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Abstract
In this paper, we present an algorithm for the application of a

general class of transformations to control-flow intensive behav-
ioral descriptions. Our algorithm is based on the observation that
incorporation of scheduling information can help guide the selec-
tion and application of candidatetransformations, and significantly
enhancethequality of thesynthesizedsolution. Theefficacy of the
selected throughput and power optimizing transformations is en-
hanced by the abilit y of our algorithm to transcend basic blocks in
thebehavioral description. Thisabilit y is imparted to our algorithm
by ageneral techniquewehavedevised. Our system currently sup-
ports associativity, commutativity, distributivity, constant propaga-
tion, codemotion, and loop unrolli ng. It is integrated with asched-
uler which performs implicit loop unrolli ng and functional pipelin-
ing, and has the abilit y to parallelize the execution of independent
iterative constructs whosebodies can share resources. Other trans-
formations can easily be incorporated within the framework. We
demonstrate the efficacy of our algorithm by applying it to several
commonly availablebenchmarks. Upon synthesis, behaviors trans-
formed by theapplication of our algorithm showedup to 6-fold im-
provement in throughput over anexisting transformation algorithm,
and up to 4.5-fold improvement in power over designs produced
without thebenefit of our algorithm.

1 Introduction
The explosive growth in the embedded systems market has fu-

elled interest in the automated synthesis of digital systems from
functional specifications. These systems often need to be com-
pact, and satisfy throughput and power constraints. Transforma-
tions which can improve thesedesign metrics have recently gained
prominence. Transformational techniquesreplace abehavioral de-
scription by a structurally dissimilar, but functionally equivalent,
description. The new description usually results in designs which
arebetter than thosesynthesizedfrom theoriginal description, with
respect to specific design metrics.

Research in compili ng techniques has identified a large num-
ber of program transformations which enhance performance and
reduce size of programs on general-purpose computers. A com-
prehensivesurvey of these techniques is provided in [1]. Thesein-
cludealgebraic transformationssuch asconstant propagation, com-
mutativity, associativity, distributivity, strength reduction, andcom-
mon sub-expression elimination [2], loop-optimizing transforma-
tionssuchasloop un-switching, loop distribution, loop fusion, loop
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coalescing, loop peeling, and loop unrolli ng, software pipelining,
speculative execution, code motion, redundant code elimination,
and interprocedural optimizations such as inlining, cloning, etc.
Theideaof usingprogram executionprofilesto guideperformance-
optimizing transformations has been proposed in [3] and [4]. In
most of these approaches, scheduling succeeds transformation ap-
plication. We demonstrate that, in high-level synthesis, scheduling
information can guide the application of transformations and en-
hancetheir effectiveness. In addition, wesupport power-optimizing
transformations, unlike compiler-related optimization techniques
for which speed is theprimary objective.

In high-level synthesis, transformations for throughput and
power optimization for data-flow intensive (DFI) behavioral de-
scriptions[5], [6], aswell ascontrol-flow intensive (CFI) behaviors
[7], [8] have been presented. None of these transformation tech-
niques for CFI behaviors targets power optimization. With the ex-
ception of [8], these systems do not incorporate scheduling infor-
mation into the transformation application process.

In this paper, we present a framework for transforming CFI be-
havioral descriptionsto synthesizethroughput- or power-optimized
designs. At the heart of our approach is a procedure we have
devised for recognizing candidates for transformation application
across the scope of basic blocks, and applying the transformation
while preserving functionality. This proceduredrives the transfor-
mation process, which is closely integrated with scheduling. Our
algorithm begins with a scheduled behavioral description, speci-
fied in the form of a state transition graph (STG). Profiling infor-
mation is used to partition the STG into blocks, which are sepa-
rately optimized by transformation application. This enables our
algorithm to direct its focuson the critical sectionsof thebehavior.
Since the identified blocks can have arbitrary control flows within
them, our algorithm has a complete picture of the trade-offs in-
volved, unlikemany other algorithms that only target simple struc-
tures such as straight-line code, or single-entry loops. Each block
is transformed by therepeatedapplication of data- andcontrol-flow
transformations, to optimize for the desired objective (throughput
or power). Within a block, scheduling is interleaved with transfor-
mation application. The scheduling information, available at each
step, allows effective identification of bottlenecks and the selec-
tion of appropriate transformationsto eliminatethem. Wecurrently
support theapplication of commutativity, constant propagation, as-
sociativity, distributivity, code motion, and loop unrolli ng. The
scheduling algorithm we useperforms implicit loop unrolli ng, and
functional pipelining, and parallelizestheexecution of independent
loops. The framework we have developed can, however, easily be
customized by theaddition of user-specified transformations.

