Minimum Area Retiming with Equivalent Initial States'

Naresh Maheshwari
Department of Electrical & Computer Engineering
lowa State University, Ames |A 50011, USA
naresh@iastate.edu

Abstract

Traditional minimum area retiming agorithms attempt to achieve
their prescribed objective with no regard to maintaining the initial
state of the system. Thisissueisimportant for circuits such as con-
trollers, and our work addresses this problem. The procedure de-
scribed generates bounds on the retiming variables that guarantee
an equivalent initial state after retiming. A number of possible sets
of bounds can be derived, and each set is used to solve a minimum
area retiming problem that is set up as a 0/1 mixed integer linear
program, using a new technique that model s the maximal sharing of
flip-flops at latch outputs. The best solution is found through enu-
meration of these sets, terminated on achievement of a calculated
lower bound. Experimental results show that after a small number
of enumerations, optimal or near-optimal results are achievable.

1 Introduction

Retiming [1] isatechnique for optimizing sequential circuitsby re-
locating memory elements. Two common variations of this prob-
lemare: minperiod retiming inwhich theclock periodisminimized
without regard to the number of flip-flops (FF's) in thefinal circuit,
and (constrained) minarea retiming in which the number of FF'sis
minimized subject to atarget clock period. Retiming has also been
applied to level-clocked circuits e.g. in[2, 3].

One problem associated with the application of retiming is pre-
serving the initial state of the circuit, which is determined by the
initial values of the registers in the circuits. Whenever the initia
state of the circuit is an integral part of its behavior (for example,
in controllers), it is necessary to find an equivalent initial state for
the retimed circuit. Aninitia state in the retimed circuit is equiv-
alent to the initial state in the original circuit if for any input se-
quence applied to both the circuits (original circuit started intheini-
tial stateand theretimed circuit started inthe equivalent initial state)
the same sequence of outputs is produced [4].

A
£
B
£
[}

D

(A) (8)
Figure 1: (A) Origina circuit. (B) Retimed circuit

Itisnot always possibleto find an equivalent initial statefor the
retimed circuit. For example in Figure 1(a), if the initial value of
FF's{A,B,CD} are{0,0,1,1} respectively, then the retimed circuit
in Figure 1(b) cannot be initialized to have the same behavior as
the original circuit. This is because an equivalent initial value of
FF E in the retimed circuit cannot be found. On the other hand, an

L Thiswork was supported in part by the National Science Foundation under award
MIP-9502556 and a L ucent Technologies DAC Graduate Scholarship.

0-89791-993-9/97 $10.00 J 1997 IEEE

Sachin S. Sapatnekar
Department of Electrical & Computer Engineering
University of Minnesota, Minneapolis, MN 55455, USA
sachin@ece.umn.edu

equivalent initial state can always be found for forward motion of
FF's(i.e, in the direction of signal flow). This concept was used
in[5] to compute initial states of retimed circuits by using only for-
ward moves. FF's could be removed from al primary outputs and
inserted at all primary inputs, and the problem was reduced to de-
termining the initial values for the inserted FF's; their values could
be obtained from the state machine description of the circuit. How-
ever, this approach may require modifications in the combinational
logic which may increase the clock period.

Since aretiming for a given clock period is not unique, another
possible retiming may exist, for which an equivalent initial state can
be found without any circuit modifications. Reverse retiming [4]
findsthisretiming by disallowing FF moves acrossthe primary out-
puts and by minimizing backward (against the signal flow) motion.

For digital circuit design, the useful objective function isthat of
constrained minimum area retiming. However, none of the above
methods considers the area penalty during retiming since they per-
form minperiod retiming rather than minarearetiming. Inthiswork
we solve the problem of minarea retiming with equivalent initial
states and call it minarea initial state retiming. We use bounds on
the retiming variables to alow backward motion of FF's only if an
equivalent initial value exits. Therefore any retiming thus obtained
isguaranteed to have an equivalent initial state. Retiming acrossthe
host vertex is not allowed since it may require modifications to the
original circuit. We also provide a new formulation that takes into
account the initial value of the FF's while modeling the maximal
sharing of FF's at the outputs of multiple fanout gates.

