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Abstract — We develop a verification paradigm called
saturated simulation, that is applicable to designs which can
be decomposed into a set of interacting controllers. The core
procedure is a symbolic algorithm that explores the space of
controller interactions; heuristics for making this traversal
efficient are described. Experiments demonstrate that our
procedure explores substantially more of the controller in-
teractions, and is more efficient than conventional symbolic
reachability analysis.

1 Introduction
In this paper we are concerned with the problem ofdesign
verification; specifically, the problem ofinvariant checking
over gate-level designs. Traditionally, designs have been
verified by extensive simulation. A model is built (in soft-
ware or hardware), and monitors may be added to check for
bad behavior. Large numbers of test inputs are applied to this
model. While offering the benefits of simplicity and scal-
ability, simulation offers no guarantees of correctness; for
large designs, the fraction of the design space which can be
covered in this methodology is vanishingly small. Indeed,
there are many examples of designs that passed extensive
simulation, but were still found to contain bugs [5]. This has
led to the proposal of “formal methods” for design verifica-
tion.

The computational complexity of invariant checking on
netlists is very high. In practice, many designs are well
structured, and this can be exploited to devise heuristic pro-
cedures that perform well on specific classes of designs; in
particular, BDDs have been used to successfully verify a
large number of complex designs [7]. The primary limita-
tion of BDD based approaches to FV is that is that for many
designs, the resulting BDDs grow very large [7].

Practicing verifiers are less concerned with providing for-
mal proofs of correctness for their designs than they are with
finding bugs in them as early as possible; this is attested to
by the complete lack of penetration of theorem-provers in
the hardware verification community. Indeed, “falsification”
is a more accurate description of the endeavor commonly
called “verification”.

Faced with the twin dilemmas of diminished coverage
through simulation and the inability of symbolic methods to
formally verify large designs, it is natural to ask how best to
use symbolic methods to find bugs in designs. In this paper
we provide an answer to this problem. It is to be stressed
that the approach is not complete, i.e., not guaranteed to find
a counterexample, if the design fails to satisfy its properties.
However, our procedures are sound — all reported violations
of the invariant are true bugs. Our goal in this work is to find
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more and different bugs more efficiently and cheaply than
simulation or formal verification used in isolation.

1.1 Our Approach
Many designs consist of a set of interacting controllers. A
common source of bugs in such designs is that the designer
fails to take into account “corner-cases”, which occur when
two or more controllers are simultaneously in “exception-
handling” states. An example of this is when a transmitter
unit has a buffer overflow, and a receiver unit simultaneously
times out. It is difficult for random simulation to find such
corner conditions, since exceptions are rare. Similarly, it is
very tedious for designers to craft tests that bring the design
to such states. For these reasons, corner-cases are the single
largest source of bugs in designs [8].

Our contribution is a procedure that performs a partial
traversal of the state space while covering controller interac-
tions. At each step, symbolic techniques are used to compute
the full set of states reachable in one step from the current
set. We then restrict our attention to a subset of the com-
plete set of visited states; the subset is chosen heuristically to
minimize the size of the symbolic representation while guar-
anteeing that for every pair of controllers, all states that the
pair could be in remain in the subset. In this way we explore
as many of the controller interactions as possible (which in-
creases the likelihood of finding bugs), while controlling the
BDD size explosion that takes place with a complete analy-
sis.

Previous Work
We have been influenced by a number of related works. The
basic notion of saturated simulation was put forth by Yuan
et al. [15]. However, this work is not directly applicable
to designs which consist of a number of interacting con-
trollers; they decompose the entire design into a monolithic
controller and a monolithic datapath. For individual proces-
sors, such an approach works well. However, when dealing
with a number of distributed components, the entire control
space is very large, and their techniques fail.

The work which is perhaps most closely related to ours
is that of Ravi et al. [14]. Their approach attempts to pick
“high-density” subsets of the state sets encountered during
reachability analysis. These sets are chosen so as to mini-
mize the BDD representation, while keeping as many states
as possible. In contrast, in our approach a subset is cho-
sen in which all distinct control-state pairs are preserved;
minimization is performed subject to this requirement. We
believe that ignoring the high-level control structure of the
design when doing subsetting, and using simply the number
of states as a measure of the approximation, is a significant
limitation of their approach.

Literature distributed by0-In [10] at DAC 1997 also in-
fluenced us. Specifically, they underlined the importance of
exploring control-pair interactions. Of course, we can only
speculate about their algorithms, since no description of the
underlying procedures is given.