2 Preliminaries
In this section, we discuss control-data flow graphs (CDFGs),

which describe the input behavior, and STGs, which describe the
schedule. We then outline ahigh-level power estimation technique
which obtainsafast estimateof thepower consumptionof adesign,
using an STG, user-specified input traces, and aset of library mod-



TEST1 ( int c1, int c2)f
int i = a = 0;
while (c2> i)f // > 1

if (i < c1) f // < 1
t1 = a+7; // +1
a = 13∗ t1; // ∗1

g
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x[i] = a; // S

gg

++1+

+1 +2

*1

S

<1

−+

c1

c2 i (0)

a

a (0)a (0)
+

>1

t1

t2

t3

J1

end−

7

13

17

* 1_0

S_0, ++1_1, <1_1

++1_0, <1_0

STOP

S0

S1

S2 S3

S4

S5

S6

F(0.02)

T(0.98)

F(0.63)

T(0.98)

T(0.37)

T(0.98)

F(0.02)

T(0.37)

F(0.63)

>1_0

+2_0,  >1_1+1_0, >1_1

*1_0

S_0

S7

S8

F(0.02)

e0

e1 e2

e3
e4

e5

e6e7

e8

e9

e10

e11

e12

(a) (b) (c)

Figure 1: (a) A fragment of code called TEST1 written in a high-level language, (b) its CDFG representation, and (c) an STG
representation of its schedule
ules characterized for delay and power.

2.1 CDFG and STG models
A CDFG is a directed graph, whose nodes represent operations,

and edges represent dependencies of two types: data and control.
An edge represents a data dependency if the source node of the
edge produces data that the sink consumes. Existence of a control
dependency between nodes implies that the execution of the sink
node depends on the outcome of the execution of the source node.
Our CDFG model uses a token passing semantic [9]. An operation
consumes the tokens available at its inputs and generates a token
at its output. The execution of an operation is contingent upon the
arrival of tokens at its inputs.

Figures 1(a) and 1(b) show a behavioral description written in a
high-level language and the CDFG corresponding to the descrip-
tion, respectively. Statements in the behavioral description are
shown annotated with the operation(s) in the CDFG they represent.
Data dependencies in the CDFG are indicated by continuous arcs,
and control dependencies, by broken arcs. An operation, whose ex-
ecution depends on a condition evaluating totrue (false), is marked
with a + (�). A join operation assigns to its output, the value at ei-
ther of its input edges. Such an operation executes when a token is
available at either input. Also included in our CDFG representation
is aselectoperation with three inputs,l, r, ands, and an outputo,
which assigns too, the value at itsl (r) input ports, if the value ats
is true (false).

On completion, the scheduler outputs the STG describing the
schedule. Figure 1(c) represents the STG obtained by scheduling
the CDFG shown in Figure 1(b). The STG is a directed graph
whose nodes represent states and edges represent transitions be-
tween states. Nodes in the STG have information about the oper-
ations executed in the corresponding state, and edges capture the
conditions under which a state transition takes place. Many sched-
ulers supportloop unrolling, a performance optimization technique,
which allows operations from different iterations of a loop to be
performed concurrently. In such cases, operations in a state are an-
notated with the iteration of the loop they represent. For example,
the zeroth iteration of operationx[i] = a (S 0), and the first itera-
tion of operationsi = i + 1 (++1 1) andi < c1 (<1 1) are executed
in stateS5. The number in parentheses placed adjacent to an edge
represents the probability that the corresponding edge is taken.