2 Background

Asin[1] asequential circuit can be represented by adirected graph
G(V, E), where each vertex v corresponds to agate, and adirected
edge e, represents a connection from the output of gate to the
input of gate v, through zero or more FF's. Each edge has aweight
w(eyw), which isthe number of FF's between the output of gate u
and the input of gate v. Each vertex has a constant delay d(v). A
special vertex, the host vertex, isintroduced in thegraph, with edges
fromto al primary inputs of the circuit, and edges from all primary
outputs. A retiming isalabeling of the verticesr : V' — Z, where
Z isthe set of integers. The retiming label r(v) for avertex v rep-
resents the number of FF's moved from its output to itsinputs.

The minarearetiming problem (without regard to initial states)
wasformulated asalinear program (LP) in[1]. Let FI(v) [FO(v)]
bethe fanin [fanout] setsof gate v respectively. The objective func-
tion in the L P represents the number of FF' sadded by retiming, and
the congtraints ensure avalid retimed circuit that satisfiesthe target
clock period. ThisLPisadua of anetwork mincost flow problem
and hence can be solved efficiently. Minaret [6] reduces the size of
this LP by adding lower and upper bounds on the variables; the de-
tails are omitted here. The reduced LP has the form:

>vev [IFI()]| = [FO@)]) - r(v)] @
r(u) —r(v) <cuw Vcondraints € C
L, <r(u) <U, Yu € V

where C isthe reduced constraint set [6].

minimize
subject to

3 Ensuring Equivalent Initial States

The requirement of initial state equivalence imposes restrictionsin
addition to those in traditional minarearetiming. Thus the number
of FF’ sobtained in minarearetimingis, by definition, alower bound
on the number of FF's obtainable by a minarea equivalent state re-
timing. We call thislower bound T".

However it is not always possible to achieve thislower bound.
As an example, consider the circuit with unit delay gates shown in
Figure 1. The minarea retiming for a clock period of 2 units, and
without regard to initia state requires only 1 FF. However, if the
initial values of FF's {A,B,C,D} are {0,0,1,1}, any minareainitial
state retiming will require 2 FF's. Furthermore, the optimal num-
ber of FF'sdepends on the initial state of the original circuit. If the
initial values for FF's {A,B,C,D} are {0,1,1,1}, then any minarea
initial state retiming will have 3 FF's.

Evenin caseswherethelower bound I" isachievable with equiv-
alent initia states, there would, in general, be multiple retimings
with optimal number of FF's. Some of these retimings may not have
equivalent initial states, and hencewemust restrict our solution space
to exclude such solutions. One way to do thisis to disallow back-
ward motion of FF's across a gate if the FF's at its output do not
have compatible values. The presence of FF's with incompatible
logic values at the output of a gate is called a conflict. A conflict
at the output of a gate prevents it from being retimed in the back-
ward direction. Therefore to ensure that any retiming obtained has
an equivalent initial state we update the upper bound U, on gate v
in the LP of Equation (1), so that no backward retiming is allowed
across a gate with a conflict at its outputs. This new upper bound
J» < U, ensures avalid equivalent state. Notice that we do not
update the lower bounds since the forward motion of FF's always
resultsin an equivalent initial state.

In the remainder of this section, we will describe techniques to
obtain these new upper bounds. Minaret [6] obtai nsthe upper bounds
by moving FF's backwards until they are about to violate a period
constraint; the number of the FF's moved across any gate givesits
upper bound. Unlike Minaret which does not associate any logic
valueswiththe FF's, we associate athree valued (1,0,X) logic value
with every FF, where X isadon’t care which can be assigned to ei-
ther Oor 1. A logicvalueof 0[1] iscompatiblewith bothOand X [1
and X], but logic values 0 and 1 are not compatible with each other.

A gate can only be retimed backwards if it has FF's at all of its
fanoutsand all of these FF'shave compatiblelogic values. The pro-
cedure maintains a list of gates that can be retimed. In each step,
agateis plucked from the list and retimed, and the list is updated.
Whenever FF sare moved from the outputs of agatetoitsinputs, we
must assign logic vaues to the new FF'sadded at the inputs. These
logic values must be equivalent to the original value at the gate out-
put in order to maintain state equivalence. This assignment may be
unique or non-unique and is similar to justification in ATPG [7].

