
Automatic Generation of Synchronous Test Patterns
for Asynchronous Circuits 

Oriol Roig Jordi Cortadella Marco A. Peña Enric Pastor
Department of Computer Architecture,
Universitat Politècnica de Catalunya.

Barcelona, Spain.

Abstract

This paper presents a novel approach for automatic test pattern
generation of asynchronous circuits. The techniques used for this
purpose assume that the circuit can only be exercised by applying
synchronous test vectors, as is done by real-life testers.

The main contribution of the paper is the abstraction of the
circuit’s behavior as a synchronous finite state machine in such a
way that similar techniques to those currently used for synchronous
circuits can be safely applied for testing.

Currently, the fault model being used is the input stuck-at model.
Experimental results on different benchmarks show that our ap-
proach generates test vectors with high fault coverage.

1 Introduction

Testing is one of the crucial problems that remains to be satisfacto-
rily solved for asynchronous circuits. Since they are implemented
as arbitrary interconnections of gates and their behavior is not subor-
dinated to the timing dictated by a global clock, controllability and
observability of internal signals become significantly more costly
than in synchronous circuits [14]. Moreover, asynchronouscircuits
tend to have more feedbacks and more state holding elements than
their synchronous counterparts. Thus, test pattern generation is
harder and design for testability techniques like full scan-path may
be unacceptablyexpensive. Furthermore, testers are inherently syn-
chronous and cannot properly reproduce the environmental behavior
for which an asynchronous circuit is designed.

Several studies have been presented in the last years addressing
the testing and the design for testability of asynchronous circuits.

Some classes of asynchronous circuits are said to be self-checking
under certain fault models, i.e. a fault will cause the circuit to halt
while it is being operated normally. Speed-independent, delay-
insensitive and quasi-delay-insensitive circuits are self-checking

 Work supported by ACiD-WG (Esprit 21949), CYCIT TIC 95-0419and Departa-
ment d’Ensenyament de la Generalitat de Catalunya.

Design Automation Conference R

Copyright c
 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

under the output stuck-at [3, 11], the input stuck-at [13] and the
isochronic transition [21] fault models, respectively.

For asynchronous circuits designed under absolute delay as-
sumptions, the problem of ensuring some bounds for the delay
along each path must be considered. Under the path delay fault
model [25], a given path in a fabricated circuit is faulty if it has a
delay outside the specified interval. Several approaches tackle the
testing of path delay faults in different ways [18, 17, 15].

Considerable effort has been devoted to proposing design for
testability methodologies such as the insertion of observation and
control points [13] or test signals [21], as well as full scan-path [17,
15, 2] and partial scan-path [16] techniques.

Since commercial testers are inherently synchronous, some au-
thors have proposed testing asynchronous circuits by synchronous
test vectors. In [5, 2], feedback loops are cut by virtual synchronous
flip-flops during ATPG. Thus, ATPG can be done by using standard
state-of-the-art synchronous techniques but the obtained test vec-
tors must be validated on the asynchronous circuit. In section 6.1
the main differences with our approach will be discussed.

In this paper we propose a testing strategy for input stuck-at
faults in asynchronous circuits with the following features:

� The circuit’s behavior is modeled as a synchronousfinite state
machine. The original circuit specification is not required for
testing.

� Test patterns are generated automatically by means of sym-
bolic techniques.

� Test patterns can be synchronously applied to the inputs of
the circuit and faults can be made observable at the outputs,
thus allowing interaction with real-life synchronous testers.

The paper is organized as follows. In section 2 the overview
and motivation of the method are outlined. Section 3 introduces
the circuit model. Section 4 presents the synchronous abstraction
of the asynchronous circuit. In section 5 the ATPG methodology is
detailed. Finally, sections 6 and 7 respectively present results and
conclusions.

2 Overview of the method

Unlike synchronous circuits, asynchronous circuits may manifest
non-deterministic and/or unstable behavior if an inappropriate en-
vironment is applied to their inputs. This is a consequence of the
usually contrived circuit topology, where many gates have recon-
vergent fanout. Two problems may arise if input patterns are not
selected conveniently: non-confluence of settling state and oscilla-
tion. The former occurs when the final stable state of the circuit can



be different depending on the arrival times of the input events and
the delays of the internal gates. This phenomenon can potentially
lead to metastability [22]. The latter occurs when the circuit cannot
rest in a stable state.

d

c

e

y

a

b
c

d

a

b

A
A

B

B

Figure 1: Circuits showing (a) non-confluence and (b) oscillation.