2.2 High-level power estimation
Application of transformations targeted towards reducing power

consumption requires a high-level power consumption model
whose predictions are correlated with the final power consumption
of the design, and which is fast enough to be applied repeatedly in

Table 1: Functional unit selection, allocation, and component in-
formation

FU type Ops. # E
V2

dd
Delay Area

comp1 >1, <1 2 1.1 12 1.3
cla1 +1, +2 2 1.3 10 1.5
incr1 ++1 1 0.7 13 1.1

w mult1 ∗ 1 1 2.3 23 3.9
reg1 n/a 0.3 3 1.0

mem1 S 0 1 1.9 15 8.1

the inner loop of the transformation algorithm. In this section, we
illustrate our power estimation technique with an example. Note
that though this procedure is used to estimate the power consump-
tion of designs during the transformation process, the final power
measurements, used for our experimental results, are obtained from
actual layouts.
Problem statement:Given (a) a scheduled behavioral description
in the form of an STG, (b) functional unit selection information (in-
formation about the type of functional unit which performs an op-
eration), (c) a library of functional units and storage elements (reg-
isters, memories) characterized for area, delay, and power, (d) the
clock period of the design, and (e) a set of typical input traces, esti-
mate the power consumption of the final design.

We extend the method proposed in [5] to handle CFI designs.
The average power consumption of the circuit is computed as
the average energy consumption divided by theaverage schedule
length. The average schedule length is defined as the average time,
in cycles, to complete one execution of the behavior, and is com-
puted from the STG and the input traces, using the method pre-
sented in [10]. The total energy consumed by the circuit is com-
puted as the sum of the energies consumed by the functional units,
registers, interconnect, and the controller. The energy,E, consumed
by a functional unit or register is expressed asE = Ctype�V2

dd�

Nops, whereCtype is a constant which depends on the functional
unit or register type,Vdd is the supply voltage, andNops, for a func-
tional unit (register) is the number of operations executed (number
of read/write accesses). Further details about the power model can
be found in [5]. The following exampleillustrates our power esti-
mation procedure.

Example 1: Consider the problem of estimating the power con-
sumption of a design based on the STG shown in Figure 1(c). The
library elements available, the energy dissipation, delay, and area
associated with each element, functional unit selection, and allo-
cation information (numbers and types of functional units allowed
for synthesis) are summarized in Table 1. The clock period con-



straint is 25ns. Simulation of the behavioral description with the in-
put traces yields the following branch probabilities: the while loop
“while (c2 > i)” closes with a probability of 0.98, and the branch
“ if (i < c1)” is taken with a probability of 0.37. Note that once the
branch probabilities are determined, they can berepeatedly used.
Therefore, simulation is done only once during an execution of the
algorithm.

The state probabilities, evaluated using the method presented
in [10], are as followsPS0= 0.008,PS1= 0.008,PS2= 0.153,PS3=
0.259,PS4= 0.149,PS5= 0.404, andPS6 = 0.003,PS7 = 0.008, and
PS8 = 0.008, wherePSi is the probability of being in stateSi. The
average schedule length can be shown to be 119.11 cycles. Note
that scheduling is performed assuming the supply voltage to be5V.
If the supply voltage were different, functional unit delays would
change, thus impacting the average schedule length.

Using the above probabilities, one can derive the average energy
consumption per iteration of the design. To do this, we need to find
the average number of operations executed by each type of func-
tional unit, and the average number of variable accesses, per itera-
tion of the design. These numbers are derived as the sums of per-
state numbers of operations executed by different functional unit
types, and variables accessed, weighted by the state probabilities.
For example, the number of operations executed by functional units
of typeincr1 is given by 119.11� (PS1�1 +PS5�1) = 48.95. Since
the energy consumed by the incrementer while performing one op-
eration is 0.7�Vdd

2 units (see Table 1), the average energy con-
sumption, per iteration, by the incrementer is 34.27�Vdd

2 units.
The energy consumption due to the comparators, adders, multipli-
ers, registers, and memory, and can be found to be 108.75�Vdd

2,
63.64�Vdd

2, 41.70�Vdd
2, 99.38�Vdd

2 and 93.10�Vdd
2 units,

respectively, using the same technique. The total energy consump-
tion is 665.58V2

dd units, after accounting for the contribution due to
the interconnect and controller. We first compute the average power
consumption by assuming the supply voltage to be5V. This is done
by dividing the average energy consumption by the average time

taken (119.11 cycles at5V), and evaluates to 665.58�Vdd
2

119.11�cycle timeunits.
The quadratic dependence of power consumption on supply

voltage implies that significant reductions in power consumption
can result if the supply voltage is scaled down. We estimate the
scaled supply voltage in the following manner. As mentioned in
Section 1, our algorithm starts with a scheduled behavior. Trans-
formations and scheduling are then applied in an interleaved fash-
ion. The initial schedule given to us is regarded as the “base” case,
and all comparisons are made with respect to it. When we optimize
for power, we scale the supply voltage until the average schedule
length drops to that of the untransformed design. For example, if
the STG shown in Figure 1(c) is derived from the transformed be-
havior, and the schedule derived from the initial (untransformed)
behavior has an average schedule length of 151.30 cycles, the sup-
ply voltage is scaled according to the equation1

