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) Abstract. o
In this paper, we present an algorithm for the applicaion of a

genea class of trandormations to cortrol-flow intengve betav-
ioral desciptions Our agorithm is base on the obsevation that
incarporation of schedling information can hep guide the sdec-
tion and apdicaion of canddatetrangormations and significartly
enhancethe quality of the synthesized solution. The efficacy of the
sdeded throughpu and power optimizing trangormations is en-
hanced by the ability of our algorithm to transcend basic blocksin
the behavioral description. This ability isimparted to our algorithm
by ageneal techrique we have devised Our sygem currertly sup-
ports associativity, commutativity, distributivity, constant propaga-
tion, code motion, and loop unrolli ng. It isintegrated with asched-
uler which performs implicit loop unrolling and functional pipelin-
ing, and has the ability to parallelize the exeaution of independent
iterative congructs whose bodes can shae resouces Other trans-
formations can easily be incorporated within the framework. We
demondrate the efficacy of our algorithm by apdying it to several
commonly available benchmarks. Upon syrthess, behaviorstrans-
formed by the appli cation of our algorithm showed up to 6-fold im-
provemert in throughpu over an existing trangormation algorithm,
and up to 4.5-fold improvemert in power over desgns produced
withou the benefi of our algorithm.

1 Introduction

The explosve growth in the embedde sysems market has fu-
elled interest in the automated synthesis of digital systems from
fundiond spedfications Thes sydems often neeal to be com-
pad, ard saisfy throughpu and power congraints. Trangorma-
tions which can improve thes desgn metrics have recertly gained
prominence Trangormationd techriquesrepgace abetavioral de-
scription by a structurally dissgmilar, but functionally equivalent,
description. The new description usually results in designs which
are better than those syntheszed from the origind desciption, with
respetto spedfic desgn metrics.

Reseach in compiling techniques has identified a large num-
ber of program trangormations which enhane performane and
redue size of programs on geneal-purpose computers. A com-
prehensse suvey of thesetechriquesis providedin [1]. Thesin-
clude algebraic trangormations sud as congart propagaon, com-
mutativity, asociativity, distributivity, strength reduction, and com-
mon sub-expresson elimination [2], loop-optimizing trangorma-
tionssuc asloop un-switching, loop distribution, loop fuson, loop
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codesang, loop peding, and loop unrolling, sdftware pipdining,
specliative execution, code motion, redundah code elimination,
and interprocedual optimizaions sud as inlining, cloning, etc.
Theideaof usng program execttion profilesto guide performance-
optimizing trangormations has been proposel in [3] ard [4]. In
mog of thee approachesschedling succeedtrangormation ap-
plication. We demondrate tha, in high-level syrthess, schedling
information can guide the application of transformations and en-
hanethdr effedivenessin addtion, we suppat power-optimizing
transformations, unlike compiler-related optimizaion techniques
for which speelis the primary objedive.

In high-level synthess, trangormations for throughpu and
power optimizaion for daa-flow intensve (DFI) behavioral de-
scriptions[5], [6], aswell as control-flow intensive (CFl) behaviors
[7], [8] have been preseted None of thes trandormation tech-
niques for CFl behaviors targets power optimization. With the ex-
cepion of [8], thee sygems do not incarporate schedling infor-
mation into the transformation appli cation process

In this paper, we present a framework for transforming CFl be-
havioral desciptionsto syntheszethroughpu- or power-optimized
desgns At the heat of our appoad is a procedue we have
devisal for recognzing canddates for trangormation apgicaion
aaoss the scope of basc blocks and apgdying the trangormation
while preserving functionality. This procedure drives the transfor-
mation process which is closely integrated with scheduling. Our
algorithm begins with a schedled betavioral desciption, speg-
fied in the form of a state transition graph (STG). Profiling infor-
mation is used to partition the STG into blocks, which are sepa-
rately optimized by transformation application. This enables our
algorithm to dired its focus on the criticd sedions of the behavior.
Since the idertified blocks can have arbitrary cortrol flows within
them, our algorithm has a complete picture of the tradeoffs in-
volved, unlike many other algorithms that only target simple struc-
tures such as straight-line code or single-ertry loops Ead block
istrangormed by the repeded apgi cétion of data- and cortrol-flow
trangormations to optimize for the desred objedive (throughput
or power). Within a block, scheduling is interleaved with transfor-
mation apgication. The schedling information, availalde at each
step, alows effedive identificaion of bottlenedks and the selec
tion of appropriate transformations to eliminate them. We currently
suppat the apgication of commutativity, congart propagaion, as-
sodativity, distributivity, code motion, and loop unrolling. The
schedling algorithm we use performs implicit loop unrolling, and
fundiond pipdining, and parall eli zes the execuion of independent
loops The framework we have developed can however, eadly be
customized by the additi on of user-spedfied transformations.