To show non-confluence of settling state we will take the cir-
cuit in figure 1(a). Let us assume the circuit is in the stable state
ABabcdey = 01010000 and that the input pattern AB = 10 is ap-
plied. Even ifA andB change simultaneously, becauseof the delay
on primary inputs, we cannot assure that both a and b will change at
the same time. A “competition” between all sensitized paths starts
as soon as some input is switched. Two feasible sequences of gate
transitions can be a"; c"; b#; y"; d"; c# and a"; c"; b#; c#. If gate c
is slow to fall the stable state 10101101 will be reached, otherwise
the circuit will settle to state 10100000.

The other problem is oscillation or cycles of unstable states.
Let the circuit in figure 1(b) be in the initial stable stateABabcd =

000011. If input A is set to 1, the circuit starts oscillating. After
a", the sequenceof transitions c#; d#; c"; d" is repeatedly generated
and the circuit never stabilizes. Other circuits may present transient
oscillations that should or should not be avoided depending on the
maximum desired settle time.

There is a need of providing some technique that assures using
only valid test vectors, i.e. input patterns that produce neither non-
confluence of the settling state nor indefinite or too long oscillation
cycles1.

The overview of our testing approach is as follows.

1. The non-faulty circuit is analyzed to find all input sequences
that can be used “a la synchronous”, such that neither non-
confluence nor oscillation is produced. After this analysis, the
asynchronous circuit is modeled as a synchronous finite state
machine (the Confluent Stable State Graph, CSSG, presented
in section 4) with deterministic behavior.

2. Random Test Pattern Generation (Random TPG) on the CSSG
is initially used to quickly cover a significant number of faults.

3. A symbolic ATPG strategy on the CSSG looks for a test
sequence for each uncovered fault. Each test sequence is
simulated on every remaining faulty circuit to find all other
faults covered by the same sequence.

Both random TPG and fault simulation are efficiently performed
by combining parallel and ternary simulation [24, 12]. Symbolic
ATPG is performed by using BDD-based techniquessimilar to those
used for synchronous finite state machines [10].

3 Circuit Model

An asynchronous circuit can be represented as an interconnection
of gates and delay elements. A gate is a component with several
inputs and outputs. At each gate output a function depending on the

1In section 4 this notion of “too long” will be discussed.

gate inputs is instantaneously computed. A delay is a single-input
single-output element that reproduces its input after a certain time.
Wires are used to interconnect gates and delays.

In our approach, asynchronous circuits are modeled following
the unbounded gate delay model [19]. Under such a model, delay
elements are attached only to gate outputs and the delay magnitude
is positive and finite, but unknown. The delay type we assume
is inertial delay, i.e. pulses shorter than the delay magnitude are
filtered out. In the sequel we will refer to the pair formed by a gate
and its associated delay simply as a gate.

Test vectors that would be valid under a bounded delay model,
might be considered invalid under an unbounded delay model. On
the other hand, test vectors generated assuming unbounded delays
will also work on circuits with bounded delays. Therefore, our
methodology while pessimistic, is independent of those aspects
that may vary the gate delay, such as the technology, the fabrication
process or the temperature at which the chips are being tested.

Each primary input of a circuit will be modeled as the input of
a gate implementing the identity function. The circuit in figure 1(a)
illustrates how primary inputs (A and B) are modeled. These
buffers introduce the idea of delay associated with primary inputs.

3.1 Circuit State Graph (CSG)

In synchronous circuits the state depends on a subset of circuit
signals called state signals. Usually this subset includes input and
flip-flop signals. The order of the transitions along combinational
paths is not relevant. The only limitation is that they all must occur
in a limited cycle time. On the contrary, asynchronouscircuits often
have a more complicated structure. Since feedback loops are not
cut by clocked flip-flops, the state of an asynchronous circuit is
defined by all the binary values of both primary inputs and gates,
rather than by a small subset of them.

A state graph (SG) is a pair hS;Ei, where S is the set of states
and E � S � S is the set of edges (or transitions).