Vdd initial /(Vdd initial �Vt )2

Vdd new/(Vdd new�Vt )2
= 119.11/151.30

If Vdd initial is assumed to be 5V and the threshold voltageVt
is assumed to be 1V, then Vdd new evaluates to 4.29V, which
yields a power estimate of 665.58� 4.292/(151.30�cycle time) =
80.96/cycletimeunits for the design. Note that the term represent-
ing the average schedule length changes from 119.11 to 151.30 to
reflect the change in the supply voltage. This is because an average
schedule length of 119.11 cyclesat 5V is equivalent to an average
schedule length of 151.30 at 4.29V. Thus, our aim is to keep the
performance of the untransformed and transformed scheduled be-
haviors the same while reducing power.

1Delay= k�Vdd/(Vdd�Vt )2 [11].

3 Motivational Examples
In this section, we motivate the key features of our algorithm

with examples. Our algorithm is based on the following key obser-
vations:
� Considering scheduling information during transformation

application can significantly enhance the quality of the cho-
sen transformations. This is illustrated through Example 3.

� Applying transformations across basic block boundaries is
critical in producing high-quality solutions, and maintaining
correctness in the process can be complex and non-trivial.
This is illustrated through Example 3.

TEST2 (int k)f
L1 for i = 0 to 99f //< 1

t1 = y[i]+ k; // +1
k = k+t1; // +2g

L2 for j = 0 to 99f // < 2
t2 = x[ j]�k; // �2
k = k� t2; //�3g

L3 for m= 0 to 399f // < 3
t3 = y1[m]+ y2[m]; // +3
t4 = y3[m]+ y4[m]; // +4
t5 = t3� t4; // �1
x1[m] = t5; g
return ;g
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Figure 2: (a) A behavior, TEST2, (b) a schedule for TEST2,
and (c) a schedule derived after transforming TEST2

Example 2: Consider the problem of synthesizing the behavior
shown in Figure 2(a) to optimize for throughput. Suppose the re-
sources available to implement this behavior are two adders, two
subtracters, two comparators, and two incrementers, all of which
execute in one cycle. Arraysx, x1,y, y1,y2,y3, andy4 are assumed
to be mapped to separate memories, and can be simultaneously ac-
cessed. Figures 2(b) and 2(c) describe schedules for the untrans-
formed and transformed behavior, respectively. Since the STGs for
the actual schedules are rather involved, the given figures provide
the basic features of the schedule, without giving a state-by-state
description. Nodes in Figure 2(b) correspond to loops in the behav-
ior. A node is annotated with its name (placed outside the ellipse
representing it), and the loops it corresponds to (placed inside the
ellipse). In this scheduleL1 andL2 first execute in parallel, thenL2
andL3, and finallyL3 executes alone.

Nodesn1 andn2 are also annotated with the number of itera-
tions of L3 they represent. WhileL3 is able to execute 200 iter-
ations in noden2, it can only execute 100 iterations in noden1.
An inspection of Figure 3(a) reveals the reason for this bottleneck.
This figure shows concurrent execution of loopsL1 andL3 over
two iterations. Since contention for the adders and subtracters is
the reason for the bottleneck, we only show the schedules for the
addition and subtraction operations which compete for resources.

Since there are no inherent data dependencies that slow down
the execution ofL3, we can explore methods to transform its body
in such a manner that its resource requirements are tailored to the
environment in which it is embedded. One way to achieve this
would be to rewrite (y1[m] + y2[m]) � (y3[m] + y4[m]) in the form
(y1[m]�y3[m])+ (y2[m]� y4[m]), as shown in Figure 2(c) (see the
CDFG enclosed in broken boundaries placed adjacent to noden1).
In this figure, operation�5 representsy1[m]�y3[m], operation�4
representsy2[m] � y4[m], and operation +5 represents their addi-
tion. In this case, the body of loopL3 would require two subtrac-
tion operations and one addition operation. SinceL1 consumes one
adder per cycle, one adder and two subtracters are available. In this
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scenario, one iteration ofL3 can begin every cycle, as illustrated in
Figure 3(b). Note that this transformation is applied only to node
n1, and noden2 remains unaltered.

