Incremental CTL Model Checking Using BDD Subsetting*

Abelardo Pardo
Mentor Graphics Corporation
267 Boston Road, Suite 2
Billerica, MA, 01862, USA
abelardo_pardo@mentorg.com

Abstract

An automatic abstraction/refinement algorithm for symbolic
CTL model checking is presented. Conservative model che-
cking is thus done for the full CTL language—no restric-
tion is made to the universal or existential fragments. The
algorithm begins with conservative verification of an ini-
tial abstraction. If the conclusion is negative, it derives a
“goal set” of states which require further resolution. It then
successively refines, with respect to this goal set, the ap-
proximations made in the sub-formulas, until the given for-
mula is verified or computational resources are exhausted.
This method applies uniformly to the abstractions based in
over-approximation as well as under-approximations of the
model. Both the refinement and the abstraction procedures
are based in BDD-subsetting. Note that refinement proce-
dures which are based on error traces, are limited to over-
approximation on the universal fragment (or for language
containment), whereas the goal set method is applicable to
all consistent approximations, and for all CTL formulas.

1 Introduction

The success of formal verification in detecting incorrect de-
signs has been proven over the last decade. However, lim-
itations on the size of verifiable problems continue to be a
serious drawback. Symbolic techniques based on BDDs (Re-
duced Ordered Binary Decision Diagrams [3]), such as sym-
bolic model checking [4, 13] have significantly increased the
size of the systems which can be verified. However, indus-
trial strength examples, model checking based on automatic
conservative approximation is required [10, 9, 14].

The main idea behind abstraction is to interpret the be-
havior of a system in a abstracted (and therefore simplified)
system with a more compact representation. An abstrac-
tion can be seen as a relation between two systems. On one
hand, the original system has the complete description of
its behavior, whereas its abstraction preserves some of that
behavior and abstracts the rest. The key issue is to know
in advance what parts of a design are relevant, and how
to automatically abstract the rest of it. In most cases, the

*This work was supported in part by NSF/DARPA grant MIP-
9115432 and SRC contract 95-DJ-560.

Gary D. Hachtel
University of Colorado
ECEN Campus Box 425
Boulder, CO, 80309, USA
hachtel@colorado.edu

problem in the abstract domain is solved conservatively, that
is, only when the formula is proved true it can be concluded
true in the original system.

In this paper we provide an algorithm to perform CTL
symbolic model checking based on the generic abstraction
paradigm of [14]. We explore the effect of two kinds of ab-
straction: (1) BDD subsetting in the pervasive pre-image
computations, and (2) gross initial approximation of the
overall partitioned transition relation, followed by restora-
tion of the exact relation. We emphasize, that this excludes
a vast panoply of alternative automatic abstraction meth-
ods. However, the experimental results show that even with
this extremely limited set of abstractions, excellent results
can be obtained for CTL model checking.

2 Automatic Abstraction

Abstraction has been seen as an effective technique to sim-
plify the systems to be verified to the extent that they can
be handled by conventional symbolic techniques. The main
challenge for abstraction is the trade-off between the degree
of automation and its effectiveness.

In [12], Long proposed a conservative abstraction pa-
radigm that preserved the validity of the logic VCTL. This
method was one-sided, in that it considered only upper bo-
und approximations of the underlying Kripke structure. In
[5], a procedure for approximate traversal of large systems
was presented, based on automatic state space decomposi-
tion. This technique was similarly one-sided, and applied
only to reachability analysis. Neither of these methods pro-
vided a procedure for automatically refining the approxima-
tion until verification was conclusive.

In [8], Kurshan described an abstraction paradigm called
“localization reduction” in the context of w-regular language
containment based on reducing the parts of a system that
are irrelevant with respect to the task being verified. A sys-
tematic procedure was sketched which refined the approx-
imations based on error trace analysis. A related iterative
approach to abstraction in language containment verifica-
tion was presented in [1]. In contrast to Kurshan’s method,
this was BDD-based, and the refinement considered sets of
error traces. However, the details of iterating their method
to a definite conclusion were omitted.