Unique justification at a gate occurs if the gate hasasinglein-
put, or the logic value at the output is X (al inputs are assigned to
logic X). A logic value of 1 at the output of AND/NOR gatesor logic
0 at the output of OR/NAND gates also results in unique justifica
tions. If there are multiple possible mappings for the logic vaue at
the output to the logic values at the inputs, then we have to make
a choice (or decision) and we have non-unique justification at the
gate. A logic value of 1 at the output of an OR (NAND) gateisan
example of non-unique justification and we can assign any input to
logic value 1(0) and therest to X.

Let us define a justification set as a backward propagation of
logic values until the primary inputs, or until a conflict is reached.
Note that non-unique justifications at gates permit anumber of such
justification sets; we denote one such possible justification set as
A'. Then each such A* will give us A*, a set (one for each gate)
of justification upper bounds. For each A* we solve the minarea
LP with the upper bounds A*. If the number of FF's so obtained is

not equal to the minarea lower bound I, we backtrack and obtain
another justification set A’ to give us adifferent A7. This process
can be repeated until the minarealower bound I" isachieved or until
all justification sets have been enumerated.

Figure 2: An example of pruning technique

The number of justification setsto be explored is exponential in
the worst case; however, this number can be pruned by removing
suboptimal A*’s from consideration. As an example, consider the
circuit in Figure 2 with the logic values of FF A and FF B equal to
0. Since the output of the AND gate Gl isat logic 0, there are two
possible mappings for the equivalent values at a and b. However
the choice of setting input a to X and input b to 0 is better than the
choice of a = 0 and b = X, since the presence of FF B with logic O
will force the X on line b to 0. Thus we make the choice of a = 0
and b = 0, which is suboptimal to the choiceof a = X andb = 0,
since X on input a could potentially move further in the backward
direction than a0. For another pruning strategy, consider two setsof
justification upper bounds A" and A?. If wehave J, < J) Vv €
V', then thefeasible region of A’ includesthe feasibleregion of A*,
and hence there is no need to solve the LP corresponding to A*.

4 FF Sharing

The LP in Equation (1) assumes that the FF's at the fanouts of a
gate are not shared amongst the different fanouts. However, to accu-
rately model the minimum number of FF'sinacircuit, we must take
maximal FF sharing into account. In [1] a mirror vertex is added
for every gate with more than one fanout to model this maximal
sharing. This model preserves the LP's duality to a mincost flow
problem, and can be solved efficiently. Unfortunately, this model
assumes that an FF can be combined with any other FF, and hence
is not applicable to minareainitial state retiming where FF's have
logic values associated with them, and an FF with logic 1 can not
be shared with one with logic value 0. The situation is complicated
by thefact that two FF’'scan be shared only if the FF s at their fanins
(if any) are also shared. We present anew 0/1-MILP formulation to
model the sharing when FF's have logic values 1 or 0. This mod-
elingisused for al gateswith aconflict at their output. For al other
gatesthesimpler model of [1] isused. Wewill first present the model
and then illustrate it through an example.

101

O—®

Figure 3: An example for FF sharing

The justification process of Section 3 determines the logic val-
ues of al FF'sthat can possibly arrive at a gate's fanouts. Notice
that there is a sequence of these “possible’” FF's at every output of
every gate, and the final retiming may contain only a prefix of this
sequence. The logic values of these possible FF's at the fanouts of
agate u are represented by atable T', with |[FO(u)| rows as shown

in Figure 3, where FO(u) is the fanout set of gate u. Each row,
v € FO(u) has J, + w(eyy) entries, each of which is either a0
or al. Since amaximum of J, FF's can be moved across gate v to
itsinput, and w(e,») FF saready exist between gate v and gate v,
the maximum number of FF’'s between gate » and gate v that may
require conditional sharing is J, + w(eyy). FF's moved forward
across gate u to itsoutput can be shared unconditionally and will be
handled later. The value in the v** row and kt* column of the ta-
bleisdenoted by T, (v, k). We define a sharing class S; to contain
a set of values that can be shared, and represent the set of sharing
classesfor thefanouts of gate u by V,,. Twovalues(p, q) and (r, s)
in T, can be shared (i.e., belong to the same sharing class) only if
q =sandTy,(p,i) = Ty(r,s) fori = 0,---,s — 1. A function
class(Tu(v, k)) givestheindex of the sharing classfor entry (v, k)
intable T, €., Seiass(Ty (v,k)) 1S the sharing class containing the
k' FF between gate u and its fanout v (counting from). All the
FF’sin asharing class can be shared with each other, and hence re-
quire only one physical FF. Each sharing class S; isrepresented in
the MILP by avariable o; € {0,1}. If @; = 1 inthe optimal solu-
tion of the MILP, then the FF's of sharing class S; share aphysica
FF and the sharing class S; is said to be active.

