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Abstract
We present an improved procedure for fault simulation under the
multiple observation time approach based on state expansion.
Under state expansion, an incompletely specified state reached
during fault simulation is replaced by 2k states, each one assign-
ing a different combination tok unspecified present state vari-
ables. For each expanded state, additional output values are then
implied. As a result, a fault that cannot be identified as detected
using conventional simulation may now be identified as detected.
The procedure proposed here enhances state expansion by back-
ward implications to take advantage of every present state vari-
able value specified under state expansion. As a result of using
backward implications, fewer states need to be considered after
state expansion, fewer state expansions are potentially needed
for every fault, and the number of faults that can be efficiently
considered is increased. Experimental results are presented to
support these claims.

1. Introduction
Given a test sequence, a fault simulator should accurately deter-
mine the faults detected by the sequence. For synchronous
sequential circuits, conventional fault simulation procedures [1]
may fail to identify faults as detected, due to the loss of precision
in three value logic simulation and the use of the single observa-
tion time approach [2]. To improve the accuracy of fault simula-
tion, it is possible to use the multiple observation time approach
proposed in [2]. This approach allows accurate determination of
detected faults by considering responses of different initial states
separately. For example, if the fault free output sequence of a
circuit is (000) and the output sequence in the presence of a fault
f is either (010) or (101) depending on the initial state of the
faulty circuit, then conventional simulation would derive the out-
put sequence (xxx) for the faulty circuit, and the fault would not
be declared detected. By considering each initial state of the
faulty circuit separately and deriving the output sequences (010)
and (101), the fault is identified as detected under the multiple
observation time approach.
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The multiple observation time approach in its most gen-
eral form requires the use of multiple responses of the fault-free
circuit to the given test sequence. However, conventional test
application to the circuit can only accommodate a single output
response of the fault-free circuit. In order to admit this practical
situation, the restricted multiple observation time approach was
proposed in [2], [3]. This approach employs a single fault-free
circuit response; however, it allows multiple output responses to
be considered for the faulty circuit. Several fault simulation
methods under the restricted multiple observation time approach
were proposed in [4]-[7]. The procedure of [4] usesstate expan-
sion, defined as follows. Consider a test sequenceT that brings
the circuit to an incompletely specified states at time unitu.
Suppose that present state variableyi is unspecified ins. Under
state expansion, we may replaces by two different states,
s(yi = 0) which is identical tos except thatyi is set to 0, and
s(yi = 1) which is identical tos except thatyi is set to 1. After
state expansion, fault simulation continues for each state sepa-
rately. As a result of state expansion, additional next state vari-
ables and primary output values become specified for the various
starting states at time unitu, helping to determine whether the
fault is detected. Other fault simulation methods under the
restricted multiple observation time approach are based on sym-
bolic simulation using aBDD representation of the circuit [5],
the use of implications [6], and probablistic analysis using lim-
ited state expansion [7]. All these methods attempt to resolve the
unknown values in the response of the faulty circuit to determine
that the faulty circuit response for every one of its initial states
conflicts with the fault-free response.

The state expansion procedure of [4] does not useBDDs
and hence is applicable to circuits for whichBDDs cannot be
derived. Additionally, it provides an accurate implementation of
the restricted multiple observation time approach, in the sense
that it is capable of determining accurately if a fault is detected
by the given test sequence when conventional test application is
employed. The procedure of [6] is not accurate in this sense.
However, the procedure of [4] is computationally intensive and
existing implementations cannot handle all the faults in large cir-
cuits. In this work, we present a method to improve the effective-
ness of state expansion. We demonstrate that the proposed
method allows handling of faults and circuits that were not han-
dled before.

The unique feature of the procedure proposed here that
distinguishes it from previous approaches is that it uses implica-
tions done backward in time to take full advantage of every flip-
flop value set under state expansion. Previously [4], implications
following state expansion were done only forward in time. For
example, if a present state variabley was specified at time unitu,
then its values were implied at time unitsu, u + 1,. . ., in this
order, to compute output sequences with fewer unspecified val-
ues. Under backward implications, we observe that setting
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y = α at time unitu implies that the corresponding next-state
variableY must beα at time unitu − 1. This may imply addi-
tional values at time unitu − 1, and may help specify the values
of additional next state variables at time unitu − 1. This in turn
would specify additional present state variables at time unitu.
Backward implications may also reveal that a valueα on state
variabley at time unitu conflicts with the values of other lines in
the circuit; it may also assign primary output values at time unit
u − 1 that conflict with the corresponding fault free values,
resulting in fault detection. In both of these cases, the states with
a valueα on state variabley at time unitu do not need to be con-
sidered further. Thus, fewer states need to be considered after
state expansion, and the states that need to be considered have
more specified state variables, implying that fewer state expan-
sions are potentially needed for every fault. Consequently, the
number of faults that can be efficiently considered is increased.

