos, The Transputer Databook, Inmos document...
	[8] McGeer,P. C., McMillan,K.L., Saldanha, A., San...
	[9] Page, I. The HARP Reconfigurable Computing Sys...
	[10] Page, I. Reconfigurable Processors, Invited K...
	[11] Rowson, J. A. Hardware/Software Co-Simulation...
	[12] Sanguinetti, J. Language Considerations and E...
	[13] Hauser, J. R and Wawrzynek, J., Garp: A MIPS ...
	[14] Varghese J., Butts M., and Batcheller J., An ...