A circuit state graph (CSG) is a 7-tuple hS;E;P;G; S0; �P ; �Gi,
where hS;Ei is a SG, P = fp1; : : : ; pmg is the set of primary in-
puts, G = fg1; : : : ; gng is the set of gates, and S0 � S is the set
of initial states. The labeling functions �P : S �! f0; 1gm and
�G : S �! f0; 1gn map each state s with a binary vector consist-
ing of the values in s of primary inputs and gates, respectively.

Under the unboundedgate delay model the next state of a circuit
uniquely depends on its present state. A gate is said to be excited
if its output differs from the function it implements, and stable
otherwise. If all the gates in a circuit are stable, the circuit is in a
stable state. A next state function � : S � G �! S can be defined
for each gate. Function �(s; gi) returns either the state reached by
switching the output of gi if it is excited or s if gi is stable.

A transition relation, R, relates pairs of predecessor/successor
states. If state s0 is an immediate successor of state s, we say that
both states are in relation R, denoted sRs0 or (s; s0) 2 R.

By using the next state function of each gate, the transition
relation associated to circuit gates can be defined as

R� = f(s; s
0

) 2 S � S j (s is stable ^ s = s
0

) _

(9gi 2 G such that s0 = �(s; gi) 6= s)g :

For each pair (s; s0) 2 R� , if s is stable, its successor is the same
s, otherwise the successor is obtained by switching an excited gate.

3.2 CSG in test mode

In our approach, asynchronous circuits are tested in synchronous
mode: provided the circuit is stable, an input vector is applied and
the circuit is allowed to, eventually, settle. The time between the



application of two input patterns is called the test cycle. Until oth-
erwise noted, we will assume the test cycle is long enough to let the
circuit stabilize (unless it oscillates). Figure 2(a) illustrates a pos-
sible CSG in test mode. In principle, in a circuit with n inputs, the
number of possible input patterns is 2n, but in this picture only a few
patterns are represented for the sake of simplicity. Labeled boxes
represent stable states, while shaded circles are unstable states. The
outgoing arcs from a stable state are labeled with the changes at the
circuit primary inputs. Only in such arcs it is allowed more than one
signal transition, whereas outgoing arcs from unstable states repre-
sent single signal transitions. The latter are not labeled for clarity.
We will refer to this circuit state graph in test mode as TCSG.

(b)(a)

s3

A+ C-

s2

A+ B+

D+ A- B-

s1 s2

A+ B+

s4

A- B-

s1

s4

Figure 2: (a) A TCSG and (b) its corresponding CSSG.

The transition relation associated to input signals can therefore
be defined as follows:

RI = f(s; s
0

) 2 S � S j s is stable ^

�P (s) 6= �P (s
0

) ^ �G(s) = �G(s
0

)g :

Relation RI describes all input patterns that can be applied to a
stable state. Thus, sRIs

0 if s is stable and s0 only differs in certain
number of inputs. This represents the situation in which several
inputs have been changed but no gate has begun to switch yet.

The transition relation of a circuit in test mode is defined as
R = RI [ R� . Consequently, we can formally define a TCSG
as a CSG such that S and E are strictly defined by the following
recursion:

1. S0 � S :

2. s 2 S ^ sRs0 )

�
s0 2 S

(s; s0) 2 E

The setS is the set of reachable states of a circuit in test mode, while
E is the transition relation R restricted to S . S can be calculated by
using a symbolic traversal algorithms similar to the ones described
in [10, 7].

4 Synchronous abstraction of the TCSG

This section explains how the TCSG is pruned in such a way that the
input patterns that produce neither non-confluence nor oscillation
are considered as valid candidates for test sequences. Roughly
speaking, the TCSG will be reduced to a set of stable states and
edges between stable states. For an edge (s; s0) to exist, s must be
stable and s0 must be stable and the only state reached at the end
of the test cycle. The finally obtained state graph will only contain
the confluent and stable behavior of the original TCSG, hence the
acronym CSSG, standing for Confluent and Stable State Graph.

We will use figure 2 as an example. Let us assume that s1 and
s2 are initial states. A vector producing non-confluence is A+C�
applied to state s1, since either s3 or s4 can be nondeterministically
reached. If vector D+ is applied to state s4 the circuit oscillates.
The only valid vectors areA+B+ andA�B� applied respectively
to s2 and s4. This fact is manifested in figure 2(b). Note that the
initial state s1 appears in the CSSG, even though no valid input
pattern can be applied to it. Nevertheless, still some fault could be
detected when forcing s1 as reset state.