In [10], a method was given for conservative CTL model
checking. Although this approach used both upper and
lower bounds, and included a complete procedure for re-
fining the initial approximation, it was limited to VCTL.
In [7] Kelb et al. proposed an abstraction mechanism for p-
calculus model checking based on two novel approximations,
which were called universal and existential. The process re-

35" Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50

DAC98 - 06/98 San Francisco, CA USA

quired the intervention of the user. Although this approach
applied to the full u-calculus, and used both upper and lower
bounds, only one (very interesting) type of approximation
was used, and no automatic refinement procedure was given.

Our work is mainly based on the automatic abstraction
paradigm presented by Pardo et al. in [14], thus a brief
summary of it is given. The paradigm provides the sufficient
conditions for an approximation to provide a conservative
abstraction.

The formulas are represented by its parse tree, where
each vertex represents a sub-formula. We will refer indis-
tinctly to a sub-formula or to the vertex representing it.
The model checking procedure traverses this tree in pos-
torder computing the set of states that satisfy each of the
sub-formulas. In this paradigm, each node in the tree is
labeled with a polarity which denotes the type of approxi-
mation (either an over or under-approximation) that can be
produced at that level in the verification.

The paradigm follows a “lazy” strategy, in the sense that
it creates an initial crude approximation and keeps refining
it until the result is conclusive. This refinement process is
guided by a derived “goal set” of states that need further
resolution. The “goal set” refinement method bears a su-
perficial resemblance to the error trace refinement methods
of [8] and [1]. However, the method of [14] is uniformly
applicable to over and under-approximations whereas error
traces are available only for upper bounds applied to uni-
versal CTL formulas or language containment.

In the context of reachability analysis of sequential sys-
tems Ravi et al. presented in [15] a set of techniques to
simplify the representation of a set as a BDD while creating
either a superset or a subset.

The work presented in this paper combines these two
mechanisms of goal-set based abstraction/refinement and
consistent approximation by BDD subsetting into one sin-
gle implementation. Our primary objective is to explore how
BDD simplification techniques can be used in the context of
automatic abstraction for CTL model checking.

3 CTL Symbolic Model Checking

CTL (Computational Tree Logic) is a modal logic proposed
by Clarke et al. in [6]. Predicates in this logic enable rea-
soning about the behavior of a given model with respect to
a set of atomic propositions over time. Examples of atomic
proposition predicates are reset = 1 or busId = 0x24. Let
us assume a set of atomic propositions A. The set of CTL
formulas ¢ are those generated by the following grammar:

¢ =p € Al=¢ | ¢1 A $2|EX(41)|EG(¢1)|E(p1Ud2).

The semantics of CTL is defined with respect to infinite
sequences of states in a Kripke structure.

Definition 3.1 Let a Kripke structure be a 5-tuple K =
(S,Q,R, A, \) in which S is a set of states, @ C S is the set
of initial states, R C S x S is a transition relation, A is a
set of atomic propositions, and A : A — 25 is the labeling
function that returns the set of states in which an atomic
proposition is satisfied.

Definition 3.2 An infinite path © in o Kripke structure
K = (5,Q,R,A,)\) is a sequence of states si,S2,... such
that s1 € Q and Vi € N (s;,5:41) € R.

Given a Kripke structure K = (S, @, R, A, \) and a set of
atomic propositions A, we write (K, s) &= ¢ to denote that

the state s of the structure K satisfies the CTL formula ¢.
Let m = si1,82,... be an infinite path. The semantics of
CTL formulas is defined as:

o (K,s)|=p, where p € Aiff s € A(p).

K, s) = —¢ iff s does not satisfy the formula ¢ in K.
K, s) = (¢1 A ¢2) iff s satisfies both ¢1 and ¢».

K, s) = EX(¢1) iff 37 such that (K, s2) = ¢1.

K, s) = EG(¢1) iff 37 such that all states satisfy ¢;.
K

/

, S

)
)
)
)

(
(
(
(
(

,8) = E(¢1Ug2) iff 3 such that there exists a state
s’ which satisfies ¢2 and every state from s; until s’
(excluding s') satisfies ¢;.