The paper is organized as follows. Section 2 demonstrates
the advantages of backward implications. Section 3 presents the
fault simulation procedure. Experimental results are included in
Section 4. Section 5 concludes the paper.

2. State expansion and backward implications
In this section, we first review the state expansion procedure of
[4]. We then introduce backward implications and show the
advantages of adding backward implications to state expansion.

Both state expansion and backward implications are use-
ful in increasing the information available regarding line values
in the circuit under test. Specifically, they result in output
sequences with increased numbers of specified values. By maxi-
mizing the number of specified values, we also maximize the
ability to identify that a given fault is detected by the test
sequence being simulated.

State expansion is applied to a single sequence of states
and a single output sequence obtained using conventional simu-
lation starting from the all-unspecified initial state. State expan-
sion is used to specify values of state variables until fault detec-
tion can be established or a limit on the number of state expan-
sions is reached. This limit is necessary since every state expan-
sion of a state variableyi at time unitu duplicates the state and
output sequences, setting state variableyi at time unitu to 0 in
one copy and to 1 in the other. To illustrate the advantages of
state expansion, we consider a circuit whose state and output
sequences after conventional simulation are as shown in Table
1(a). Suppose that state expansion is performed based on the
first state variabley1 at time unit 1 in the faulty circuit. Then two
state (output) sequences are obtained, one wherey1 = 0 at time
unit 1, and one wherey1 = 1 at time unit 1. Let the sequences
obtained after implying the value ofy1 at time unit 1 be the ones
shown in Table 1(b). Note for example that settingy1 = 1 at
time unit 1 results in specifying the value of one of the outputs at
time unit 1, and the value of the second present state variable at
time unit 2. The second output sequence allows the fault to be
detected (at time unit 2 on the second output). Thus, we do not
need to consider it further. For the first sequence, additional state
expansion steps are needed before it is possible to declare the
fault as detected.

To demonstrate the advantages of adding backward impli-
cations to state expansion, we use ISCAS-89 benchmark circuit
s27 shown in Figure 1 under the input pattern (1001) assuming
that its state is fully unspecified (xxx). Considering the input
pattern (1001) as the first pattern of a test sequence (the input
pattern applied at time unit 0), our goal is to compare the number
of next-state variables and outputs that can be specified under
various simulation schemes when (1001) is applied. For sim-
plicity, we consider only the fault free circuit. The conclusions

Table 1: An example of expansion
(a) Conventional simulation

time 0 1 2 3
fault free state xx x0 1x 00

output xx0 0x1 111 011
faulty state xx xx 0x x1

output x0x xxx 1x1 011

(b) After expansion

time 0 1 2 3
faulty state1 xx 0x 0x 01

output1 x0x x11 1x1 011

state2 xx 1x 01 11
output2 x0x xx1 101 011

we draw hold for faulty circuits as well.
The results of conventional three-value simulation of the

input pattern (1001) when the present-state variables are unspeci-
fied are shown in Figure 1. Values are shown in parentheses.
The next-state variables and the output are all unspecified.
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Figure 1: Conventional simulation ofs27
The results of state expansion using present-state variable

7 at time unit 0 are shown in Figure 2. The value of line 7 is
denoted by (0,1) corresponding to two different partially speci-
fied initial states, one where line 7 is 0 and one where line 7 is 1.
The values (α0,α1) on a lineg indicate thatα0 results from set-
ting line 7 to 0, andα1 results from setting line 7 to 1. A single
value (α ) on a lineg indicates thatg = α regardless of the value
of line 7. As a result of this expansion, the primary output
becomes partially specified (specified only when line 7 assumes
the value 1), next-state variable 15 is fully specified, and next-
state variables 24 and 25 are partially specified. Considering the
next-state variables and the outputs, we have five specified val-
ues compared to conventional simulation that yielded no speci-
fied values. For time unit 0, state expansion using state variable 7
yields the largest number of specified values, compared to the
other state variables. State expansion using state variable 6 does
not result in any specified values, and expansion of state variable
5 results in three specified values.