2 Preliminaries

In this sedion, we discus cortrol-data flow grapts (CDFGS,
which descibe the input betavior, and STGs which descibe the
schedule. We then outline a high-level power estimation technique
which obtainsafag egimate of the power consumption of adesgn,
using an STG, usa-spedfiedinpu tracesand a se of library mod-



TeESTL (int c1, int c2){
inti=a=0;
while (c2>i){//>1
if i<c) {/<1
tl=a+7;//+1
a=130t1; /[

else{
a=a+17;//+2

i}: i+1;/++1
Xil=a; /I S
3

(@)

Figure 1: (a) A fragment of code callece$T1 written in a high-level language, (b) its CDFG representation, and (c) an STG
representation of its schedule

ules characterized for delay and power. ) ) . ) .
Table 1: Functional unit selection, allocation, and component in-
2.1 CDFG and STG models formation
A CDFG is a directed graph, whose nodes represent operations, FUtype | Ops. | # V% Delay | Area
i . dd
and edges represent dependencies of two types: data and control. compl [ SL,<i | 2 | L.I 17 13
An edge represents a data dependency if the source node of the clal +1+2] 2 |13 10 15
edge produces data that the sink consumes. Existence of a control incrl +;1 1 0‘7 13 1‘1
dependency between nodes implies that the execution of the sink ) )
. w_multl 01 1|23 23 3.9
node depends on the outcome of the execution of the source node.
- . ; regl n/a| 0.3 3 1.0
Our CDFG model uses a token passing semantic [9]. An operation
; . mem1l SO 1 1]19 15 8.1
consumes the tokens available at its inputs and generates a token
at its output. The execution of an operation is contingent upon the the inner loop of the transformation algorithm. In this section, we
arrival of tokens at its inputs. illustrate our power estimation technique with an example. Note
Figures 1(a) and 1(b) show a behavioral description written in a that though this procedure is used to estimate the power consump-
high-level language and the CDFG corresponding to the descrip-tion of designs during the transformation process, the final power
tion, respectively. Statements in the behavioral description are measurements, used for our experimental results, are obtained from
shown annotated with the operation(s) in the CDFG they represent.actual layouts.
Data dependencies in the CDFG are indicated by continuous arcsProblem statement: Given (a) a scheduled behavioral description
and control dependencies, by broken arcs. An operation, whose exin the form of an STG, (b) functional unit selection information (in-
ecution depends on a condition evaluatingrte (false), is marked formation about the type of functional unit which performs an op-
with a + (). A join operation assigns to its output, the value at ei- eration), (c) a library of functional units and storage elements (reg-
ther of its input edges. Such an operation executes when a token igsters, memories) characterized for area, delay, and power, (d) the
available at either input. Also included in our CDFG representation clock period of the design, and (e) a set of typical input traces, esti-

is aselectoperation with three inputs$, r, ands, and an outpub, mate the power consumption of the final design.
which assigns to, the value at it$ (r) input ports, if the value &t We extend the method proposed in [5] to handle CFI designs.
is true (falsé). The average power consumption of the circuit is computed as