The minareaLPin Equation (1) is modified to model the condi-
tional sharing represented by the sharing classes. For every gate u
with a conflict at its outputs, the corresponding objective function
term isgiven by Equation (2); for all other gatesitisasin [1].

(IFI ()] = 1) - r(u) = Bu + Xy e, @i @

Here FI'(u) isthe set of fanins that have only asingle output, i.e.,
FI'(u) = {vlv € FI(u) AND |FO(v)| = 1}. Thefirst term
(|FI'(u)|—1)-r(x) inEquation (2) modelstheincreasein the num-
ber of FF'swhen gate u isretimed by one unit, and issimilar to the
model in[1]. It assumesashared cost of one at the fanouts of gate u
for any set of FF'sretimed across gate u, in either direction. Since
a gate can be retimed backwards only if all FF's at its output have
same logic values, the shared cost at the outputs before retiming is
indeed one, as modeled by thisterm. Notice that since r(u) < J.,
no set of FF swith shared cost greater than one, can ever be retimed
backwards across gate . In forward retiming, al FF's inserted at
the outputs of a gate have the same logic values, and so the shared
cost at fanouts of gate u in forward retiming isalso one. The second
term 3, > 0 isacorrection factor applied to correctly model thesit-
uation in which aset of FF'smovesforward across gate » and all its
fanouts. It isactive only during forward retiming steps, and models
the number of FF's removed from the fanout junction of gate v by
forward retiming. 3, > 0 ensuresthat unconditionally shared FF's
are not added to the fanouts of gate u by backward retiming, since
conditiona sharing under backward retiming is to be modeled by
thea;’s.

Asmentioned earlier a; = 1 impliesthat the sharing class S; is
active, therefore Ev ien, Qi denotes the number of active sharing
classes at the fanouts of gate u. Since each active sharing class re-
quires one FF, the number of active sharing classesis a so the num-
ber of physical FF srequired at thefanouts of gate u. Theminimiza
tion of the objective function will force the maximal sharing at the
outputs of gate u.

In order to correctly model the cogt, all the FF'sat the fanout of a
gate u must have their costs accounted for in the objective function.
To achieve this we add the following constraint for V v € FO(u).

Jyvtw(eus)

Z Qclass(Ty (v,k)) (3)

k=1

w(euv) + T'(U) < _,Bu +

Theleft hand side of Equation (3), minusr (u), isthe number of FF's

between gate u and v after retiming. S0 TV o

represents the total number of active sharing classes between gate u

and v, (3,, isthe number of FF'sremoved from the fanout of gate w
by forward retiming (0 in case of backward retiming), whiler(u) is
the number of FF'sremoved from the fanout of gate ». Hence the
right hand side of Equation (3), minus r(u), represents the number
of available shared FF's between gate « and v. Thus Equation (3)
ensures that the number of FF's between any two gates is less than
or equal to the number of shared FF' s between them. Noticethat the
number of shared FF' sisthe number of available FF's, all of which
do not have to be utilized by a particular fanout.