Next, we consider the expansion of state variable 6 at
time unit 1 (this is the only expansion assumed in this example).
The effects of this expansion on time unit 1 are unknown, since
the input pattern is unknown. Our interest is in the information
that can be derived from this expansion at time unit 0. Setting
state variable 6 at time unit 1 to (0,1) implies that next-state vari-
able 24 has the values (0,1) at time unit 0. Setting line 24 to (0,1)
implies that lines 21, 22 and 23 are (0,1). Additional values can
then be implied as shown in Figure 3. It can be seen that the pri-
mary output and next-state variable 25 become fully specified. In
addition, next-state variable 15 becomes partially specified. We
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Figure 2: State expansion of state variable 7 at time 0
have a total of seven specified values at time unit 0 compared to
at most five when state expansion was done at time unit 0 and
backward implications were not used. Note that when we say
backwardwe mean backward in time.
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Figure 3: Backward implication of state variable 6 at time 1
The process of backward implications consists of the fol-

lowing steps. First, the value of a present state variabley at time
unit u is assigned to the corresponding next state variableY at
time unitu − 1. Then, additional values are assigned at time unit
u − 1 in two directions: from outputs to inputs and then from
inputs to outputs. Several passes over the circuit at time unit
u − 1 may be required to determine all the implications. To keep
the computation time low, we use only two passes in our imple-
mentation, one pass from outputs to inputs and one pass from
inputs to outputs. Backward implications may also be done over
multiple time units. For example, suppose that backward impli-
cation of next-state variableYi at time unitu − 1 results in a
specified value on present-state variableyj at time unitu − 1.
Then we can assign the same value to next-state variableYj at
time unit u − 2 and continue to perform backward implications.
In our implementation we consider only one time unit during
backward implications.

Previous procedures based on state expansion [4] did not
take advantage of backward implications to increase the amount
of information available regarding circuit state and primary out-
put values. As demonstrated by the example above, backward
implications can help specify additional circuit values, thus
increasing the effectiveness of state expansion. Another impor-
tant consequence of backward implications, which is ignored by
existing expansion techniques, is that it can identify cases where
some state variable values are inconsistent with the input
sequence. These cases do not need to be further simulated. The
following example demonstrates such a case and shows how
backward implications can help identify it. Again, the example
uses only the fault free circuit, however, the same observations
are used during fault simulation for faulty circuits.

Consider the circuit of Figure 4 under the input combina-
tion (0). Setting line 1 to 0 implies only that lines 3 and 4 are set
to 0. Let us expand the present-state variable at time unit 1.
Backward implications take place at time unit 0 with line 11 set
to (0,1). The results of backward implication are shown in Figure
4 in parentheses. When line 11 is set to 1, we obtain that line 5
must be 1 and line 6 must be 0. This implies two different speci-
fied values on line 2, and a conflict is identified. The conflict is
marked with a C in Figure 4. We conclude that line 11 can only
assume the value 0 at time unit 0, and that the present-state vari-
able can only assume the value 0 at time unit 1. State expansion
and backward implications result in this case in a single state, 0,
that needs to be considered further.
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Figure 4: An example of a conflict
Fault detection for certain states can also follow from

backward implications. For example, consider a case where the
state s of the faulty circuit at time unitu is replaced by two
states,s(yi = 0) ands(yi = 1) corresponding to setting present-
state variableyi to these values. Suppose that when next-state
variableYi is set to 0 at time unitu − 1 in the faulty circuit, an
outputo is set to 0. If the value produced by the fault free circuit
on outputo at time unitu − 1 is 1, then the fault is detected for
s(yi = 0). In this case, only states(yi = 1) needs to be consid-
ered further.

Backward implications are also used in this work to help
identify effective state variables and effective time units for state
expansion. We describe this heuristic in more detail in Section 3.

During fault simulation, state expansion and backward
implications can be used both in the fault free and in the faulty
circuit. If state expansion is performed in the fault free circuit,
multiple fault free responses may be obtained. In this work, we
use state expansion and backward implications only in the faulty
circuit. The result is that faults are detected under the restricted
multiple observation time approach [2], [3].