On completion, the scheduler outputs the STG describing the the average energy consumption divided by délerage schedule
schedule. Figure 1(c) represents the STG obtained by schedulindength The average schedule length is defined as the average time,
the CDFG shown in Figure 1(b). The STG is a directed graph in cycles, to complete one execution of the behavior, and is com-
whose nodes represent states and edges represeiitidrenbe- puted from the STG and the input traces, using the method pre-
tween states. Nodes in the STG have information about the oper-sented in [10]. The total energy consumed by the circuit is com-
ations executed in the corresponding state, and edges capture thputed as the sum of the energies consumed by the functional units,
conditions under which a state trétien takes pace. Many sched-  registers, interconnect, and the controller. The en&ggpnsumed
ulers supporoop unrolling a performance optimization technique, by a functional unit or register is expressedeas Cype x ded X
which allows operations from different iterations of a loop to be Nyps whereCype is a constant which depends on the functional
performed concurrently. In such cases, operations in a state are anunit or register typeyyq is the supply voltage, arldyps for a func-
notated with the iteration of the loop they represent. For example, tional unit (register) is the number of operations executed (number
the zerah iteration of operation[i] = a (S_0), and the first itera- of read/write accesses). Further details about the power model can
tion of operations =i+1 (++11) andi <cl(<1.1) are executed  be found in [5]. The following exampliflustrates our power esti-
in stateS5 The number in parentheses placed adjacent to an edgemation procedure.

represents the probability that the copeading edge is taken. Example 1: Consider the problem of estimating the power con-

2.2 High-level power estimation sumption of a design based on the STG shown in Figure 1(c). The
Application of transformations targeted towards reducing power library elements available, the energy dissipation, delay, and area
consumption requires a high-level power consumption model associated with each element, functional unit selection, and allo-
whose predictions are correlated with the final power consumption cation information (numbers and types of functional units allowed
of the design, and which is fast enough to be applied repeatedly infor synthesis) are summarized in Table 1. The clock period con-



straintis 2k1s Simulation of the behavioral description with the in-
put traces yields the following branch prolildies: the while loop
“while (c2>i)" closes with a probability of @8, and the branch

“if (i <cl)” is taken with a probability of 37. Note that once the
branch probabilities are determined, they carrdggeatedly used
Therefore, simulation is done only once during an execution of the
algorithm.

The state probabilities, evaluated using the method presented

in [10], are as followssp= 0.008,Ps; = 0.008,Ps>= 0.153,P53=
0.259, Ps4= 0.149, PSS: 0.404, and336= 0.003, Ps7: 0.008, and
Psg= 0.008, wherePs; is the probability of being in stat8i. The
average schedule length can be shown to bellll®ycles. Note
that scheduling is performed assuming the supply voltage &vbe
If the supply voltage were different, functional unit delays would
change, thus impacting the average schedule length.

Using the above probabilities, one can derive the average energy
consumption per iteration of the design. To do this, we need to find
the average number of operations executed by each type of func

tional unit, and the average number of variable accesses, per iterat
tion of the design. These numbers are derived as the sums of pert

state numbers of operations executed by different functional unit
types, and variables accessed, weighted by the state plitbsb

For example, the number of operations executed by functional units
of typeincrlis given by 11911 x (Psyx 1+Pgsx 1) =4895. Since

the energy consumed by the incrementer while performing one op-
eration is 07 x Vy42 units (see Table 1), the average energy con-
sumption, per iteration, by the incrementer is23%x V4?2 units.

The energy consumption due to the comparators, adders, multipli-
ers, registers, and memory, and can be found to be7508Vy4?,
63.64 % Vg2, 4170 % Vyq2, 9938 x Vgq? and 9310 x Vyq? units,
respectively, using the same technique. The total energy consump
tion is 66558V, units, after accounting for the contribution due to

3 Motivational Examples
In this section, we motivate the key features of our algorithm

with examples. Our algorithm is based on the following key obser-

vations:

¢ Considering scheduling information during transformation
application can significantly enhance the quality of the cho-
sen transformations. This is illustrateddbgh Example 3.

¢ Applying transformations across basic block boundaries is
critical in producing high-quay solutions, and maintaining
correctness in the process can be complex and non-trivial.
This is illustrated though Example 3.