4.1 Estimation of the test cycle

Unbounded gate delays and “long enough” test cycles are unrealistic
assumptions for testing. Instead, bounded gate delays and short test
cycles must be assumed. Moreover, the analysis of oscillation
conditions is a difficult problem still under investigation.

Let � be the longest sequence of transitions from a stable state s
to the final stable state or states when certain input pattern is applied
to s. If � is the longest gate delay, then � = � � j�j is an upper
bound of the test cycle. On the contrary, if a test cycle of length t
is desired, then k = dt=�e can be an estimation of the maximum
number of allowed transitions before the circuit finally stabilizes.
This is just an approximation we will use henceforth, but once the
layout is provided, a more accurate cycle time can be calculated.

4.2 Practical computation of the CSSG

In order to calculate the TCSG synchronous abstraction, we first
will define the pairs of states (s; s0) such that s0 is reached from
s at the end of the test cycle. Each pair has an associated input
pattern, given by the different values of inputs in s and s0. For the
sake of clarity, subsequent pairs (s; s0) will be assumed such that
s is stable and s0 is reached by propagating a single input pattern
applied to s. We call the set of all these pairs of states the test cycle
relation. For practical reasons we will assume that the circuit must
settle in at most k transitions. The k-step test cycle relation (TCRk)
represents the pairs (s; s0) distant at most k transitions. Formally,
given a TCSG hS;E;P;G; S0; �P ; �Gi, TCRk is defined as:

TCRk = f(s; s
0

) 2 S � S j 9s1; : : : ; sk such that

sRIs1 ^ (

k^
i=2

si�1R�si) ^ sk = s
0

g :

The next step consistof removing invalid pairs of states. Vectors
causing non-confluenceare detected if pairs (s; s0) and (s; s00) such
that both s0 and s00 have the same input values exist. Patterns
producing oscillation or unacceptable long test cycle are found if
s0 is unstable. The k-Confluent Stable State Graph, denoted as
CSSGk , is formed by those pairs in TCRk that present neither non-
confluence nor cause the circuit to be unstable after k transitions.
Formally, it can be defined as:

CSSGk
= f(s; s

0

) 2 TCRk j s0 is stable ^

69(s; s
00

) 2 TCRk such that [s0 6= s
00

^ �I(s
0

) = �I(s
00

)]g :

Informally the CSSGk contains the following information. Each
one of its nodes represents a stable state. An arc between two nodes
s and s0 exists if s0 is stable and the only state reachable from s in
at most k transitions by applying some input pattern.

5 Testing

Many techniques have been proposed for Automatic Test Pattern
Generation (ATPG) for sequential synchronous circuits. As we



have been explaining, however, non-confluenceof settling state and
oscillation make that those techniques cannot be directly applied
to asynchronous circuits. Our approach resembles the Three-phase
ATPG [8] proposed for synchronous circuits. We also propose a
method with three phases: fault activation, state justification and
state differentiation, described in sections 5.1 to 5.3. The way these
three phases are implemented, though, will be different because of
the asynchronousnature of circuits. Section 5.4 introduces Random
TPG and fault simulation as techniques to increase the speed of the
whole approach.

5.1 Fault activation

The first step to generate a test is to find a set of states that activate
or excite the fault. It is easy to see that the fault signalx stuck-at-c is
excited in some stable state if x 6= c. Since the set of stable reach-
able states has been already obtained during CSSG computation,
finding the stable states exciting a fault is straightforward.

In most examples, there is always some stable state that excites
a fault. However, it can occur that some signal always equals either
0 or 1 when the circuit is stable and only takes the opposite value in
some unstable states. This situation arises when a signal switches
an even number of times between stable states. Finding a test for
such faults is left directly to the last phase, explained in section 5.3.

5.2 State justification

Justifying a state means to provide a sequence of input vectors that
drive the circuit from the initial or reset state to that particular state.
In our case, a sequence of test vectors that put the circuit in some
of the excitation states must be given.