Different techniques have been studied to improve the ef-
ficiency of the model checking algorithm. Among them, the
one that provided a significant breakthrough was the manip-
ulation of states symbolically with BDDs [4]. In symbolic
model checking, the size of the BDD representation of the
sets of states manipulated has a big impact on the efficiency
of the algorithm.

The algorithm presented in this paper uses 2-sided BDD
reduction techniques like the 1-sided ones presented in [15]
to gradually increase the accuracy of the verification. Con-
ventional symbolic model checking algorithms provide either
an exact or an approximate computation. Our algorithm ex-
plores the space of possible approximations while looking for
a conclusive verification result.

4 The Abstraction/Refinement Algorithm

The algorithm consists of two stages. Let us assume that
a certain CTL formula ¢ is to be verified. The first stage
amounts to obtaining a crude approximation of the verifi-
cation problem. This approximation will have the property
of being conservative in the sense defined in Section 1. In
the second stage, the verification process is recursively an-
alyzed to obtain a measure of how the current result needs
to be refined to achieve the conclusive verification of the
formula. This measure will be a set of states which will be
called the goal set. This refinement process involves the re-
computation of certain parts of the verification but with an
increased level of accuracy.

In order to apply a BDD based approximation at any
point in the model checking algorithm, each temporal op-
erator is expressed in terms of conjunction, negation, pre-
image computation (denoted by Prelmage) and fix-point
iteration (denoted by Ifp). This translation is based on
the equivalences EG(¢1) = —lfp(X, —~(¢1 A PreImage(—X)))
and E(¢1U¢2) = ifp(X, 7¢2A—(¢p1 APreImage(X))), where
Ifp(X, @) represents a least fix-point iteration of the formula
¢ over the variable X, and ¢ represents both a CTL formula
and the set of states s such that (K, s) = ¢. Figure 5 shows
an example of the tree representation of a formula.

4.1 Initial Abstraction

In principle, the algorithm may approximate the evaluation
of any type of sub-formula. Our objective is then to in-
troduce the approximations gradually in the parts of the
verification that are more time consuming. From empirical
data, we have observed that most of the verification time is
spent in the pre-image computation.

Let us assume that a relation R and a set of states S
are given to compute the operation Prelmage(R,S). The

algorithm uses two types of abstractions: (1) Apply BDD
subsetting to the set S and reduce its size by a constant
factor. This technique can be applied to produce either
over-approximations or under-approximations. (2) Assum-
ing that the relation R is given as a product of sub-relations,
the algorithm chooses a subset of the sub-relations as an
over-approximation of R. This type of abstraction is used
only when an over-approximation is required.

At every evaluation step, the algorithm annotates if an
approximation method has been used. In the second stage,
these approximation will be refined in order to obtain a con-
clusive result. Due to the simplifications in this initial eval-
uation, the answer to the verification process is obtained
usually in a negligible amount of CPU time.

4.2 Refining the Approximation

The refinement stage of the algorithm is applied only if the
result of the initial approximation is inconclusive. In our im-
plementation, the initial approximation is very significant,
and consequently, in almost all the cases, the verification
problem remains inconclusive.

In the second stage we have the choice of applying grad-
ual refinements to the different approximations. That is,
whenever an approximation needs to be refined, it can be
replaced by a better approximation and the computation is
repeated. In the implementation discussed here, the refine-
ment of an operation is done directly to the exact computa-
tion.

The motivation for this decision is based on experimen-
tal data obtained by exploring the trade-off in time between
approximate and exact computations. Experimental results
showed that in the case of gradual refinements, the num-
ber of approximate evaluations was significantly higher, and
more importantly, this number outweighed the fact that the
approximation required much less computation time to be
performed. As a consequence, the heuristic that has been
implemented attempts to detect these situations.