TeST2 (int k){

L1 fori=0t09% /i<1
tl=yi]+k; // +1
k=k+t1;//+2}

L2 for j=0t09¥ /I <2
t2=x[j]-k; I/ -2
k=k-t2;// -3}

L3 for m=0to399{// <3
t3 = yd[m]+y2[m]; // +3
t4 = y3[m] +y4[m]; // +4
t5=t3-t4;// -1
x1[m] =15; }
return ;}

(a) (b)
Figure 2: (a) A behavior, Es12, (b) a schedule for 85712,
and (c) a schedule derived after transformirepT2
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the interconnectand controller. We first compute the average powerExample 2: Consider the problem of synthesizing the behavior

consumption by assuming the supply voltage t&WeThis is done

shown in Figure 2(a) to optimize for throughput. Suppose the re-

by dividing the average energy consumption by the average timeSources available to implement this behavior are two adders, two

66558x V2 . subtracters, two comparators, and two incrementers, all of which
taken (11911 cycles abV), and evaluates (9rqrs, cyceime NS execute in one cycle. Arraysx1,y, y1,y2,y3, andy4 are assumed

The quadratic dependence of power consumption on supplyto he mapped to separate memories, and can be simultaneously ac-
voltage implies that significant reductions in power consumption cessed. Figures 2(b) and 2(c) describe schedules for the untrans-
can result if the supply voltage is scaled down. We estimate the formed and transformed behavior, respectively. Since the STGs for
scalgd supply voltage in the foIIo_Wlng manner. As mentloned N the actual schedules are rather involved, the given figures provide
Section 1, our algonthm starts with a sched_uled t_)ehaVIOV- Trans-the pasic features of the schedule, without giving a state-by-state
formations and scheduling are then applied in an interleaved faSh‘description. Nodes in Figure 2(b) correspond to loops in the behav-
ion. The initial schedule given to us is regarded as the “base” case,jor, A node is annotated with its name (placed outside thgse
and all comparisons are made with respect to it. When we optimize representing it), and the loops it corresponds to (placed inside the
for power, we scale the supply voltage until the average scheduleg|jipse). In this schedulel andL2 first execute in parallel, thelr2
length drops to that of the untransformed design. For example, if 3ng| 3, and finallyL3 executes alone.
the STG shown in Figure 1(c) is derived from the transformed be-  Nodesn1 andn2 are also annotated with the number of itera-
havior, and the schedule derived from the initial (untransformed) tjgns of L3 they represent. Whilé3 is able to execute 200 iter-
behavior has an average schedule length of3(baycles, the sup-  ations in noden2, it can only execute 100 iterations in nod#
ply voltage is scaled according to the equafion An inspection of Figure 3(a) reveals the reason for this bottleneck.
This figure shows concurrent execution of lodg@sand L3 over
two iterations. Since contention for the adders and subtracters is
the reason for the bottleneck, we only show the schedules for the
addition and subtraction operations which compete for resources.

Since there are no inherent data dependencies that slow down
the execution of.3, we can explore methods to transform its body
in such a manner that its resource requirements are tailored to the
80.96/cycletime units for the design. Note that the term represent- environment in which it is embedded. One way to achieve this
ing the average schedule length changes from1tl1® 15130 to would be to rewrite y1[m] + y2[m]) — (y3[m] + y4[m) in the form
reflect the change in the supply voltage. This is because an averagey1[mj - y3[m) + (y2[m] — y4[m]), as shown in Figure 2(c) (see the
schedule length of 1191 cyclesat 5/ is equivalent to an average  CDFG enclosed in broken boundaries placed adjacent to mfde
schedule Iength of 1530 at 429V. Thus, our aim is to keep the In this ﬁgure’ 0peration_5 representyl[m] _y3[m]’ Operation_4
performance of the untransformed and transformed scheduled berepresenty2[m] — y4[ri, and operation +5 represents their addi-
haviors the same while reducing power. n tion. In this case, the body of lodgB would require two subtrac-
tion operations and one addition operation. Sihteonsumes one
adder per cycle, one adder and two subtracters are available. In this

Vgguinitial /(Vgg-initial — Vf)2
Vad-new(Vgg-new- )2

=11911/15130

If Vyg-initial is assumed to beVband the threshold voltagé
is assumed to beV], thenVyg-new evaluates to 29V, which
yields a power estimate of 668 x 4.29%/(15130 x cycletime) =

