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Abstract — We develop a verification paradigm called more and different bugs more efficiently and cheaply than
saturated simulatiorthat is a#oplicable to designs which can simulation or formal verification used in isolation.
be decomposed into a set of interacting controllers. The cogi h
procedure is a symbolic algorithm that explores the space ot-1  Our Approac

controller interactions; heuristics for making this traversalpmany designs consist of a set of interacting controllers. A
efficient are described. Experiments demonstrate that oWiommon source of bugs in such designs is that the designer
procedure explores substantially more of the controller in,iis to take into account “corner-cases”, which occur when
teractions, and is more efficient than conventional symboliGwo or more controllers are simultaneously in “exception-
reachability analysis. handling” states. An example of this is when a transmitter
1 Introduction unit has a buffer overflow, and a receiver unit simultaneously
times out. It is difficult for random simulation to find such
In this paper we are concerned with the problende$ign ~ corner conditions, since exceptions are rare. Similarly, it is
verification specifically, the problem dfvariant checkin% very tedious for designers to craft tests that bring the design
over gate-level designs. Traditionally, designs have beef© such states. For these reasons, corner-cases are the single
verified by extensive simulation. A model is built (in soft- largest source of bugs in designs [8]. ,
ware or hardware), and monitors may be added to check for Our contribution Is a procedure that performs a partial
bad behavior. Large numbers of test inputs are applied to thigraversal of the state space while covering controller interac-
model. While offering the benefits of simplicity and scal- tions. Ateach step, symbolic techniques are used to compute
ability, simulation offers no guarantees of correctness; forthe full set of states reachable in one step from the current
large designs, the fraction of the design space which can bget. We then restrict our attention to a subset of the com-
covered in this methodology is vanisﬁing y small. Indeed,plete set of visited states; the subset is chosen heuristically to
there are many examples of designs that passed extensij@inimize the size of the symbolic representation while guar-
simulation, but'were still found to contain bugs [5]. This has anj[eelngf that for every pair of controllers, all states that the
led to the proposal of “formal methods” for design verifica- pair could be in remain in the subset. In this way we explore
tion. as many of the controller interactions as possible (which in-
The computational complexity of invariant checking on creases the likelihood of finding bugs), while controlling the
netlists is very high. In practice, many designs are wellBDD size explosion that takes place with a complete analy-
structured, and this can be exploited to devise heuristic proS!S-
cedures that perform well on specific classes of designs; i ravious Work
articular, BDDs have been used to successfully verify a '
arge number of complex de&gnsé\?/].. The pr|mar¥ limita- We have been influenced by a number of related works. The
tion of BDD based approachesto FV'is that Is that for manybasic notion of saturated simulation was put forth by Yuan
designs, the resulting BDDs grow very large [7]. et al. [15]. However, this work is not directly applicable
Practicing verifiers are less concerned with providing for-to designs which consist of a number of interacting con-
mal proofs of correctness for their designs than they are withrollers; they decompose the entire design into a monolithic
finding bugs in them as early as possible; this is attested teontroller and a monolithic datapath. For individual proces-
by the complete lack of penetration of theorem-provers insors, such an approach works well. However, when dealin
the hardware verification community. Indeed, “falsification” with a number of distributed components, the entire contro
is a more accurate description of the endeavor commonlgpace is very large, and their techniques fail.
called “verification”. ~ The work which is ferha s most closely related to ours
Faced with the twin dilemmas of diminished coverageis that of Ravi et al. [14]. Their approach attempts to pick
through simulation and the inability of symbolic methods to “high-density” subsets of the state sets encountered during
formally verify large designs, it is natural to ask how best to reachability analysis. These sets are chosen so as to mini-
use symbolic methods to find bugs in designs. In this papemize the BDD representation, while keeping as many states
we provide an answer to this problem. Itis to be stresseds possible. In contrast, in our approach a subset is cho-
that the approach is not complete, i.e., not guaranteed to fingen in which all distinct control-state pairs are preserved,
a counterexample, if the design fails to satisfy its propertiesminimization is performed subject to this requirement. We
However, our procedures are sound — all reported violation®elieve that ignoring the high-level control structure of the
of the invariant are true bugs. Our goal in this work is to find design when doing subsetting, and using simply the number
Ff states a? % measure ofhthe approximation, is a significant
o - , . imitation of their approach.
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Figure 2: A design consisting of multiple functional units.
(a) Netlist (b) Finite State Machine
Figure 1: Examples: Netlist and FSM A set of states can be identified with a BDD, and the

ageandPrelmageoperations can be performed directly on
BDDs [13]. This is the basis fasymbolic model checking

and Malik [2], and McGeer et al. [12], who stress the impor- tr}gs%lrﬁnarg/blllénnlqtatlon of this approach is the BDD size ex
tance of managing BDD size explosion, and the research of p '