To ensurethat the k" FF retimed across gate v activatesitsown
sharing classvariable aiq55(, (v,k)), WE ensurethat Vo € FO(u)

{aclass(Tu (v,k)) > Qelass(Ty (v,k‘+l))} kE=1...J, +w(euv) -1

By requiring that the variable aqss(7, (v, 1)) DE active before the
variable aciqss(T, (v,k+1)), this constraint ensures that the k" FF
retimed across gate v does not activate avciqss (T, (v,k+1))- 1he k"
FF retimed across gate v can not activate aciqss (7, (v,k—1)), SINCE
before the k" FF can be retimed acrossgate v, the k — 1* FF must
have already been retimed and its class variable acjqss (1, (v,k—1))
would aready be active. The constraint in Equation (3) will ensure
that the number of active sharing classes on a fanout is greater or
equal to the number of FF's on that fanout. Thus the k" FF re-
timed across gate v will activate its own sharing class. The first FF
inasharing class S; that arrives at the fanout junction activates the
sharing class variable «;, incurring a cost of one in the objective
function. The remaining FF'sin that sharing class can then arrive
without incurring any extra cost in the objective function.
Example: Consider the circuit in Figure 3 shown with the sharing
classesinitstable of logic values. The LP for this circuit is

Minimize : —r(b)—r(c)—r(d)+a1+as+ast+as+as+as—[Faq
subjectto r(b) + B, < a1 + a2 +as
r(c) + Ba < a1 +au
r(d) + B < as + as
> az > as
Qar >y a5 > Qs
Bu>0; a; € {0,1} Vi

Positive Retiming: Supposewewant to model thesharingfor r(a) =
0,7(b) = 3,7(c) = 1andr(d) = 2. Then the optimal objec-
tivefunction value of theabove LPis-1, which givesthe correct in-
crease in the number of FF'sfrom the original circuit in Figure 4(a)
to the retimed circuit in Figure 4(b).

)=3

OAHHF
S

@ ()

Figure 4: Example of positive retiming

Negative retiming: Now suppose we want to model the sharing for
r(a) = —2,7(b) = —=2,7(c) = —1l andr(d) = —1. Thentheop-
timal objectivefunction valueis 3, whichistheincreasein the num-
ber of FF'sfrom theoriginal circuitin Figure5(a) to theretimed cir-
cuitin Figure5(b). Ascan beseen oneFFisshared for theedgese,.
and e, 4 even though they where not in the same sharing class. This
is possi ble because the FF's moved forward to the outputs of gate a
hence they all have same logic vaue without regard to the sharing

@=-2

pERERC)

@ (b)

Figure 5: Example of negative retiming

classwhich are defined for backward movements. Thus these FF's
can be shared and our formulation correctly models the cost.

The actua problem of FF sharing isto find the optimal sharing
between logic values 0, 1 and X. Logic X can be shared with either
0 or 1 but not both, and is hard to model. To avoid this problem we
have converted all X’sto either O or 1 before formulating the MILP.

5 Experimental Results

We haveimplemented aninitial state minarearetiming based on the
presentation in this work. Our justification algorithm makes ran-
dom choices in case of a non-unique justification and generates an
LP for each of the A;’s. If the lower bound I is not achieved, then
we perform ajustification based on another random decision. This
iscontinued until thelower bound isreached or auser specified num-
ber of iterations have been completed, and the best solution is re-
ported. Although it may seem arbitrary to use random decisions,
our experimental results show that the algorithm gives usgood engi-
neering solutionsthat are close to the (possibly unachievable) lower
bound. Asin [4] we assume theinitial state of all FF'sto be zero.

Table 1: Minarea Initial State Retiming

[Creuit [[G[| P | T [#FFs| Tewee ||
27 L | 60 [3 3 0.01s
2081 105 | 100 || 8 8 0.02s
298 20 | 60 || 22 2 0.40s
382 159 | 70 || 23 3 2595
386 169 | 11.0 || 6 6 0.04s
344 161 | 140 || 19 19 1775
349 162 | 140 || 19 19 1625
526n 195 | 60 || 30 30 0.955
510 212 | 10 || 7 7 0.12s
S4201 | 219 | 120 || 17 7 0.07s
641 380 | 740 || 19 19 0.11s
s713 34 | 74 || 19 19 0.18s
967 35 | 120 || 35 % 28525
938 447 | 160 || 33 33 1455
S1196 530 | 240 || 18 18 0.08s
1238 500 | 220 || 18 18 0.08s
1269 570 | 190 || 84 &4 0.26s
1423 658 | 530 || 76 76 8775
s1488 654 | 160 || 7 7 0.11s
1494 648 | 160 || 7 7 0.13s
53330 1790 | 140 || 110 | 110 0585
5378 | 2780 | 21.0 || 173 | 173 3m 18s
S92341 | 3271 | 380 || 134 | 134 | 2imiss
%635 287 | 660 || 35 2 2265
953 39%6 | 130 || 27 32 | 32mozs
si512 781 | 230 || 70 71 | 1h51m19s
3271 1573 | 150 || 168 | 169 16m 465
prolog | 1602 | 130 || 122 | 124 16m 40s
3384 1686 | 27.0 || 167 | 168 | 5om4zs
sI5850.1 | 9618 | 630 || 525 | 544 | 3n9m5es