The overall refinement algorithm has an operand named
the goal set that guides the process towards the resolution of
the verification problem (i.e a conclusive result.) The goal
set of a sub-formula ¢ (denoted by fs; contains the set of
states by which the approximation has to be modified in or-
der to progress towards a conclusive result. If the operation
has been over-approximated, the set contains the states that
need to be removed from the result. Conversely, if an oper-
ation has been under-approximated, the set contains the set
of states that need to be included in the result. The rules
to propagate the goal set through the different sub-formulas
were given in [14].

In the remaining of the section, for the sake of clarity,
it will be assumed that all trivial cases have already been
explored. The different algorithms presented in this sec-
tion represent the situation in which an operation needs to
be refined and the refinement is non-trivial. Also, we will
denote by Sat(v) the set of states that satisfy the formula
represented by v and by Sat'(v) an approximation of this
set.

4.2.1 Refinement of the Conjunction Operation

Let us assume a formula v of type conjunction with sub-
formulas vi and v2. The refinement procedure receives the
Kripke structure K, v, and the goal set f,. Figure 1 shows
the pseudo-code for the refinement algorithm of the conjunc-
tion. The function P(v) returns the polarity labeling of the

formula v denoting if an over-approximation or an under-
approximation is required. The algorithm returns the BDD
representation of the remaining goal set after refinement.

funct RefineConjunction(K,v, f,): set =
if (The conjunction has been approximated) then
return TestSatisfaction(v, f,)
endif
fv, = SubFormulaRefine(K, vy, f,)
if (P(v) = +) then
result = SubFormulaRefine(K, vz, fu,)
else
fuv, = SubFormulaRefine(K , va, fo)
result = fu, V fu,
endif
Sat' (v) = Sat' (vy) A Sat' (ve)
return result
end

Figure 1: Refinement algorithm for the conjunction

If the conjunction has been approximated due to the size
of the result then no further refinement attempt is made and
the set of states that remain to be refined is returned by the
function TestSatisfaction.

If the conjunction has not been approximated, the re-
finement needs to be propagated recursively to the sub-
formulas. The sub-formula to be refined first is chosen try-
ing to minimize the potential amount of refinement. The
implemented heuristic checks first if any of the sub-formulas
contains the variable of a fix-point. In that case the other
sub-formula is chosen. If none of them contain the vari-
able of a fix-point, the sub-formula with the smaller depth
is chosen.

If the node must be over-approximated, the formula v
has to be refined with the goal set containing the states that
could not be refined in v;. The set denoted by f,, contains
precisely these states. The set to be returned at the level of
formula v is precisely the result of the refinement of v. If the
node must be under-approximated, then both refinements of
v1 and vy have to be done with the goal set f,.

After these refinements have been completed, the con-
junction needs to be re-evaluated.

4.2.2 Refinement of the Pre-image Operation

The refinement procedure for the pre-image operation de-
parts slightly from the common structure of the algorithm.
It is assumed that a refinement fails, and the algorithm
directly computes the propagation of the goal set f, as
Image(R, f,). The reason for this heuristic is totally based
on experimental results. In all the examples in which this
refinement was required, the image computation of the goal
set was computed very efficiently. This design decision can
be thought of as speculative execution. Figure 2 shows the
pseudo-code for the algorithm just described.

funct RefinePrelmage(K, v, fy): set =
for = Image(R, f,)
SubformulaRefine(K, vy, fo,)
if (There has been some refinement in v;) then
ComputeEzactPrelmage(v)
endif
result = TestSatisfaction (v, f,)
return result
end

Figure 2: Refinement algorithm for the pre-image

The algorithm first propagates the goal set to the sub-
formula v;. No exact pre-image computation is performed to
check that this propagation is required. If this propagation
is indeed required, then the procedure saves the computation
of an exact pre-image. If this propagation is not required,
the image computation is performed but the refinement will
succeed in the immediate sub-formula.

After the recursive call, if the refinement of the sub-
formula succeeds (the function returns the empty goal set),
the exact pre-image computation is then performed.