Ho et al. [8] and Hoskote et al. [9], who create test vectors3 Saturated Simulation

using ideas from FV. Note that our approach is “liberal”, i.e., .

does note guarantee that all bugs are found; “conservative3.1 Introduction

approaches include that of Cho et al. [6]. Details of thes&yjany designs can be separated into a set of interacting con-
approaches are given in [1]. trol units, as illustrated in Figure 2; furthermore, the designer
2 Background is aware of this partition. As described in Section 1, a com-

mon source of bugs is when two controllers simultaneously
In order to analytically reason about hardware, we first neeenter exception handling states; the designer overlooks this
to develop mathematical models for digital systems. Wepossibility, and consequently the design may behave errati-
illustrate these models through the use of examples; refegally. Since it is rare that controllers enter exception states,
to [7] for details. such bugs are hard to find with random simulation; indeed,

a large effort is expended by des(ljgners trying manually to

design test vectors that bring the design into precisely such
Netlists and FSMs states. ] o

Note that for a design consisting af controllers, each

Hardware can be modeled at tlséructural level using  with m states, the total number of control-pair states is

netlists or at thebehaviorallevel usingfinite state ma-  O(m? - n?); this is a polynomial bound, as contrasted with
chines(FSMs). A netlist consists of an interconnected setthe total number of states whichris”. One way of visitin
of primary inputs, gates, and latches, as illustrated in Fig-all reachable control-state pairs is by sequential ATPG. Of
ure 1(a). Each gate has an associated Boolean function. &urse this problem is as hard as computing the set of reach-
finite state machine can be represented by an edge-labelewle states, and sequential ATPG is still in its infancy. In this
directed graph, where the vertices corresponstates and  section, we describe an approach we refer to as “control-pair
the labels arénput-outputpairs; an example is presented in saturated simulation”, which heuristically attempts to sym-
Figure 1(b). ] . . bolically explore as many pairs of control states as is com-
For a given netlist), there is a natural way of deriving putationally feasible.
a finite state machine from it; states are evaluations to the |n part, the feasibility of this approach follows from the
set of latch variables, and the next—state/outﬁut functions argact tﬁat the construction of the B%D for the next-state logic
derived by composing the gate functions. This is illustratedcan be restricted to the current set of states. This suggests
in Figure 1. that it may be possible to perform a “partial” reachability
analysis, In which all distinct control pair states are pre-
served at each step.

3.2 Formalization

A common verification problem for hardware designs is t0| ot D pe a design consisting of interacting control units
determine if every state reachable from a designated set ] C- Lot the set of state variables associated with
initial states lies within a specified set of “good states” (re- coptrailer: of the design beX;. In this way the set of states
ferred to as thénvariant). This problem is variously known ding t trolle v 5 X; d the alobal set of
asinvariant verification or assertion checkingrhough con- _ 0Tresponding to controfiaris =+, and the global set o
ceptually simple, invariant checking can be used to verifystates i2* whereX = [J,; X;.

all “safety” prOﬁertles, making it a very general verification

methodo OQYL Definition 1 Let A be a set of states. A subsétof 4 is

Invariant checking can be performed by computing all _pai i i
states reachable from the initial states andy determining thactOntrOI pair saturatedvith respect tod if

they all lie in the invariant. This can be achieved by travers- N , ,
ing the STG of the design — successors of a state can be (¥i)(Vj) (Va; € 2%)(Va; € 2%)

Invariant Verification

enerated by iterating over all possible inputs. This proce- A
gU(e has a very high complexity; a design withatches and [(ai, a;) € 3Y5(4) = (o, a)) € 3Yy; (A)]
m inputs ma%/ ave as many a8 reachable states, and for
each state, there a2&" inputs to iterate over. whereY;; = X — (X; U X;).