1Delay=k x Vgg/(Vagg — W)? [11].
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e bl e v e x4 X5 results feeding a subtraction).Qfwere to occur with a high proba-
bility, the ability to perform this substitution would, clearly, be de-
Q a 9 a sirable.
a In performing this substitution, the following two issues need to
e o be considered.
e ¢ The transformed CDFG should be functionally equivalent to
l the original CDFG for every thread of execution encountered.
(@ (b)
Figure 4: Transformations across basic blocks ¢ The transformed CDFG should be as compact as poskéle,

no redundant operations should be performed.
scenario, one iteration &f3 can begin every cycle, as illustrated in
Figure 3(b). Note that this transformation is applied only to node
nl, and noden2 remains unaltered.

The schedule shown in Figure 2(c) has an expected length of
408 cycles, a 25-fold improvement over the schedule presented in
Figure 2(b). This improvement is a direct consequence of consid-
ering scheduling information while applying transformations. Note
that if this behavior were optimized for power, the improvement in
throughput could be traded off for a 25% reduction in power con-
sumption througWyg4-scaling.

Figure 4(b) shows the CDFG obtained upon transforming the
CDFG shown in Figure 4(a) (for now, the part of the CDFG shown
in the grey enclosure, and the grey edge it sources can be ne-
glected). It can be verified that, for every thread of execution
encountered, the output of the transformed CDFG is functionally
equivalent to the output of the original CDFG. Note thak2fand

x5 were not mutually exclusive, the transformed behavior would
not be functionally equivalent to the original one, as the original
CDFG would comput&l x x2 - x5 upon the arrival of tokens at in-
putsx1, x2, andx5, and the transformed CDFG would not produce

. ) . an output. To ensure correctness, in the case wi2eand x5 are
Example 3: Consider the problem of transforming the CDFG ot mytually exclusive, the left input to operatier2 should come
shown in Figure 4(a) to optimize for throughput under the follow-  from the grey edge. n

ing allocation constraints: one multiplier and two subtracters. All
functional units are assumed to take one cycle to execute. The join4 The Algorithm
operations embedded in the CDFG indicate that different threads |, thjs section, we outline the working of our algorithm. Details
of execution are possible, depending upon which ofjdie oper- can be found in [12]. Figure Blustrates the basics of our algo-
ation’s inputs propagates to its output. In this case, since there arejhm. In this figure, the steps shown shaded have been enhanced
two distinctjoin operations, four threads of execution are possible. by our algorithm. Other steps correspond to well-researched prob-
Out of the four possible threads, not all would occur in practice, |ems, and are not described. The inputs consist of a behavioral
because the occurrence of a token on one input might preclude theescription, specified as a CDFG, functional unit selection and al-
occurrence of a token on anothee, some input pairs might be  |5cation information, target clock period, typical input traces, and
mutually exclusive. In this example, the pafoe2, x5} and{x3,x4} synthesis objective (performance or power). The behavior is first
are assumed to be mutually exclusive. - scheduled, using an existing CFl scheduler (tepFigure 5). The
Transformational techniques typically identify specific struc- oytput of the scheduling process is an STG. The input traces pro-
tures in the CDFG which are good candidates for transformation yided are used to analyze the STG to determine the probabilities
application, and alter these structures in the manner dictated by theyjth which individual states are encountered. The STG is then par-
selected transformation. In this example, let us suppose we choosgitioned into blocks (stef). Individual blocks (groups of states)
to utilize the distributivity of multiplication over subtraction to re- i the partition are then transformed and rescheduled in an itera-
place a structureSource of the formax b—ax ¢ by a structure,  tjve fashion using the following technique. First, the functionality
Target of the forma x (b c). An inspection of the CDFG reveals  of the block is captured in the form of a CDFG (st8p i.e., we
that, if thejoin operations in the CDFG were configured to select jdentify the portion of the CDFG which corresponds to the STG

their left inputsj.e., if J1selected the result of operatioh andJ2 ~ plock. We then determine multiple ways in which the CDFG can
Selected the I’esu|t Of Operatl, the data and Control ﬂOWS W|th|n be transformed, using a ||brary Of transforma’[ions (st%p The

the resultant CDFG would be identical$murce This implies that key strength of this process lies in its ability to ogmize and ap-

under some coritions, the CDFG can be made to appear isomor- py transformations across the scope of basic blocks. The efficacy
phic toSource LetC denote the conditionnder which this occurs.  of each considered transformation is then assessed Gtms6).