4.2.3 Refinement of the Fix-point Operation

The approximation of the fix-point computation has several
important effects. There is no relation between the number
of iterations in the exact computation and the number of
iterations of an approximation. The refinement procedure
may refine several or all of the iterations in the sequence. If
the last iteration is refined, the convergence criteria may not
hold, and the fix-point needs to be iterated further. After
convergence is restored, the result of the fix-point might have
changed, and therefore, the refinement process needs to be
started again.

Because of these considerations, the refinement process
of a fix-point operation is divided into two levels. At the
internal stage, one of the individual iterations is refined. In
the outer stage, a post-processing of the sequence is required
to guarantee convergence. Figure 3 shows the pseudo code
for the overall procedure.

funct RefineFizPoint(K,v,f,): set =
Newlterations = True; fi, = fo
while (Newlterations A f, # () do
Refinelteration(K v, f,, lastIteration)
RestoreContainmentInlterations(v)
Prunelterations(v)
Newlterations = IterateFizPoint(v)
fi, = TestSatisfaction (v, f,)
endwhile
return f,
end

Figure 3: Refinement algorithm for a fix-point

The main loop of the procedure is executed if there has
been new iterations produced or the evaluation of the fix-
point can be further refined.

Let us denote by (u1,...,un) the set of fix-point itera-
tions computed so far, and u' = (ui,...,u,) the new set of
iterations after the loop has been executed once.

The function Refinelteration computes the refinement
for one specific iteration. If this refinement fails, it pro-
ceeds to refine the previous iteration. The main procedure
shown starts by refining the last iteration of the sequence.
The discussion of the function Refinelteration is deferred
until later in this section.

The sequence of iterations satisfies the property that
pi—1 € pi. However, this property does not necessarily hold
after some of the iterations have been refined. This situation
happens when different approximations are produced every
time the sub-formula is evaluated. After the refinement, the
procedure RestoreContainmentInlterations propagates the
effect of the local refinement to the entire sequence restor-
ing the containment property. If the iterations have been
over-approximated and iteration p; has been refined, the
containment relation is restored by replacing every itera-
tion p1,...,pi—1 by its product with p;. Conversely, in the

case of the refinement of an under-approximation, iterates
[it1,-- -, n are replaced by its disjunction with p;.

The function Prunelterations detects early convergence
cases in the new sequence of iterations. After the contain-
ment relation has been restored, it is possible that two arbi-
trary iterations in the sequence satisfy u; = pi,, and they
are not at the end of the sequence. In other words, the re-
finement of the iterations has provided a different fix-point
value. In this case the iterations pj,s,...,u, can be disre-
garded and pj,; is considered the new convergence point.

The procedure IterateFizPoint assures that the conver-
gence of the fix-point is restored after refinement. This pro-
cedure simply re-evaluates the formula introducing approx-
imations as in the first stage of the overall algorithm.

After the local refinement step has finished, the overall
algorithm computes the new goal set. These steps are re-
peated until no further refinement can be applied, the refine-
ment process has succeeded completely, or the refinement
process did not produce any changes in the sequence of it-
erations. Figure 4 shows the pseudo-code for the procedure
to refine one iteration.

funct Refinelteration (K, v, f,, index) =
x = ReadFizPointVariable(v)
e(r) = Readlteration(v, index — 1)
SubFormulaEvaluate(K , v)
result = SubFormulaRefine(K,vs, f,)
if (No further refinement is appropriate) then
StoreNewlteration (vy, index)
return result
endif
fi = ReadPropagatedGoalSet (v)
Refinelteration(K, v, f,, e, index — 1)
e(r) = Readlteration(v, index — 1)
SubFormulaEvaluateEzact (K, v)
StoreNewlteration (v, index)
return TestSatisfaction(v, f,)
end

Figure 4: Refinement algorithm for a fix-point iteration

The procedure receives as a parameter the index of the
iteration to be processed. In the first part of the procedure,
the sub-formula is re-evaluated with the value of the previ-
ous iteration in order to replicate in all the vertices of the
sub-formula the values that were present at evaluation time.
This re-evaluation is the main reason to use a table storing
previous results in the sub-formulas.