The schedule shown in Figure 2(c) has an expected length of
408 cycles, a 1.25-fold improvement over the schedule presented in
Figure 2(b). This improvement is a direct consequence of consid-
ering scheduling information while applying transformations. Note
that if this behavior were optimized for power, the improvement in
throughput could be traded off for a 25% reduction in power con-
sumption throughVdd-scaling.

Example 3: Consider the problem of transforming the CDFG
shown in Figure 4(a) to optimize for throughput under the follow-
ing allocation constraints: one multiplier and two subtracters. All
functional units are assumed to take one cycle to execute. The join
operations embedded in the CDFG indicate that different threads
of execution are possible, depending upon which of thejoin oper-
ation’s inputs propagates to its output. In this case, since there are
two distinctjoin operations, four threads of execution are possible.
Out of the four possible threads, not all would occur in practice,
because the occurrence of a token on one input might preclude the
occurrence of a token on another,i.e., some input pairs might be
mutually exclusive. In this example, the pairsfx2,x5g andfx3,x4g
are assumed to be mutually exclusive.

Transformational techniques typically identify specific struc-
tures in the CDFG which are good candidates for transformation
application, and alter these structures in the manner dictated by the
selected transformation. In this example, let us suppose we choose
to utilize the distributivity of multiplication over subtraction to re-
place a structure,Source, of the forma�b�a� c by a structure,
Target, of the forma� (b�c). An inspection of the CDFG reveals
that, if the join operations in the CDFG were configured to select
their left inputs,i.e., if J1selected the result of operation∗1 andJ2
selected the result of operation∗2, the data and control flows within
the resultant CDFG would be identical toSource. This implies that
under some conditions, the CDFG can be made to appear isomor-
phic toSource. LetC denote the conditionunder which this occurs.
If Sourcewere replaced byTargetwhenC were to evaluate totrue,
then the resultant behavior would take only two cycles to execute
as there is one subtraction, (t1 = x2� x3), and one multiplication,
x1� t1, as opposed to the three cycles it would otherwise need (two
multiplications, occurring in sequence on one multiplier, with the

STG

Input traces

Partitioning CFI scheduling CDFG extraction

STG
blocks

1 2 3

Library of transformations

CDFG representation of STG block

candidate 
transforms

ranked 
candidates

Rescheduling, EXIT

4 5

6

7

CDFG, 
Module selection,
Allocation,  
Target clock period
Objective

Transformation
identification

Transformation 
evaluation

Transformation
selection and
application

performance / power 
estimation

transformed, scheduled CDFG

Figure 5: Algorithm overview

results feeding a subtraction). IfC were to occur with a high proba-
bility, the ability to perform this substitution would, clearly, be de-
sirable.

In performing this substitution, the following two issues need to
be considered.

� The transformed CDFG should be functionally equivalent to
the original CDFG for every thread of execution encountered.

� The transformed CDFG should be as compact as possible,i.e.,
no redundant operations should be performed.

Figure 4(b) shows the CDFG obtained upon transforming the
CDFG shown in Figure 4(a) (for now, the part of the CDFG shown
in the grey enclosure, and the grey edge it sources can be ne-
glected). It can be verified that, for every thread of execution
encountered, the output of the transformed CDFG is functionally
equivalent to the output of the original CDFG. Note that, ifx2 and
x5 were not mutually exclusive, the transformed behavior would
not be functionally equivalent to the original one, as the original
CDFG would computex1�x2�x5upon the arrival of tokens at in-
putsx1, x2, andx5, and the transformed CDFG would not produce
an output. To ensure correctness, in the case whenx2 andx5 are
not mutually exclusive, the left input to operation�2 should come
from the grey edge.