If Sourcewere replaced byargetwhenC were to evaluate toue, This is done by applying the considered transformation, schedul-
then the resultant behavior would take only two cycles to execute ing the CDFG, and using the schedule information to estimate the

as there is one subtraction] & x2 - x3), and one multiplication,  throughput or power (see Section 2.2). A subset of candidates is
x1x 1, as opposedto the three cycles it would otherwise need (two then chosen for further exploration (stép

multiplications, occurring in sequence on one multiplier, with the



4.1 Partitioning represent the assessment of the efficacy of different CDF8g4n

In this section, we describe the procedure followed to partition haviorset Rescheduling is performed prior to estimation with the
the STG prior to the application of transformations. The starting intent of enhancing the accuracy of the process. The elements of
pointis an STG and a set of user-specified input traces. The outpuBBehaviorsetare then ranked in decreasing order of gaie, if
of the process is a set dfsjoint “STG blocks”. An STG block is there areN candidate CDFGs, the one assessed to be the “best”
a collection of states that satisfies the following properties: (a) any (‘worst”) will rank O (N - 1). A fixed-size subset of these CDFGs,
state,S, can form a block, and (b) if a stat&, is an immediate ~ Selected and stored In_set serves as the starting point for the next
predecessor or an immediate successor of any state in a Bock, iteration of the loop represented by statenfnthe selection pro-
thenB U'S is a valid block. cess is explained next. _ _ _

The first step in partitioning is the derivation of transition prob- ~ The following principle guides our algorithm: better solutions
abilities on the edges of the ST, the probability that an edge, ~ are selected with a higher probability. In the initial phase of the
e, is taken, given that the current stateSeurcée)’. This is done  a@lgorithm, bad solutions get selected with relatively high probabil-
by simulating the CDFG representing the input behavior with the ities, and as the algorithm preeds, their proballiies of selection
input traces provided. The simulation yields the number of times drop. We, therefore, generate a stream of unique random numbers
each branch in the CDFG is encountered, from which the proba- Whose size equals the size of the required subset. The ratio of the
bility of a branch can be computed. Once the probabiliteath probabilities of selection of two solutions, which rank andn2
CDFG branch is known, the transition probabilities on the edges is given bye *%e=k"2 The parametek is low at the beginning
of the STG can be computed as the product of the pritiied of of the algorithm, which implies that poorer solutions have a higher
the CDFG branches which constitute the STG edge. These probafprobability of being selected. As the algorithm peeds, the value
bilities are used to evaluate the probability of being in a particular of k increases, favoring better solutions. The algorithm terminates
state, using the technique described in [10]. if an iteration of the loop represented by statenf@dbes not im-

The derived state probabilities are used to rank transitions in de-Prove the quality of solutiork is a linear function of the number of
creasing order ofelative frequencyas follows: the relative fre- ~ €xecutions of the loop represented by staterBent

quency of a transition along edgén the STG is computed as the The rationale behind our algorithm is as follows: we try to si-
product of the probality of being in Sourcée) and the probability ~ multaneously explore multiple regions of the solutioasp. If at

of e being taken, given that the current stat&Ssurcée). Edges, any point, we have multiple possible solutions, simulated annealing
whose relative frequency exceeds a threshold are chosen for furthepr iterative improvement would choose one, based on a heuristic,
processing. while our algorithm would choose more solutions, thus increasing