3. The fault simulation procedure
In this section, we describe the proposed fault simulation proce-
dure. To simplify the discussion and the implementation of the
procedure, we do not consider methods to speed up the simula-
tion process. Thus, faults and input patterns are considered
sequentially. The test sequence to be simulated is denoted byT
and its length is denoted byL. The input pattern included inT at
time unitu is denoted byT[u], where 0≤ u ≤ L − 1. For ease of
notation we may sometimes refer to time unitL of T. The input
pattern at this time unit is undefined, however, the circuit state
can be determined by simulatingT.

The fault simulation procedure starts with conventional
simulation of the fault free circuit under the given test sequence
T. Every fault is then considered separately and the following
procedures are applied.

First, the fault is simulated using a conventional fault sim-
ulation procedure. If the fault is detected, it is marked as such
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and dropped from further consideration.
Next, we check the following necessary condition for

fault detection under the restricted multiple observation time
approach. Under this approach, state expansion is done only in
the faulty circuit, potentially specifying additional output values
in this circuit. The output sequence of the fault free circuit is not
affected by state expansion. Consequently, to be able to detect a
fault, there must exist a time unitu and an outputo such thato is
specified in the fault free circuit at time unitu and unspecified in
the faulty circuit. State expansion at time unitu0 ≤ u or back-
ward implications due to state expansion at time unitu0 ≤ u + 1
may then specifyo at time unitu and allow to determine that the
fault is detected. To state this condition more formally, we use
the following notation.
• Nsv(u) is the number of unspecified state variables in the faulty
circuit at time unitu.
• Nout(u) is the number of pairs (u′, o) such that outputo at time
unit u′ ≥ u is specified in the fault free circuit and unspecified in
the faulty circuit. For example, for the output sequences of
Table 1(a) we haveNout(0) = 4, Nout(1) = 3, Nout(2) = 1 and
Nout(3) = 0.

A necessary condition for a fault to be detectable by state
expansion and backward implications at time unit 0 <u ≤ L is
the following.

(C1) Nsv(u) > 0 andNout(u − 1) > 0
(we check for unspecified outputs at time unitu − 1 since back-
ward implications may allow setting these values, thus detecting
the fault at time unitu − 1). For time unitu = 0, the following is
a necessary condition for fault detection under the restricted mul-
tiple observation time approach.

(C2) Nsv(u) > 0 andNout(u) > 0
We observe thatNsv(u) > 0  implies thatNsv(u − 1) > 0 (if

Nsv(u − 1) = 0, the state at time unitu − 1 is fully specified,
implying thatNsv(u) = 0 as well). Based on this observation, we
consideru = 0 andu > 0  together by replacing (C1) and (C2) by
the following condition.

(C) Nsv(u) > 0 andNout(u) > 0
If this condition is not satisfied at any time unit 0≤ u < L, the
fault is dropped from further consideration.

Faults that pass the above check are simulated under the
proposed fault simulation procedure. The overall structure of the
procedure is given below as Procedure 1. Each one of the steps
of Procedure 1 is described next.
Procedure 1:Fault simulation for faultf
(1) For every present-state variableyi and every time unitu

such thatyi is unspecified at time unitu in the faulty cir-
cuit, collect information regarding backward implications
at time unitu − 1, including fault detections, conflicts and
additional state variables that become specified.

(2) Check if the information collected in Step 1 is sufficient
to conclude thatf is detected. Iff is detected, stop.

(3) Select the best state variables and time units for state
expansion and perform the expansions followed by back-
ward implications.

(4) Fault simulate the test sequence after state expansion and
backward implications and check iff is detected.

3.1 Collecting backward implications
In this step of the procedure, we collect information about pairs
of time units and present-state variables (u, i) such that state
expansion usingu and yi may help establish fault detection. We
collect the information for each pair separately, starting in every
case from the state and output sequences computed for the faulty
circuit using conventional simulation.