Other less closely related works include those of Ashar
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Figure 1: Examples: Netlist and FSM

and Malik [2], and McGeer et al. [12], who stress the impor-
tance of managing BDD size explosion, and the research of
Ho et al. [8] and Hoskote et al. [9], who create test vectors
using ideas from FV. Note that our approach is “liberal”, i.e.,
does note guarantee that all bugs are found; “conservative”
approaches include that of Cho et al. [6]. Details of these
approaches are given in [1].

2 Background
In order to analytically reason about hardware, we first need
to develop mathematical models for digital systems. We
illustrate these models through the use of examples; refer
to [7] for details.

Netlists and FSMs

Hardware can be modeled at thestructural level using
netlists, or at thebehavioral level usingfinite state ma-
chines(FSMs). A netlist consists of an interconnected set
of primary inputs, gates, and latches, as illustrated in Fig-
ure 1(a). Each gate has an associated Boolean function. A
finite state machine can be represented by an edge-labeled
directed graph, where the vertices correspond tostates, and
the labels areinput-outputpairs; an example is presented in
Figure 1(b).

For a given netlist�, there is a natural way of deriving
a finite state machine from it; states are evaluations to the
set of latch variables, and the next-state/output functions are
derived by composing the gate functions. This is illustrated
in Figure 1.

Invariant Verification

A common verification problem for hardware designs is to
determine if every state reachable from a designated set of
initial states lies within a specified set of “good states” (re-
ferred to as theinvariant). This problem is variously known
asinvariant verification, orassertion checking. Though con-
ceptually simple, invariant checking can be used to verify
all “safety” properties, making it a very general verification
methodology[7].

Invariant checking can be performed by computing all
states reachable from the initial states and determining that
they all lie in the invariant. This can be achieved by travers-
ing the STG of the design — successors of a state can be
generated by iterating over all possible inputs. This proce-
dure has a very high complexity; a design withn latches and
m inputs may have as many as2n reachable states, and for
each state, there are2m inputs to iterate over.

2.1 BDDs and Symbolic Invariant Checking
The Reduced Ordered Binary Decision Diagram [4] (BDD)
is a graph based data structure that can compactly represent
a large class of useful Boolean functions. Operations such
as tautology checking, negation, conjunction, and existen-
tial quantification can be efficiently performed on BDDs.
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Figure 2: A design consisting of multiple functional units.

A set of states can be identified with a BDD, and theIm-
ageandPreImageoperations can be performed directly on
BDDs [13]. This is the basis forsymbolic model checking;
the primary limitation of this approach is the BDD size ex-
plosion problem.

3 Saturated Simulation
3.1 Introduction
Many designs can be separated into a set of interacting con-
trol units, as illustrated in Figure 2; furthermore, the designer
is aware of this partition. As described in Section 1, a com-
mon source of bugs is when two controllers simultaneously
enter exception handling states; the designer overlooks this
possibility, and consequently the design may behave errati-
cally. Since it is rare that controllers enter exception states,
such bugs are hard to find with random simulation; indeed,
a large effort is expended by designers trying manually to
design test vectors that bring the design into precisely such
states.

Note that for a design consisting ofn controllers, each
with m states, the total number of control-pair states is
O(m2

� n2); this is a polynomial bound, as contrasted with
the total number of states which ismn. One way of visiting
all reachable control-state pairs is by sequential ATPG. Of
course this problem is as hard as computing the set of reach-
able states, and sequential ATPG is still in its infancy. In this
section, we describe an approach we refer to as “control-pair
saturated simulation”, which heuristically attempts to sym-
bolically explore as many pairs of control states as is com-
putationally feasible.

In part, the feasibility of this approach follows from the
fact that the construction of the BDD for the next-state logic
can be restricted to the current set of states. This suggests
that it may be possible to perform a “partial” reachability
analysis, in which all distinct control pair states are pre-
served at each step.

3.2 Formalization
Let D be a design consisting of interacting control units
C1; C2; : : : ; Cn. Let the set of state variables associated with
controlleri of the design beXi. In this way the set of states
corresponding to controlleri is 2Xi , and the global set of
states is2X whereX =

S
iXi.

Definition 1 Let A be a set of states. A subsetÂ of A is
control-pair saturatedwith respect toA if

(8i)(8j) (8�i 2 2Xi)(8�j 2 2Xj )h
(�i; �j) 2 9Yij(A) ! (�i; �j) 2 9Yij(Â)

i

whereYij = X � (Xi [Xj).