By using the reachability information it is easy to give a justi-
fication sequence. This sequence will put the correct circuit in a
state that excites a given fault. However, the test vectors applied
on the faulty circuit may result in a sequence of states that differs
from that obtained in the correct one. In addition it has to be taken
into account that some available sequences for the correct circuit
can cause a faulty one to diverge or oscillate.

(a) (b)

Rst S1

S2 Act
(Sequence in
the correct
circuit)

corruption sometimes
manifested

Rst S1

S2 Act
(Sequence in
the correct
circuit)

corruption always
detected S3 S3

Figure 3: Corruption detected (a) always and (b) sometimes.

As noted in [8], there could be corruption, so the fault would
manifest before. In a synchronous circuit the sequence that produces
the corruption can always be taken as a new shorter excitation
sequence. However, in an asynchronous circuit corruption has to
be noticed in all terminal stable states. If this symptom does not
appear in some stable states, the entire sequence has to be applied.
The consequence when testing the real circuit will be that sometimes
the fault will be detected before others.

Figure 3 illustrates this by means of an example. According to
the reachability analysis done in the correct circuit, the sequence
of states Rst ! S1 ! S2 ! Act is exercised. Act indicates
the proposed activation state actually being justified. When the
same inputs are applied to a faulty circuit the following situations
might be observed. The stable state S1 in figure 3(a) has S3 as its
successor, instead of S2 as in the correct circuit. Because of the

different behavior of the correct and the faulty circuit, the fault can
be detected before expected. The case in figure 3(b) is different.
Now depending on the delays of the gates, two states, S2 and S3,
are reachable from S1. Since the fault can not always be detected,
we have to apply the full sequence of input vectors. During the real
test operation however, the fault may be detected before.

5.3 State differentiation

Once a fault has been excited, it still has to be made observable.
The most favorable case occurs when the fault is propagated to
some primary output. In general, the fault will propagate to some
memory element. By applying successive input vectors we have
to make the difference noticeable at a primary output. The CSSG
gives all the feasible input vectors that can be used in each state.
All of them are simulated by using similar techniques to the ones
described in section 3.2, and the sequence resulting in a shorter test
length is chosen.

S1 S1’

S2 S2’

(a)

S1

S2

S3’

S2’

S4’

Act1

Act2

Act3

Act4

(b)

Figure 4: (a) Correct circuit (b) Faulty circuit.

As an example we can use figure 4. The different Acti are the
fault activating states, while S1 and S2 are their stable predeces-
sors. In the correct circuit, S10 and S20 are reached, respectively,
from S1 and S2. In the faulty circuit, S30 is always reached from
S1, therefore there is an appropriate excitation vector. However,
depending on the gate delays, from S2 the fault can either be de-
tected (S20) or not (S40). In the latter case, the test would not be
conclusive.

5.4 Improving ATPG performance

The three phases described above are sufficient to find a test for any
testable fault. However, they may be time consuming. Next we
describe how techniques used to improve the speed of synchronous
ATPG algorithms can be adapted to asynchronous ones.

Fault simulation is commonly used to find out if a test for a
given fault also detects other faults. When a test is found to detect a
fault, the same input patterns are simulated on the remaining faulty
circuits. This technique will be efficient only if fast simulation
algorithms are provided. Symbolic algorithms are good at managing
multiple states of a same circuit. The problem when simulating a
fault is just the opposite: dealing with a same state for each different
faulty circuit. Then parallel simulation [24] is widely used because
of its speed.

Non-confluence and oscillation are problems that have to be
taken into account in simulation as well. A very efficient, though
conservative,method called ternary simulation [12], has been widely
used to detect when an input vector causes critical races. This con-
servativeness, however, does not affect the fault coverage of our
approach. Let us assume that a given test detects some fault. The
objective of fault simulation is just to find out if the same test detects
other faults. If ternary simulation says that a test is unable to cover
other faults, when in fact it could, tests for those faults can still be
found by the previous three phases.



In ternary simulation a signal can have any of the three following
values: 0, 1 or Φ. The symbols 0 and 1 have their usual boolean
meaning, whereas the symbol Φ stands for an uncertain value which
is neither 0 nor 1.