Once the formula has been re-evaluated, the refinement is
performed by calling the function SubFormulaRefine. After
this function returns, there are several possible situations:

e The set result is empty, the refinement of the sub-
formula has succeeded completely at refining the goal
set fy. In this case no further computation is required.

e The set result is non-empty, the formula can still be
refined, but this refinement will not change the value
of the verification. In this case a conclusive result has
been reached with an approximated result.

e The set result is non-empty, but the formula has been
evaluated with no approximation. In this case the re-
sult is conclusive.

If none of the three conditions is satisfied, the refinement
is applied to the previous iteration.

5 An Example

In this section a simple example is presented to illustrate the
techniques presented in the previous section. The system
models a three element token ring network. Each element
has a binary state variable which denotes if the token is
present or not. Let us denote by state[i] the value of the
ith state component. The formula that will be verified is
expressed in CTL as

AG(state[0] = 1 = AX(state[0] = 0)), (1)

where AG(¢) = —“E(TrueU—-¢) and AX(¢p) = -EX(—¢).
Intuitively, this formula verifies that whenever a state el-
ement has the token, it will not have it at the next time
step.

Let us denote the possible states of the system by the
decimal interpretation of the state elements being state[0]
the least significant bit. Figure 5 shows the state transition
graph of the system as well as the parse tree corresponding
to the CTL formula.

not.”

| 1
Ifp(X)’
- o
‘\@ _andj
n(l)t' nt|3t6
andy Prelmg;
e

state[O]:lér PrelI Tg?LLO xIl
state[0]=0, 5

Figure 5: State graph and formula of the token ring example

Each vertex in the tree has been labeled with a unique
number in order to refer to its verification result as well as
the type of approximation provided (+ for over and — for
under-approximation). We further assume that only the pre-
image computations in vertices 8 and 10 are approximated.

Due to the size of the example, instead of considering the
ordinary BDD subsetting as the approximation technique,
we have approximated the computation by letting the be-
havior of the memory elements in state[l] and state[2] be
free at all times.

After the first approximation has been obtained, the
value of the function Sat for some of the vertices in the
tree are

Sat(viz) = {0,2,4,6} Sat(vs) = {0,2,4,6}
Sat(vi2) = {1,3,5,7} Sat(vy) =0
Sat(vig) = S Sat(v3) = {1,3,5,7}
Sat(ve) = {1,3,5,7} Sat(v3) =S
Sat(vr) = {1,3,5,7} Sat(vs) =S,

where S denotes the set of states {0,...,7}.

The formula v; in the table denotes the vertex labeled
with the sub-index ¢ in Figure 5. The values 03, v3, 03, v
represent the sequence of iterations in the fix-point.

After the initial approximation, the result is the empty
set, and the formula is declared false. Since some formulas
have been approximated, this result is conservative. The
refinement process is then started in v; with goal set f,, =
{1}. The refinement process propagates until vertex wvs.
The sub-formula chosen for refinement is vs because it does

not contain any fix-point variable. For the same reason
the refinement propagates from vy to vg. Once in ve with
foo = {1} the refinement fails because f,, # 0 and the
operation has been computed exactly. The program then
proceeds to refine vo.

At the level of vi2, fu;, = {2}, and since v12 has been
evaluated exactly, and 2 ¢ Sat(vi2) the refinement succeeds,
and the pre-image in v is computed exactly. As a result,
Sat' (vio) = {2,3,4,5,6,7}, and since fi,, = {1}, the re-
finement of v1p has succeeded. This new result propagates
through vertices v7 and vs, such that Sat'(v7) = {3,5,7}
and Sat'(vs) = {0,1,2,4,6}.

The refinement then returns to vs4 and proceeds with wvg.
In this case the refinement propagates until formula w1,
in which f,,;, = {2} and the refinement propagates to the
previous iteration.

The algorithm returns to vz and starts the refinement of
iteration 3 with goal set f,3 = {2}. Now the refinement is

required only in vs. This refinement succeeds and as a result,
v3 = {3,4,5,7}. Note that element 2 no longer belongs to
the set. This refinement prompts the re-evaluation of v
and now Sat'(v3) = {2,3,4,5,7}. As a consequence of these
refinements the containment property among the iterations
no longer holds. The containment is restored and the new
sequence (0, {3,5,7},{3,4,5,7},{2,3,4,5,7}) is obtained.