Intuitively, Â is a control-pair saturated subset ofA if ev-
ery pair of control states occurring inA occurs inÂ. Thus
control-pair saturated subsets ofA preserve all the control-
pair states present inA. Heuristically, a minimal control-
pair saturated subset ofA is a good representative set — it



/* A --- BDD for set over variables V . */
/* V 0 � V --- variables being cprojected. */

BDD t function BDD cproject(A, V 0) f

v := topVar(A);
if (v 62 V 0) f

return v � BDD cproject(Av) + �v �BDD cproject(A
�v);

g

T := 9(V 0 � fvg)Av ;
if BDD Equal(T ,BDD One) f

return v � BDD cproject(Av; V
0);

g
else ifBDD Equal(T ,BDD Zero) f

return �v � BDD cproject(A
�v; V

0);
g
elsef

/* In cproject min T is replaced by 1 */
return v � BDD cproject(Av; V

0)

+�v � T � BDD cproject(A
�v; V

0);
g

g

Figure 3: Pseudocode forcproject operator.

includes all the distinct control-pair configurations inA, and
is as small as possible (in the sense of cardinality). An ex-
ample illustrating this definition is given in [1].

We now address the problem of computing control-
saturated subsets ofA. Let f be a Boolean function on vari-
ablesX . Lin et al. [11] presented an efficient algorithm (re-
ferred to as thecproject operator) that takes a BDD for
f and a subsetX 0

� X of the variables, and returns a BDD
for a functionf� which has the property that

1. for any assignmentv to the variables inX � X 0, so
thatf(v) = 1, there is exactly one valuationv0 which
agrees with the valuationv over the variables inX�X 0

so thatf�(v0) = 1, and furthermore

2. for allu, f�(u) = 1) f(u) = 1.

Pseudo-code for thecproject operator is given in Fig-
ure 3; an example of the application ofcproject is given
in [1]. Since sets can be represented by their characteris-
tic functions, we will freely apply thecproject operator
to sets. Observe that

S
i;j cproject (A; (Xi [Xj)) is a

control-pair saturated subset ofA (though not necessarily
minimal, becaue of the union).

In Figure 4 we sketch a simple symbolic procedure for
invariant verification. Reachable states are iteratively com-
puted; at each step, a control-pair saturated subset (satImg)
of the image of the current set of states set is computed us-
ing theBDD cprojectoperator. The union of this set is taken
with the current set of states (A) and is used as the next set
of states. Much work has been done on improving the effi-
ciency of theImgoperator [7], and we can directly use it.

This procedure may reach a fixed point without visiting all
reachable states because at each step only a subset of states
is being explored. However, if a state not in the invariant is
reached, this is guaranteed to indicate a bug.

/* A --- initialized to BDD for init states. */
/* C --- list of state vars in each controller. */
/* G --- BDD for invariant. */

BDD t function Cntrl Pair SatSim(A, C,G) f

if (BDD Intersects(A, BDD not(G)) /* Invariant fails!! */
assertFAIL;

ImgA := BDD Img(A);
satImg :=BDD Zero();
for each(i; j) f

satImg :=BDD Or(satImg,BDD cproject( ImgA,
S

k 6=i;j
C[k] ) );

g

R := BDD Or(A, satImg );
if (BDD Equal(R,A))

return R;

return Cntrl Pair SatSim(R, C,G);
g

Figure 4: Control-pair saturated simulation.

3.3 Extensions to saturated simulation

Biasing

The implementation of the cproject operator in Fig 3 is “bi-
ased towards 1”, i.e., when presented with a choice for a
projection variable, it sets it to1. This biasing can result
in dropping portions of the state space that may be signifi-
cant (e.g., branch on zero). We overcome this by comput-
ing the union of two subsets; one biased towards0, and one
biased towards1. While no longer minimal, the resulting
set has cardinality no more than twice of the original set
computed bycproject . More generally, we can define a
cproject random operator, wherein at each level of the
recursion the bias for each variable is selected at random.
The results ofcproject random can be added to the 0/1
biased subsets to obtain a rich, yet sparse subset.

BDD Minimization

Consider the expression for the final case of the
BDD cprojectfunction listed in Figure 3:

v � BDD cproject(Av) + �v � T � BDD cproject(A�v)

ReplacingT by 1 results in a function which computes a su-
perset of the result ofBDD cproject. Intuitively, since the
expression is simplified, we reason that the BDD should
also be simpler. We refer to the resulting operator as
BDDcproject min ; heuristically, it should give a larger
set (in the sense of cardinality) with a smaller BDD.