If for agiven justification set A; there are no gates with con-
flicts, the mincost flow problem is solved using a network simplex
algorithm; else we use Ip_solve [9] to solvethe MILP.

Table 1 shows the number of gates |G|, the target clock period
P, and the lower bound on the number of FF'sT" for ISCAS89 cir-

cuits. We also show the minimum number of FF's obtained with
equivalent initia state retiming and the execution time T, On a
HP 9000/777 C110 workstation with 128 megabytes of RAM. No-
ticethat therun timeshere can be much higher then thosein [6] since
here we may solve multiple MILFP's, rather than a single mincost
flow problem. Ascan be seen from theresults, for many circuitsthe
lower bound is achieved very fast; in amost all of these cases, the
lower bound T" is achieved in the first iteration. For some circuits,
thelower bound was not reached, and in this case we report the best
solution obtained in 50 iterations (5 iterations for s15850.1)%. In
these circuits, the solution reported by our algorithm is very close
toI" and corresponds to agood engineering solution. We found that
the percentage of gateswith conflictsisvery small (< 1% for most
circuits), and this enables the MIL P to be solved in reasonable time.

6 Conclusion

We have presented amethod for obtai ning minarearetiming subject
to maintaining a given clock period and an equivalent initial state.
A new scheme based on justification is used to derive bounds on the
retiming variables. A new model for maximal FF sharing has been
presented as the idea of mirror vertices used by Leiserson and Saxe
in[1] cannot be applied to the initial state retiming problem.

We are currently working on modeling the FF sharing for all
logic valuesincluding X’sand on techniques to prune the number of
justification setsrequired to get the optimal solution. In [10] atech-
nigque is presented which allows backward retiming of gates with
conflicts by adding extra logic to the circuit. We are investigating
means to incorporate this approach in our model. Thiswill enable
usto retime gates with conflicts at their outputs, potentially achiev-
ing better area optimization.

REFERENCES

[1] C. E. Leiserson and J. B. Saxe, “Retiming synchronous cir-
cuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.

[2] M. C. Papaefthymiou and K. H. Randal, “Tim: A timing
package for two-phase, level-clocked circuitry,” Proc. DAC ,
pp. 497-502, 1993.

[3] N.Maheshwari and S. S. Sapatnekar, “A practical algorithm for
retiming level-clocked circuits,” in Proc. ICCD, pp. 440445,
1996.

[4] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited
and reversed,” |EEE Transactions on Computer-Aided Design,
vol. 15, pp. 348-357, Mar. 1996.

[5] H.J. Touati and R. K. Brayton, “Computing the initial states of
retimed circuits,” |EEE Transactions on Computer-Aided De-
sign, vol. 12, pp. 157-162, Jan. 1993.

[6] N.Maheshwari and S. S. Sapatnekar, “An improved agorithm
for minimum-area retiming,” in Proc. DAC, pp. 2—7, 1997.

[7] M.Abramovici, M. A. Breuer, and A. D. Friedman, Digital Sys-
tems Testing and Testable Design. New York, NY: W. H. Free-
man and Company, 1990.

[8] S. Kundu et al., “A small test generator for large designs,” in
Proc. ITC, pp. 3040, 1992.

[9] M. Berkelaar, LP_.SOLVE USER SMANUAL, 1992.

[10] V. Singhal, S. Mdlik, and R. K. Brayton, “The case for retim-
ing with explicit reset circuitry,” in Proc. ICCAD, pp. 618-625,
1996.

2The reader is reminded from our previous discussion that the lower bound is not
guaranteed to be achievable.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