From the chosen set of edges, STG blocks are formed in the fol- the probability of generating a better solution.
lowing manner: the edge set is traversed in decreasing order of fre-

quency. The source and sink nodes of the first edge are grouped
into a block,B. If the sourcesourcd and sink Qi) nodes of any Apply.transformgSTG_.BLOCK B, ALLOCATION_CONSTRAINTC,
subsequent edgegex; do not belong to any existing block, a new TRANSFORMLIBRARY T_lib,cLock_PERIODCIK,
block with content®isource@ndngin is created. If the source (sink) FUNCTIONAL UNIT SELECTIONfu_select OBJECTIVEOD]){
node ofenex; belongs to an existing blocB’, but the sink (source) [0 SDFGG = extractCDEG(B);
node, ngink (Nsourcd, does notB’ is augmented with the addition ; \?\m;gg:@ Inset={G};
. . . pping criterion not satisfiefl)
of Nsink (Nsource- I enexthas its source node in one block, and its |3 oy (j'= 0: i < MAX MOVES i ++){
sink node in another, the two blocks are fused into one. The cre- |4 SET <CDFG> Behaviorset= ®:
ated blocks are optimized by the application of transformations, as |5 foreachelementg, In_se){
described in the following section. 6 SET <CDFG> behset= Identify.and.apply
. . . . _candidatetransformationég, T_lib) ;

4.2 Controlling the application of transformations 7 Behaviorset= BehaviorsetU behset

As mentioned in the previous section, the partitioned STG is |8 %oreachelementb, Behaviorse) {
modified by the application of transformations chosen from a li- |9 Reschedule CDF® usingfu_select
brary. In this section, we describe the procedure used to control |10 Estimate objective function;//power or dughput
the application of transformations to an STG block. 11 Store best solution seen so far;

Figure 6 describes the_ part of our algoritljm which corresponds |, LST <CDFG> Behaviotlist = Sort(Behaviorse):
to steps3, 4, 5, 6 and 7 in Figure 5. The inputs are the STG /iSort candidate CDFGs in decreasing order of objective fungtion
block, B, to be modified, functional unit selection information, al- |13 Select a fixed-size subsst,of Behaviorset
location constraints, clock period, the transformation library, and I/lbased on a random variable distributedask x e
the objective function (throughput or power). The approach we /lwherecis a constant is a monotonically increasing
use combines some aspects of both simulated annealing and iter /ffunction ofi, andx is a uniform random variable.
ative improvement. At each stage of the algorithm, we maintain a [t4, IN-Set=s
set,In_set of solutions which serve as starting points for future ex- 1Y

ploration. These solutions are CDFGs which are the result of the Figure 6:Controlling the application of transformations
application of a sequence of transformations to the CDFG derived .

from the input STG block. The neighborhood of each elementof 5 EXperimental Results

In_setis explored to identify candidate transformations. The loop The techniques described in this paper were implemented in a
in statemenb of the pseudocode in Figure 6 represents iteration program calledACT, written in C++. We evaluated this program
throughin_set and statemer@ represents exploration of the neigh- by using it to transform several commonly available benchmarks,
borhood of an elemeng;, of In_setby identifying candidate trans-  to optimize for throughput and power. We compare our method,

formations which can be applied tp As shown in statemert, FACT, with the technique presented in [#léme), and another
CDFGs obtained by the applications of the candidate transforma-technique, which will be calleil1 for the remainder of this discus-
tions are grouped into a single sBeghaviorset Statement$-10 sion. Flamel applies the same transformation suite as our method

does, and also has the ability to transcend basic blocks in its opti-
2Sourcée) represents the state that sourees mization, which makes it an ideal candidate for comparison. All



Table 2: Throughput and power results

T-opt. P-opt
Circuit Clk | M1 FI FACT | M1 | FACT
ns T T T P P
GCD 25163 |101| 169 | 28 0.9
FIR 25 | 167 | 167 | 1000 | 7.6 1.7
Test2 25 20| 20 25 | 113 | 84
SINTRAN| 25 | 1.3 | 1.7 25 114 4.0
IGF 25 02| 03 0.3 9.1 7.0
PPS 25 | 125| 333 | 333 | 99 36
Table 3:Allocation constraints for the examples in Table 2
Circuit al|sbl|{mtl|cpl|el|il|nl]sl
GCD - 2 - 1 1| - - -
FIR 114 | 1 e v R
Test2 2 2 - 2 -1 2] - -
SINTRAN| 4 4 5 1 - 1 2 -
IGF 1 1 2 1 - 1 - 1
PPS 5| - - e e