4 The Algorithm
In this section, we outline the working of our algorithm. Details

can be found in [12]. Figure 5illustrates the basics of our algo-
rithm. In this figure, the steps shown shaded have been enhanced
by our algorithm. Other steps correspond to well-researched prob-
lems, and are not described. The inputs consist of a behavioral
description, specified as a CDFG, functional unit selection and al-
location information, target clock period, typical input traces, and
synthesis objective (performance or power). The behavior is first
scheduled, using an existing CFI scheduler (step1 in Figure 5). The
output of the scheduling process is an STG. The input traces pro-
vided are used to analyze the STG to determine the probabilities
with which individual states are encountered. The STG is then par-
titioned into blocks (step2). Individual blocks (groups of states)
in the partition are then transformed and rescheduled in an itera-
tive fashion using the following technique. First, the functionality
of the block is captured in the form of a CDFG (step3), i.e., we
identify the portion of the CDFG which corresponds to the STG
block. We then determine multiple ways in which the CDFG can
be transformed, using a library of transformations (step4). The
key strength of this process lies in its ability to recognize and ap-
ply transformations across the scope of basic blocks. The efficacy
of each considered transformation is then assessed (steps5 and6).
This is done by applying the considered transformation, schedul-
ing the CDFG, and using the schedule information to estimate the
throughput or power (see Section 2.2). A subset of candidates is
then chosen for further exploration (step7).



4.1 Partitioning
In this section, we describe the procedure followed to partition

the STG prior to the application of transformations. The starting
point is an STG and a set of user-specified input traces. The output
of the process is a set ofdisjoint “STG blocks”. An STG block is
a collection of states that satisfies the following properties: (a) any
state,S, can form a block, and (b) if a state,S0, is an immediate
predecessor or an immediate successor of any state in a block,B,
thenB[S0 is a valid block.

The first step in partitioning is the derivation of transition prob-
abilities on the edges of the STG,i.e., the probability that an edge,
e, is taken, given that the current state isSource(e)2. This is done
by simulating the CDFG representing the input behavior with the
input traces provided. The simulation yields the number of times
each branch in the CDFG is encountered, from which the proba-
bility of a branch can be computed. Once the probability ofeach
CDFG branch is known, the transition probabilities on the edges
of the STG can be computed as the product of the probabilities of
the CDFG branches which constitute the STG edge. These proba-
bilities are used to evaluate the probability of being in a particular
state, using the technique described in [10].

The derived state probabilities are used to rank transitions in de-
creasing order ofrelative frequency, as follows: the relative fre-
quency of a transition along edgee in the STG is computed as the
product of the probability of being in Source(e) and the probability
of e being taken, given that the current state isSource(e). Edges,
whose relative frequency exceeds a threshold are chosen for further
processing.

From the chosen set of edges, STG blocks are formed in the fol-
lowing manner: the edge set is traversed in decreasing order of fre-
quency. The source and sink nodes of the first edge are grouped
into a block,B. If the source (nsource) and sink (nsink) nodes of any
subsequent edge,enext, do not belong to any existing block, a new
block with contentsnsourceandnsink is created. If the source (sink)
node ofenext belongs to an existing block,B0, but the sink (source)
node,nsink (nsource), does not,B0 is augmented with the addition
of nsink (nsource). If enext has its source node in one block, and its
sink node in another, the two blocks are fused into one. The cre-
ated blocks are optimized by the application of transformations, as
described in the following section.

4.2 Controlling the application of transformations

As mentioned in the previous section, the partitioned STG is
modified by the application of transformations chosen from a li-
brary. In this section, we describe the procedure used to control
the application of transformations to an STG block.

Figure 6 describes the part of our algorithm which corresponds
to steps3, 4, 5, 6 and 7 in Figure 5. The inputs are the STG
block, B, to be modified, functional unit selection information, al-
location constraints, clock period, the transformation library, and
the objective function (throughput or power). The approach we
use combines some aspects of both simulated annealing and iter-
ative improvement. At each stage of the algorithm, we maintain a
set,In set, of solutions which serve as starting points for future ex-
ploration. These solutions are CDFGs which are the result of the
application of a sequence of transformations to the CDFG derived
from the input STG block. The neighborhood of each element of
In setis explored to identify candidate transformations. The loop
in statement5 of the pseudocode in Figure 6 represents iteration
throughIn set, and statement6 represents exploration of the neigh-
borhood of an element,g, of In setby identifying candidate trans-
formations which can be applied tog. As shown in statement7,
CDFGs obtained by the applications of the candidate transforma-
tions are grouped into a single set,Behaviorset. Statements8-10