Ternary simulation consists of two algorithms namely A and
B. Algorithm A sets each signal to the least upper bound of its
current value and its evaluation. The result is that unstable signals
are set to Φ. By repeating this process, uncertainties are propagated
through the circuit. Algorithm B sets each signal to its evaluation.
Consequently, some signals are set to a known value (either 0 or
1). Let us assume the circuit is in state s and we apply input vector
a. After algorithms A and B we reach the final state s0. We can
conclude that if all the signals in s0 have a definite value (0 or 1),
s0 is the only successor of s when a is applied. On the contrary, if
some signal in s0 has an unknown value (Φ), either there are several
final stable states or the circuit oscillates.

It has been proved that ternary simulation is polynomial in the
number of circuit gates [6]. This is due to the fact that in the
worst case 2n states are produced, n being the number of gates. In
each state at most n function evaluations are required. Therefore,
detection of critical races and/or oscillation can be detected inO(n2)

for each pair of stable states and input pattern.
Random Test Pattern Generation has turned out to be a very

efficient method in finding a test for an important number of faults
at a very low CPU cost [4]. The number of faults covered by
this technique highly depends on the circuit, but coverage ratios
between 40% and 80% are commonly achieved. By using ternary
simulation with Random TPG the speed of the overall approach can
be improved in similar percentages.

Table 1: Experimental results (speed-independent)

output-s input-s
example tot cov tot cov rnd 3-ph sim CPU
alloc-outbound 32 32 66 66 51 12 3 52
atod 26 26 40 40 36 1 3 5
chu150 26 26 52 50 50 0 0 10
converta 22 22 44 44 20 23 1 8
dff 20 20 44 40 7 33 0 18
ebergen 32 32 70 70 32 38 0 43
hazard 20 20 44 44 22 22 0 7
master-read 62 62 130 130 55 75 0 5049
mmu 60 60 136 136 44 92 0 21067
mp-forward-pkt 28 28 58 58 57 1 0 6
mr1 60 60 140 139 5 134 0 27231
nak-pa 40 40 80 80 68 5 7 43
nowick 28 28 54 54 54 0 0 4
ram-read-sbuf 42 42 82 82 54 26 2 465
rcv-setup 20 20 36 36 31 5 0 4
rpdft 32 32 62 62 60 1 1 14
sbuf-ram-write 50 50 102 102 40 60 2 1760
sbuf-send-ctl 40 40 86 86 45 41 0 254
sbuf-send-pkt2 40 40 116 116 31 85 0 7137
seq4 40 40 86 84 28 52 4 256
trimos-send 58 58 132 132 6 126 0 16030
vbe10b 50 50 114 110 22 88 0 5534
vbe5b 22 22 42 41 33 8 0 9
vbe6a 38 38 80 78 17 61 0 562
Total FC 100.00% 99.16%

6 Results

We show the effectiveness of our ATPG methodology over a set
of benchmarks. Table 1 presents the results obtained for speed-
independent and table 2 for hazard-free circuits with bounded de-
lays. Both sets of benchmarks have been automatically synthesized
from the same specifications, the former by Petrify [9] and the latter
by SIS [23].

Results in the tables are structured as follows. The second
and third columns respectively present the total (“tot”) and cov-
ered (“cov”) number of faults under the single output stuck-at fault

Table 2: Experimental results (hazard free with bounded delays)

output-s input-s
example tot cov tot cov rnd 3-ph sim CPU
atod 44 44 66 66 52 11 3 487
chu150 26 26 48 46 44 2 0 15
converta 42 42 92 92 8 84 0 5008
ebergen 20 20 42 42 35 7 0 5
hazard 30 30 46 44 39 4 1 20
nowick 28 28 54 54 54 0 0 4
rpdft 36 36 48 48 48 0 0 8
trimos-send 72 24 126 29 12 17 0 254851
vbe10b 60 16 136 26 21 5 0 26774
vbe5b 32 32 52 52 42 10 0 19
vbe6a 62 18 126 29 23 6 0 29647
Total FC 69.91% 63.16%

model. The fourth and fifth columns show analogous results for the
single input stuck-at fault model. The next three columns, namely
“rnd”, “3-ph” and “sim”, detail the number of faults covered by
each step of our approach. The last column reports the CPU time,
in seconds,needed to find the whole set of test vectors. Benchmarks
have been run on a Sun 4 workstation with a Sparc-20 processor
and 64 megabytes of RAM.