2.1 BDDs and Symbolic Invariant Checking

The Reduced Ordered Binary Decision Diagram 54] (BDD) Intuitively, A is a control-pair saturated subsetAA)ff ev-

is a graph based data structure that can compactly represestty pair of control states occurring ih occurs inA. Thus

a large class of useful Boolean functions. Operations sucleontrol-pair saturated subsets éfpreserve all the control-

as tautolo?y checking, negation, conjunction, and existenpair states present id. Heuristically, a minimal control-
|

tial quantification can be efficiently performed on BDDs. pair saturated subset af is a good representative set — it



I* A --- BDD for set over variables V. /* A --- initialized to BDD for init states. */

[* V' CV -- variables being cprojected. * /¥ C --- list of state vars in each controller. *
BDD.t function BDD_cprojec({A, V') { * G --- BDD for invariant. *
BDD_t function Cntrl_Pair_SatSim(A4, C, G) {
v :=topVar(A); . . .
if (v V') if (BDD_Intersect§A, BDD_not(G)) /* Invariant fails!! */
return v - BDD_cproject(Ay,) + v - BDD_cproject(Ag); assertFAIL;

ImgA := BDD_Img(A);
satimg :=BDD_Zerq();

T:=3(V' — {v})A; F et
h or_each(s, j) {
if BDD_EqualT', BDD_One) { e ) .
return v - BDD_cproject(Ay, V'); satimg :=BDD_.Or(satimg,BDD_cprojec{ ImgA, Uk#’j C[k]) )
} }
else ifBDD-EqualT’, BDD_Zero) {
return @ - BDD_cproject(Az, V'); R :=BDD.Or( A, satImg ),
if (BDD_EqualR, A))
else{ _ return R;
/* In cproject _min T is replaced by 1% return Cntrl_Pair_SatSim(R, C, G);
retumn v - BDD_cproject(A,, V') }

+@ - T - BDD_cproject(As,V');

Figure 4: Control-pair saturated simulation.

Figure 3: Pseudocode faproject  operator. . . .
3.3 Extensions to saturated simulation

Biasing

inClUdeS a” the diStinCt Control-pail’ ConfigurationSADand The implementation of the Cproject Operator in F|g 3 iS “bi_
is as small as possible (in the sense of cardinality). An exzsed towards 1”, i.e., when presented with a choice for a
ample illustrating this definition is givenin [1]. projection variable, it sets it ta. This biasing can result

We now address the problem of computing control-in dropping portions of the state space that may be signifi-
saturated subsets df. Let f be a Boolean function on vari- cant (e.g., branch on zero). We overcome this by comput-
ablesX. Lin et al. [11] presented an efficient algorithm (re- ing the union of two subsets; one biased towdrdand one
ferred to as theproject ~ operator) that takes a BDD for biased towardd. While no longer minimal, the resulting
lfand a subsek’ C X of the variables, and returns a BDD Set has cardinality no more than twice of the original set
0

r a functionf* which has the property that computed bycproject . More generally, we can define a
cproject _random operator, wherein at each level of the

recursion the bias for each variable is selected at random.
1. for any assignment to the variables inY — X', so  Theresults ofproject —_random can be added to the 0/1

that f(v) = 1, there is exactly one valuatiar which biased subsets to obtain a rich, yet sparse subset.
agrees with the valuatianover the variables it — X’

so thatf*(v") = 1, and furthermore BDD Minimization
Consider the expression for the final case of the
2. forallu, f*(u) =1 = f(u) = 1. BDD_cprojectfunction listed in Figure 3:

v - BDD _cproject(A,) + ©-T - BDD _cproject(Ay)
Pseudo-code for theproject  operator is given in Fig- - : . .
ure 3; an example of the applicationagroject is given ~ Replacingl’ by 1 results in a function which computes a su-
in [fl]. Since sets can be represented by their characterigperset of the result dDD_cproject Intuitively, since the
tic functions, we will freely apply theproject  operator ~ expression Is simplified, we reason that the BDD should

d , Y i also be simpler.  We refer to the resulting operator as
to sets. Observe thay, ; cproject (4, (X; U X;)) is a BDDcproject _min; heuristically, it should give a larger

%}ﬂ}ﬁﬁ&p%&?&grgﬁﬁeﬁrﬁﬁ% df (though not necessarily  set (in the sense of cardinality) with a smaller BDD.