2Source(e) represents the state that sourcese.

represent the assessment of the efficacy of different CDFGs inBe-
havior set. Rescheduling is performed prior to estimation with the
intent of enhancing the accuracy of the process. The elements of
Behaviorset are then ranked in decreasing order of gain,i.e., if
there areN candidate CDFGs, the one assessed to be the “best”
(“worst”) will rank 0 (N�1). A fixed-size subset of these CDFGs,
selected and stored inIn set, serves as the starting point for the next
iteration of the loop represented by statement3. The selection pro-
cess is explained next.

The following principle guides our algorithm: better solutions
are selected with a higher probability. In the initial phase of the
algorithm, bad solutions get selected with relatively high probabil-
ities, and as the algorithm proceeds, their probabilities of selection
drop. We, therefore, generate a stream of unique random numbers
whose size equals the size of the required subset. The ratio of the
probabilities of selection of two solutions, which rankn1 andn2
is given bye�kn1/e�kn2. The parameterk is low at the beginning
of the algorithm, which implies that poorer solutions have a higher
probability of being selected. As the algorithm proceeds, the value
of k increases, favoring better solutions. The algorithm terminates
if an iteration of the loop represented by statement3 does not im-
prove the quality of solution.k is a linear function of the number of
executions of the loop represented by statement3.

The rationale behind our algorithm is as follows: we try to si-
multaneously explore multiple regions of the solution space. If at
any point, we have multiple possible solutions, simulated annealing
or iterative improvement would choose one, based on a heuristic,
while our algorithm would choose more solutions, thus increasing
the probability of generating a better solution.

Apply transforms(STG BLOCK B, ALLOCATION CONSTRAINTC,
TRANSFORM LIBRARY T lib,CLOCK PERIODclk,
FUNCTIONAL UNIT SELECTION fu select, OBJECTIVEobj)f

0 CDFGG = extractCDFG(B);
1 SET <CDFG> In set= fGg;
2 while (stopping criterion not satisfied)f
3 for(i = 0; i < MAX MOVES; i + +)f
4 SET <CDFG> Behaviorset= Φ;
5 foreachelement (g, In set)f
6 SET <CDFG> behset= Identify and apply

candidatetransformations(g, T lib) ;
7 Behaviorset= Behaviorset[behset;

g
8 foreachelement (b, Behaviorset) f
9 Reschedule CDFGb usingfu select;
10 Estimate objective function;//power or throughput
11 Store best solution seen so far;

g
12 LIST <CDFG> Behaviorlist = Sort(Behaviorset);

//Sort candidate CDFGs in decreasing order of objective function
13 Select a fixed-size subset,s, of Behaviorset

//based on a random variable distributed asc�k�e�kx

//wherec is a constant,k is a monotonically increasing
//function of i, andx is a uniform random variable.

14 In set= s;
ggg

Figure 6:Controlling the application of transformations

5 Experimental Results
The techniques described in this paper were implemented in a

program calledFACT, written in C++. We evaluated this program
by using it to transform several commonly available benchmarks,
to optimize for throughput and power. We compare our method,
FACT, with the technique presented in [7] (Flamel), and another
technique, which will be calledM1 for the remainder of this discus-
sion. Flamel applies the same transformation suite as our method
does, and also has the ability to transcend basic blocks in its opti-
mization, which makes it an ideal candidate for comparison. All



Table 2: Throughput and power results
T-opt. P-opt

Circuit Clk M1 Fl FACT M1 FACT
ns T T T P P

GCD 25 6.3 10.1 16.9 2.8 0.9
FIR 25 167 167 1000 7.6 1.7
Test2 25 2.0 2.0 2.5 11.3 8.4

SINTRAN 25 1.3 1.7 2.5 11.4 4.0
IGF 25 0.2 0.3 0.3 9.1 7.0
PPS 25 125 333 333 9.9 3.6

Table 3:Allocation constraints for the examples in Table 2
Circuit a1 sb1 mt1 cp1 e1 i1 n1 s1
GCD - 2 - 1 1 - - -
FIR 1 4 1 - - - 4 -
Test2 2 2 - 2 - 2 - -