The input stuck-at fault model includes all output stuck-at faults.
The results on output stuck-at faults are shown to illustrate that the
well known theoretical result of speed-independent circuits being
100% output stuck-at fault testable in operation mode [3] still holds
when our methodology is used.

Conversely, this is not true for the set of circuits generated
by SIS. Most circuits present similar results to those of speed-
independent circuits, but three benchmarks, trimos-send, vbe10b
and vbe6a, presented a very poor fault coverage. This is due to the
logic redundancies added by the synthesis tools in order to avoid
spurious pulses in this type of circuits. Note that these examples
also take a very long time to finish. When a test for an undetectable
fault is searched, all possible input patterns are tried, thus time is
wasted with no positive results. Finding out a priori undetectable
faults may result in significant performance increase. In those cases
with very low fault coverage, testability can be assisted by partial
scan-path [16] or variable phase splitting [17].

The number of faults detected by random TPG depends highly
on the example topology, but an average of 45% is achieved. This
fact represents an important speed-up of our methodology. If a low
coverage is achieved in the random step, much work will be left to
the 3-phase step. 3-phase ATPG (fault activation, state justification
and state differentiation) is the most complex step and the one
dominating CPU time. Note that the highest test generation times
correspond to those benchmarks where the random TPG step has
covered a low number of faults (see e.g. converta and trimos-send
in table 1). In some cases the same vector is reported to cover
different faults. Due to the conservativeness of ternary simulation,
it sometimes fails to detect equivalent tests. This is the reason
for the low number of faults covered by fault simulation. Despite
the the low number of faults covered by fault simulation, this last
step is still performed because its execution time is negligible when
compared to the 3-phase ATPG algorithm.

As a general consideration, such results can be significantly
improved by speeding up the 3-phase step. Three possibilities we
have in mind are: studying better variable ordering strategies in
the use of BDDs, using hierarchical techniques similar to those
utilized in some formal verification approaches [20] and classifying
undetectable faults to avoid wasting time in covering them.

6.1 Discussion
Banerjee et al. [2] also propose synchronous testing of asynchronous
circuits. They model the asynchronous circuit as a synchronous



one by cutting feedback loops by virtual synchronous flip-flops.
Hence, ATPG can be done by using efficient state-of-the-art syn-
chronous techniques. Test vectors are validated afterwards on the
asynchronous circuit by using zero-delay and unit-delay simula-
tion [1]. Clearly, that validation can detect oscillation, but it is
unable to identify non-confluence. This causes their approach to be
optimistic.

Our approach assumes the pessimistic unbounded gate delay
model, which assures that test vectors generated with our method-
ology are independent from the technology and the gate delays.
Another difference between the method in [2] and ours is that we
analyze the asynchronous circuit to find out those vectors that can
be used in ATPG, so no further validation is needed. This anal-
ysis is done on the asynchronous circuit, rather than on a syn-
chronous simplification. Consequently, our approach is computa-
tionally more expensive, but it can cope naturally with oscillation
and non-confluence. Possibly, a hybrid method could take the best
of both approaches.

7 Conclusions

Testing of asynchronous circuits is a problem still far from being
solved satisfactorily. This paper has presented a method for ATPG
based on well-known techniques for synchronous circuits.

The results shown in this paper indicate that asynchronous con-
trol circuits are highly testable without applying partial scan tech-
niques. Automatic techniques to select those signals in which the
insertion of scan paths can contribute to improve testability is also
one of the goals to be pursued in the future.

The main contribution of this work is the synchronous abstrac-
tion performed over an asynchronous system such that real-life
synchronous testers can be used to exercise the input signals.

This is only a preliminary work that will be further developed
towards covering a wider spectrum of fault models (e.g. delay faults)
with more efficient approaches. In the near future we want to
explore the possibility of using hierarchy to tackle the testing of
complex asynchronous systems. The synchronous abstraction of the
circuit’s behavior allows partitioning of large circuits into several
interacting asynchronous circuits. We believe this feature will help
to generate test patterns with techniques based on the composition
of finite state machines.

REFERENCES

[1] S. Banerjee. Personal communication, Mar. 1997.

[2] S. Banerjee, S. T. Chakradhar, and R. K. Roy. Synchronous
test generation model for asynchronous circuits. In Proc. of
the Int. Conf. on VLSI Design, Bangalore, Jan. 1996.