This new sequence is no longer convergence so the al-
gorithm keeps iterating until convergence is reached again.
After the procedure IterateFizPoint is executed, two more
iterations are added to the sequence, namely Sat(v3) =
Sat(vs) = S.

Since the sequence of iterations has changed, the refine-
ment process starts again. The process just described is
repeated, including the restoration of the containment rela-
tion and the pruning of the iterations. As a result, the new
obtained sequence is (0, {3,5,7},{3,5,7}).

At this point Sat(v2) = {3,5,7} which satisfies the re-
finement of f,, = {1}, and the formula is proved true.

6 Experimental Results

The algorithm described has been implemented within the
framework provided by VIS [2]. The results have been ob-
tained in a Sun UltraSparc workstation with 170Mhz and
192Mb of RAM memory. For three examples we have com-
pared the execution time using the incremental approach
with that obtained with the model checker in VIS 1.2.

Production Cell: This system is a control circuit with
45 registers [11] for which 15 formulas have been verified.
Reachability analysis has been used as a don’t care condition
in the verification process. Table 1 summarizes the results.

The left half of the table shows the time and number of
pre-image operations taken by VIS. The right part shows the
execution time with the new procedure as well as the number
of the pre-image, approximate pre-image and exact image
operations. The column labeled “Ratio” shows the ratio
between the execution time with VIS and the incremental
approach.

As it can be seen, there are certain instances in the spec-
ification in which the formula is proved in the first stage.
This means that the initial crude approximation of our al-
gorithm sufficed to prove the formula correct. The overall
speedup factor is almost 2.

Ethernet model: The second example is a model of
the Ethernet protocol to communicate a set of processors.
It has 118 memory elements. The definition of this system

VIS Incremental
Form. | Pre | Time | Pre/Pre/Img | Time | Ratio
1 43 17.2 27/39/27 21.1 0.82
2 83 | 17.9 39/33/73 20.1 | 0.89
3 84 | 188 0/9/0 6.4 2.94
4 91 | 35.7 43/34/58 30.5 | 1.17
5 92 | 36.2 0/9/0 7.1 5.10
6 83 | 282 39/26/20 | 22.2 | 1.27
7 84 | 284 0/5/0 6.5 4.37
8 83 | 13.3 39/31/21 13.8 | 0.96
9 | 84 | 133 0/4/0 60 | 2.02
10 | 83 | 223 39/25/17 | 173 | 1.29
11 | 84 | 22.0 0/4/0 61 | 3.61
12 83 28.2 39/22/29 21.2 1.33
13 84 | 27.6 0/5/0 6.3 4.38
14 83 | 28.1 20/32/32 28.7 | 0.98
15 84 | 279 0/6/0 6.1 4.57
Total 414.8 2194 | 1.89

Table 1: Verification of the production cell

includes several parameters that can be used to scale up the
size of the design.

Table 2 shows the results for two version of the system
with different internal parameters that have a significant
impact in the execution time. In this case our algorithm
did not verify any formulas with the initial approximation
only, however, we see a consistent reduction in the number of
pre-image computations. In some cases our method achieves
speedups of up to a factor of 5.

VIS Incremental
Form. | Pre | Time | Pre/Pre/Img | Time | Ratio
13.1 45 416 24/18/22 345 1.20
132 | 45 | 344 23/16/14 89 | 3.85
13.3 61 486 27/45/21 632 0.77
13.4 61 479 27/28/21 339 1.41
13.5 47 346 21/16/20 384 0.90
13.6 47 314 22/17/21 152 2.07
Total 2414.6 19441 | 1.24
23.1 65 1056 31/26/25 1939 0.54
23.2 65 946 35/23/27 480 1.97
23.3 71 7911 55/133/76 1956 4.04
23.4 71 7884 24/33/23 1593 4.95
935 | 67 | 1794 35/23/27 1514 | 1.18
23.6 67 956 32/22/26 571 1.67
Total 20578.2 8056.2 | 2.55

Table 2: Verification of the Ethernet system

Landing Gear Control: The third example analyzed
is a system controlling the landing gear of an aircraft. The
system contains 231 memory elements. The only formula
verified has been the resetability condition, which is defined
as the possibility of driving the system from any state to its
initial state. The execution results showed 22626 seconds
for VIS compared with 11383 seconds for the incremental
algorithm.