SINTRAN 4 4 5 1 - 1 2 -
IGF 1 1 2 1 - 1 - 1
PPS 5 - - - - - - -

methods have access to our in-house scheduling algorithm [13],
which can perform the following transformations in an integrated
fashion: loop unrolling, functional pipelining (even acrossif con-
structs), andconcurrent loop optimization(the ability to paral-
lelize the execution of independent loops, possibly with unknown
bounds). MethodM1 just takes the input CDFG through behavioral
synthesis, giving it access to only those transformations supported
by our scheduling algorithm. Note that recent work on power-
optimizing transformations,e.g. [5], has focussed on DFI descrip-
tions, making them inapplicable to many of our benchmarks.

Comparisons were performed with respect to throughput and
power in the following manner. The CDFGs were synthesized,
placed, and routed, using our in-house synthesis tool. Through-
put was estimated as the inverse of the expected execution time
between consecutive iterations of the CDFG, using techniques pre-
sented in [10]. Power estimation was performed using a transistor-
level netlist, extracted from the layout, using a switch-level simula-
tor, IRSIM-CAP. The inputs to the power estimator were derived
using a zero-mean Gaussian sequence, which was subsequently
passed through an autoregressive filter to introduce the desired level
of temporal correlation.

Table 2 summarizes the results obtained.Clk represents the
clock period constraint. The columns labeledT-optandP-opt rep-
resent, respectively, the CDFGs produced by the application of
transformations aimed at throughput and power optimization. Mi-
nor columnM1 represents methodM1, and minor columnsFl and
FACT represent CDFGs which have been transformed by the ap-
plication of techniques presented in [7] and this paper, respec-
tively. ColumnsT and P represent the throughput (measured in
cycles�1 � 1000) and power (measured inmW), respectively, of
the circuits synthesized from the corresponding CDFG, measured
in the manner outlined before (e.g., for FIR, FACT produces a
throughput of 1cycle�1 in the throughput optimization mode). All
CDFGs were synthesized under the same allocation constraints, to
meet the same target clock period. We used a library of functional
units which consists of (a) an adder,a1, with a delay of 10ns, (b)
a subtracter,sb1, with a delay of 10ns, (c) a multiplier,mt1, with
a delay of 23ns, (d) a less-than comparator,cp1, with a delay of
10ns, (e) an equality comparator,e1, with a delay of 5ns, (f) an in-
crementer,i1, with a delay of 5ns, (g) a multi-bit inverter,n1, with
a delay of 2ns, and (h) a shifter,s1, with a delay of 10ns. The al-
location constraints for an example can be found by looking up the
entry corresponding to the example in Table 3. For example, the
allocation constraint forGCD is twosb1, onecp1, and onee1.

Of our examples,GCD computes the greatest common divisor

of two numbers,FIR is a finite impulse response filter,SINTRAN
evaluates the sine transform,IGF evaluates the incomplete gamma
function, PPS is a parallel prefix sum, andTest2is the example
shown in Figure 2(a).

The results obtained indicate that the designs derived from
FACT, in the throughput optimization mode, produced on an aver-
age a 2.7-fold improvement in throughput over designs produced
using M1 and 2.1-fold improvement over designs derived from
Flamel. The power-optimized designs produced byFACT con-
sumed on an average 62.1% less power than circuits synthesized
from M1, for the same throughput (the throughput was made the
same asM1’s throughput in the throughput-optimized case). We
do not compare the results ofFACT in the power optimization
mode withFlamel since the latter does not have the ability to ap-
ply power-optimizing transformations.

6 Conclusions
In this paper, we presented a framework,FACT, for applying

throughput and power-optimizing transformations to CFI behav-
ioral descriptions. Our algorithm interleaves scheduling with trans-
formation application, which allows accurate identification of per-
formance or power bottlenecks, and the selection of transforma-
tions to eliminate them. The applied transformations can span sev-
eral basic blocks, thus improving their optimizing capabilities. This
ability is the result of a general technique we have devised for rec-
ognizing and applying a general class of transformations across the
scope of basic blocks. The CDFGs produced byFACT, upon syn-
thesis, have achieved upto 4.5-fold improvement in power and upto
6-fold improvement in throughput over designs synthesized with-
out the benefit of our technique.
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