[3] P. A. Beerel and T. H.-Y. Meng. Semi-modularity and testa-
bility of speed-independent circuits. Integration, the VLSI
journal, 13(3):301–322, Sept. 1992.

[4] M. A. Breuer. A random and an algorithmic technique for
fault detection test generation for sequential circuits. IEEE
Trans. on Comp., C-20(11):1364–1370, Nov. 1971.

[5] M. A. Breuer. The effects of races, delays, and delay faults on
test generation. IEEE Trans. on Comp., C-23(10), Oct. 1974.

[6] J. A. Brzozowski and C.-J. H. Seger. Asynchronous Circuits.
Monographs in Computer Science. Springer-Verlag, 1995.

[7] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill. Symbolic model checking for sequential circuit
verification. IEEE Trans. on CAD, 13(4):401–424, 1994.

[8] H. Cho, G. D. Hachtel, and F. Somenzi. Fast sequential ATPG
based on implicit state enumeration. In Proc. Int. Test Conf.,
pages 67 – 74, Nashville, TN, Oct. 1991.

[9] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. In
XI Congreso de Diseño de Circuitos Integrados, Barcelona,
Nov. 1996.

[10] O. Coudert, C. Berthet, and J. C. Madre. Verification of
sequential machines using boolean functional vectors. In Proc.
IFIP Int. Workshop on Applied Formal Methods for Correct
VLSI Design, pages 111–128, Leuven, Belgium, Nov. 1989.

[11] I. David, R. Ginosar, and M. Yoeli. Self-timed is self-
diagnostic. Journal of Electronic Testing:Theory and Appli-
cations, (6):219–228, Jan. 1995.

[12] E. B. Eichelberger. Hazard detection in combinational and
sequential switching circuits. IBM J. Res. and Dev., 9:90–99,
Mar. 1965.

[13] P. J. Hazewindus. Testing Delay-Insensitive Circuits. PhD
thesis, California Institute of Technology, 1992.

[14] H. Hulgaard, S. M. Burns, and G. Borriello. Testing asyn-
chronous ciruits: A survey. Integration, the VLSI journal,
19(3):111–131, Nov. 1995.

[15] K. Keutzer, L. Lavagno, and A. Sangiovanni-Vincentelli. Syn-
thesis for testability techniques for asynchronous circuits.
IEEE Trans. on CAD, 11(1):87–101, Dec. 1995.

[16] A. Khoche and E. Brunvand. Testing self-timed circuits using
partial scan. In Proc. of the 2nd Working Conf. on Asyn-
chronous Design Methodologies, pages 160–169, London,
May 1995.

[17] L. Lavagno, M. Kishinevsky, and A. Lioy. Testing redundant
asynchronous circuits. In Proc. EURO-DAC. IEEE Computer
Society Press, Sept. 1994.

[18] C. J. Lin and S. M. Reddy. On delay fault testing in logic
circuits. IEEE Trans. on CAD, 6(5), Sept. 1987.

[19] D. Muller and W. Bartky. A Theory of AsynchronousCircuits.
In Annals of Computing Laboratory of Hardward University,
pages 204–243, 1959.

[20] O. Roig, J. Cortadella, and E. Pastor. Hierarchical gate-level
verification of speed-independent circuits. In Proc. of the 2nd
Working Conf. on AsynchronousDesign Methodologies, pages
128–137, London, May 1995.

[21] M. Roncken and R. Saeijs. Linear test times for delay-
insensitive circuits: a compilation strategy. In S. Furber and
M. Edwards, editors, Asynchronous Design Methodologies,
volume A-28 of IFIP Transactions, pages 13–27. Elsevier
Science Publishers, 1993.

[22] C. L. Seitz. System timing. In Introduction to VLSI Systems,
chapter 7. Mead & Conway, Addison-Wesley, 1980.

[23] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential cir-
cuits synthesis. Technical Report M92/41, UCB/ERL, May
1992.

[24] S. Seshu. On an improved diagnosis program. IEEE Trans.
on Electronic Comp., EC-12(2):76–79, Feb. 1965.

[25] G. L. Smith. A model for delay faults based on paths. In Proc.
Int. Test Conf., pages 324–349, Sept. 1985.


	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