~ In Figure 4 we sketch a simple symbolic procedure for ) ) )

invariant verification. Reachable states are iteratively com-Control-pair Edge Saturated Simulation

puted; at each step, a control-pair saturated subseli(.g) . btai h d . ¢

of the image of the ‘current set of states set is computed udn éxtension to obtain enhanced coverage is to perform a

ing theBDD_cprojectoperator. The union of this set is taken partial reachability analysis and at each step pick a subset

with the current set of statesl{ and is used as the next set %I;ItahgeelWgr%%ﬁgaélﬁ)rrr%sn?rsv&s[gllg]co%g)rI‘Ieertté?Flsét]lgrﬁsév\thgw
of states. Much work has been done on improving the effi1g compute minimal control-edge saturated sets by augment-
ciency of theimg operator [7], and we can directly use it.  ng the design: for every control latch-, add a new laich
This Brocedure may reach a fixed point without visiting all zs which “shadows’z, that is, the next state afs is the
reachable states because at each step only a subset of ste?essent state af; hence, control-edge pair saturated simu-
is being explored. However, if a state not in the invariant islation can be reduced to control-state pair saturated simula-

reached, this is guaranteed to indicate a bug. tion.



4 Experimental Results — Saturated Simulation
We coded the routines described in the previous section

Among the nonminimized routines, the random biased
roject discovered the most control state pairs, a total of

part of the VIS program [7]. We report experimental re- .15 x 10°, which is five times as many as complete analy-

sults on the viper microprocessor, which is distributed with
the VIS system [3]. Viper is aﬁproxmately 4000 gate-
equivalents. It contains 252 latches; from these, we iden
tified 6 control units, containing between 4 and 12 latches

sis, and two/three times better than 0/1-biased analysis.
Somewhat to our surprise, tiBDDcproject _min op-

erator usually gave larger BDDs th@DDcproject .

However, there was benefit in terms of exploring more con-

for a total of 42 control latches. The variable ordering wastrol pair statesMin-Rnd-Sat found1.65 x 10¢ control pair

derived by building the BDD for the decomposed transition

states.

relation and performing reordering; dynamic reorderingwas For comparison we ran cycle simulation with random in-

enable throughout.

puts for 100,000 seconds; we could not compute the number

In the previous section, we described several extensionsf control-state pairs, but the total number of states found
of the basic saturated simulation procedure laid out in Figiwas an order of magnitude less that the number of control-

ure 4. Some of these were independent (such as the use
control-pair edges, and the useopfroject _min); conse-

sffate pairs reached in any of the above experiments.

quently, there are an exponential number of possible exper® ~ Conclusion
iments. We performed a representative set, detailed resuli® summary, our primary contribution in this paper is a sym-

are given in [1]; we summarize them below. In particular,
we experimented with the following —

Comp-Reach: Complete BDD based reachability analysis.
Sat-Reach: Saturated reachability analysis as in Figure 4.
0-Bias: Sat-Reachwith 0-biasectproject(§ 3.3).

Rnd-Bias: Sat-Reachwith randomcproject(§ 3.3).

Min-Sat: 0-Bias with BDD_cprojectmin instead of
BDD_cproject(§ 3.3).

Min-Rnd-Sat: Sat-Reach
BDD_cprojectmin.

with  randomly  biased

All experiments were performed on a DEC AlphaServer
2100A 5/250 with 1Gb of memory.

bolic procedure for exploring the set of control pair states.
The various heuristics developed in the course of this paper
result in substantial improvement over complete BDD-based
reachability and cycle simulation. The resulting procedure is
robust with respect to time and memory, and requires only
that the user sReC[fy_ the different controllers in the design.
__We believe that it'is fair to say that existing symbolic ver-
ification techniques, though comcj)lete, are limited. Coping
with BDD blowup requires considerable expertise; we sug-
gest more research should be performed on exploring how
to best use computational resources. ) .

In the future we plan to continue exploring ways in which
to combine formal and informal verification; one possibility
is adaptive simulation, in which random search is combined
with backtrack. We are also looking at applications in soft-
ware verification.
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