7 Conclusions

We have presented a novel incremental algorithm to perform
CTL symbolic model checking. The idea is to initially create
an approximation of the verification and gradually refine it
until the formula is proved conclusively. The approximations

are created by reducing the size of the BDDs while creating
a superset or a subset of the original sets.

This paradigm makes no assumption about the structure
of the system, so it can be applied automatically. The ex-
perimental results have shown that for three systems, there
are instances in which the algorithm is significantly more
efficient than conventional exact model checking. The pre-
sented procedures are straightforwardly extended to the past
tense of the p-calculus by simply adding Image to the logic.

As for future directions, we plan to extend the type
of abstractions that can be used in this paradigm in or-
der to obtain the improvements needed to handle designs
with a memory element count around 10,000. We feel that
this work constitutes a first step in that direction. Tech-
niques likes the one presented in [10] are applicable in this
paradigm. Furthermore, there has been significant advances
in the area of BDD subsetting since [15], and not all them
have been incorporated into our paradigm.

References

[1] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative
approach to language containment. In C. Courcoubetis, edi-
tor, Fifth Conference on Computer Aided Verification (CAV
’93). Springer-Verlag, Berlin, 1993. LNCS 697.

[2] R. K. Brayton et al. VIS: A system for verification and
synthesis. In T. Henzinger and R. Alur, editors, Eigth Con-
ference on Computer Aided Verification (CAV’96), pages
428-432. Springer-Verlag, Rutgers Univ., 1996. LNCS 1102.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEFE Transactions on Computers, C-
35(8):677-691, August 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill.
Sequential circuit verification using symbolic model check-
ing. In Proceedings of the Design Automation Conference,
pages 46-51, June 1990.

[5] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi.
Algorithms for approximate FSM traversal based on state
space decomposition. In Proceedings of the Design Automa-
tion Conference, pages 25-30, Dallas, TX, June 1993.

[6] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching time tempo-
ral logic. In Proceedings Workshop on Logics of Programs,
pages 52-71, Berlin, 1981. Springer-Verlag. LNCS 131.

[7] P. Kelb, D. Dams, and R. Gerth. Practical symbolic model
checking of the full u-calculus using compositional abstrac-
tions. Technical Report 95-31, Department of Computing
Science, Eindhoven University of Technology, 1995.

[8] R. P. Kurshan. Computer-Aided Verification of Coordinat-
ing Processes. Princeton University Press, 1994.

[9] R. P. Kurshan. Formal verification in a commercial setting.
In Proceedings of the Design Automation Conference, pages
258-262, Anaheim, CA, June 1997.

[10] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi.
Tearing based abstraction for CTL model checking. In Pro-
ceedings of the IEEE International Conference on Computer
Aided Design, pages 76-81, San Jose, CA, November 1996.

[11] Thomas Lindner. Case Study ”Production Cell”: A Com-
parative Study in Formal Software Development, chapter 2,
pages 9,21. FZI, 1994.

[12] D. E. Long. Model Checking, Abstraction, and Composi-
tional Verification. PhD thesis, CMU, July 1993.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, Boston, MA, 1994.

Abelardo Pardo and Gary Hachtel. Automatic abstraction

techniques for propositional p-calculus model checking. In

9th Conference on Computer Aided Verification (CAV’97).

Springer-Verlag, June 1997.

[15] K. Ravi and F. Somenzi. High-density reachability analy-
sis. In Proceedings of the IEEE International Conference
on Computer Aided Design, pages 154-158, San Jose, CA,
November 1995.

14

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