Control-pair Edge Saturated Simulation

An extension to obtain enhanced coverage is to perform a
partial reachability analysis and at each step pick a subset
of the image that preserves all “controller transitions” to the
image from the current set [8, 9]. Yuan et al [15] show how
to compute minimal control-edge saturated sets by augment-
ing the design: for every control latchxC , add a new latch
xS which “shadows”xC , that is, the next state ofxS is the
present state ofxC ; hence, control-edge pair saturated simu-
lation can be reduced to control-state pair saturated simula-
tion.



4 Experimental Results – Saturated Simulation
We coded the routines described in the previous section as
part of the VIS program [7]. We report experimental re-
sults on the viper microprocessor, which is distributed with
the VIS system [3]. Viper is approximately 4000 gate-
equivalents. It contains 252 latches; from these, we iden-
tified 6 control units, containing between 4 and 12 latches,
for a total of 42 control latches. The variable ordering was
derived by building the BDD for the decomposed transition
relation and performing reordering; dynamic reordering was
enable throughout.

In the previous section, we described several extensions
of the basic saturated simulation procedure laid out in Fig-
ure 4. Some of these were independent (such as the use of
control-pair edges, and the use ofcproject min ); conse-
quently, there are an exponential number of possible exper-
iments. We performed a representative set, detailed results
are given in [1]; we summarize them below. In particular,
we experimented with the following —

Comp-Reach: Complete BDD based reachability analysis.

Sat-Reach: Saturated reachability analysis as in Figure 4.

0-Bias: Sat-Reach, with 0-biasedcproject(x 3.3).

Rnd-Bias: Sat-Reach, with randomcproject(x 3.3).

Min-Sat: 0-Bias, with BDD cprojectmin instead of
BDD cproject(x 3.3).

Min-Rnd-Sat: Sat-Reach, with randomly biased
BDD cprojectmin.

All experiments were performed on a DEC AlphaServer
2100A 5/250 with 1Gb of memory.

Summary of results
1. Comp-Reachspaced-out after four iterations of reach-

ability, after having visited 224,326 control pair states
(CSPs).

2. Sat-Reachreached a fixed point in64 iterations (144:6
seconds), having found 353,949 CSPs; peak BDD size
was 5,512 nodes.

3. 0-Bias reached a fixed point in67 iterations (1269:5
seconds), having found 633,603 CSPs; peak BDD size
was 38,033 nodes.

4. Rnd-Biasspaced-out in15 iterations (2565:4 seconds),
having found 1,152,080 CSPs; peak BDD size was
2,755,343 nodes.

5. Min-Sat reached a fixed point in68 iterations (4; 951:8
seconds), having found 1,063,720 CSPs; peak BDD
size was 138,253 nodes.

6. Min-Rnd-Bias spaced-out in15 iterations (9; 423:8
seconds), having found 1,649,070 CSPs; peak BDD
size was 3,308,410 nodes.

Comp-Reachexhibited unstable behavior — the first four
iterations took3:2 seconds, and the largest BDD encoun-
tered was4; 019 nodes; the example spaced out on the fifth
iteration.

All variants of saturated reachability were able to go
through substantially more iterations. The 0-biased cproject
routine found 80% more control pair states than the 1-biased
version; we conjecture this is because there is more inter-
esting behavior which can be reached from states where the
datapath registers contain 0’s.

Among the nonminimized routines, the random biased
cproject discovered the most control state pairs, a total of
1:15� 106, which is five times as many as complete analy-
sis, and two/three times better than 0/1-biased analysis.

Somewhat to our surprise, theBDDcproject min op-
erator usually gave larger BDDs thanBDDcproject .
However, there was benefit in terms of exploring more con-
trol pair states:Min-Rnd-Sat found1:65� 106 control pair
states.

For comparison we ran cycle simulation with random in-
puts for 100,000 seconds; we could not compute the number
of control-state pairs, but the total number of states found
was an order of magnitude less that the number of control-
state pairs reached in any of the above experiments.

5 Conclusion
In summary, our primary contribution in this paper is a sym-
bolic procedure for exploring the set of control pair states.
The various heuristics developed in the course of this paper
result in substantial improvement over complete BDD-based
reachability and cycle simulation. The resulting procedure is
robust with respect to time and memory, and requires only
that the user specify the different controllers in the design.

We believe that it is fair to say that existing symbolic ver-
ification techniques, though complete, are limited. Coping
with BDD blowup requires considerable expertise; we sug-
gest more research should be performed on exploring how
to best use computational resources.

In the future we plan to continue exploring ways in which
to combine formal and informal verification; one possibility
is adaptive simulation, in which random search is combined
with backtrack. We are also looking at applications in soft-
ware verification.
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