methods have access to our in-house scheduling algorithm [13],
which can perform the following transformations in an integrated
fashion: loop unrolling, functional pipelining (even acrdfsson-
structs), andconcurrent loop optimizatiorfthe ability to paral-
lelize the execution of independent loops, possibly with unknown

by our scheduling algorithm. Note that recent work on power-
optimizing transformations.g.[5], has focussed on DFI descrip-
tions, making them inapplicable to many of our benchmarks.
Comparisons were performed with respect to throughput and
power in the following manner. The CDFGs were synthesized,
placed, and routed, using our in-house synthesis tool. Through-

put was estimated as the inverse of the expected execution time
between consecutive iterations of the CDFG, using techniques pre-

sented in [10]. Power estimation was performed using a transistor-
level netlist, extracted from theylaut, using a switch-level simula-
tor, IRSIM-CAP. The inputs to the power estimator were derived
using a zero-mean Gaussian sequence, which was subsequent

passed through an autoregressive filter to introduce the desired level

of temporal correlation.

Table 2 summarizes the results obtaine@lk represents the
clock period constraint. The columns labelBdptandP-optrep-
resent, respectively, the CDFGs produced by the application of
transformations aimed at throughput and power optimization. Mi-
nor columnM1 represents methdd1, and minor column&l and
FACT represent CDFGs which have been transformed by the ap-
plication of techniques presented in [7] and this paper, respec-
tively. ColumnsT and P represent the throughput (measured in
cycles! x 1000) and power (measured inW), respectively, of

the circuits synthesized from the corresponding CDFG, measured [©]

in the manner outlined beforee.g, for FIR, FACT produces a
throughput of Zcycle~! in the throughput optimization mode). All

CDFGs were synthesized under the same allocation constraints, to

meet the same target clock period. We used a library of functional
units which consists of (a) an addad, with a delay of 1@s (b)
a subtractersbl, with a delay of 1@s (c) a multiplier,mtl, with
a delay of 28s (d) a less-than comparatapl, with a delay of
10ns (e) an equality comparata], with a delay of &is (f) an in-
crementeril, with a delay of Bis (g) a multi-bit inverternl, with
a delay of &5 and (h) a shiftersl, with a delay of 1@s The al-
location constraints for an example can be found by looking up the
entry corresponding to the example in Table 3. For example, the
allocation constraint foGCD s two sb1, onecpl, and ones1

Of our examplesGCD computes the greatest common divisor

of two numbersFIR is a finite impulse response filte8INTRAN
evaluates the sine transforiGF evaluates the incomplete gamma
function, PPSis a parallel prefix sum, and@lest2is the example
shown in Figure 2(a).

The results obtained indicate that the designs derived from
FACT, in the throughput optimization mode, produced on an aver-
age a Z7-fold improvement in throughput over designs produced
using M1 and 21-fold improvement over designs derived from
Flamel The power-optimized designs produced BACT con-
sumed on an average 8% less power than circuits synthesized
from M1, for the same throughput (the throughput was made the
same adM1’s throughput in the throughput-optimized case). We
do not compare the results 6ACT in the power optimization
mode withFlamel since the latter does not have the ability to ap-
ply power-optimizing transformations.

6 Conclusions

In this paper, we presented a framewoRACT, for applying
throughput and power-optimizing transformations to CFl behav-
ioral descriptions. Our algorithm interleaves scheduling with trans-
formation application, which allows accurate identification of per-
formance or power bottlenecks, and the selection of transforma-
tions to eliminate them. The applied transformations can span sev-
eral basic blocks, thus improving their optimizing capabilities. This
ability is the result of a general technique we have devised for rec-
ognizing and applying a general class of transformations across the
scope of basic blocks. The CDFGs producedBZT, upon syn-
thesis, have achieved uptd4old improvement in power and upto

d5-fold improvement in throughput over designs synthesized with-

out the benefit of our technique.
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