We consider every time unit 0 <u < L and present-state
variable yi such that yi is unspecified at time unitu and
Nout(u − 1) > 0 (i.e., there are unspecified output values at time
unit u − 1 or afterwards that can be specified to establish fault
detection). Forα ∈ {0,1}, we perform the following procedure.
We set next-state variableYi corresponding toyi to α at time
unit u − 1 and perform implications at time unitu − 1. We then
record one of the following results (the first one that applies is
recorded).
(1) Backward implications result in a conflict. We record this
fact by setting a variableconfl(u, i ,α ) to 1.
(2) Backward implications assign a valueβ to a primary output
o at time unitu − 1, and in the fault free circuit,T results in the
valueβ on o at time unitu − 1. We conclude in this case that the
fault is detected foryi = α . We record this fact by setting a vari-
abledetect(u, i ,α ) to 1.
(3) If backward implications do not result in a conflict or in fault
detection, we record in a setextra(u, i ,α ) all the present state
variables that become specified at time unitu when next-state
variableYi is set toα at time unitu − 1. We have

extra(u, i ,α ) = {( j , β ): Yj = β when Yi = α at time unit u-1}.
The setextra(u, i ,α ) contains the pair (i ,α ). We also record in a
variableNextra(u, i ,α ) the size of the setextra(u, i ,α ).

The procedure above does not apply to state expansion at
time unitu = 0, where backward implication is not required. We
observe that state expansion at time unitu = 0 is possible, how-
ever, it cannot result in conflicts or detection at time unitu − 1,
and it cannot result in additional specified present-state variables
at time unit 0. To allow state expansion at time unitu = 0, we
add the following information to the information collected
above. For every present-state variableyi and every valueα ∈
{0,1}, we set confl(0, i ,α ) = 0, detect(0, i ,α ) = 0,
extra(0, i ,α ) = {( i ,α )} and Nextra(0, i ,α ) = 1.

3.2 Identifying detected faults
Consider a present-state variableyi at time unit u such that
confl(u, i ,α ) = 1 or detect(u, i ,α ) = 1 for some α ∈ {0,1}.
Suppose in addition thatdetect(u, i ,α ) = 1. In this case, setting
next-state variableYi to every possible value at time unitu − 1
results either in a conflict (indicating that the value is not possi-
ble) or in detecting the fault. Thus, we can conclude that the fault
is detected in this case. We perform this check for every unspeci-
fied state variable at every time unit 0 <u < L whereNsv(u) > 0
andNout(u) > 0.

3.3 Selecting pairs for expansion
State variables and time units for expansion are selected in two
phases, described next. The starting point for state expansion are
the state and output sequences obtained by conventional simula-
tion of the test sequenceT.

In the first phase (Step 2 of Procedure 2 below), we select
every pair (u, i) for which confl(u, i ,α ) = 1 or detect(u, i ,α ) = 1
for α ∈ {0,1}. Expandingyi at time unitu, we need only con-
sider the states whereyi = α . This can be accomplished by set-
ting state variableyi to α in the state sequence obtained after
conventional simulation. Thus, in this case, state expansion does
not increase the number of state sequences that need to be con-
sidered. We use the setextra(u, i ,α ) to update the faulty circuit
state at time unitu with all the values implied by settingyi = α
at time unitu.

In the second phase of the state expansion process (Steps
3-8 of Procedure 2 below), we select a limited number of pairs
(u, i) for which both specified values must be considered. After
selecting a pair (u, i), we immediately duplicate each state
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sequence and we assign the additional values according to
extra(u, i , 0) in one copy, and according toextra(u, i , 1) in the
other copy. Thus, the selection process is sequential. We select
additional pairs for expansion until the total number of state
sequences reaches a predetermined constantNSTATES.

We select the pairs (u, i) based on the information col-
lected in Section 3.1, where each pair was considered separately.
To ensure that each pair has maximal effect on the number of
specified values in the faulty circuit, we impose the following
constraint. We definesv(u, i) = { j : ( j , β ) ∈extra(u, i ,α ) for
α , β ∈{0, 1}}, i.e., sv(u, i) is the set of state variables whose val-
ues at time unitu are determined when present-state variableyi
is set to either 0 or 1 at time unitu. We allow the pair (u, i) to be
selected for state expansion only if all the present-state variables
in sv(u, i) are unspecified at time unitu in all the state sequences
under consideration.

During an iteration of the state expansion process, one of
the pairs (u, i) that satisfies the constraint above is selected
according to the following criteria. The criteria are listed in order
of importance.
(1) u is such thatNout(u) is maximum over all the time units with
Nout(u) > 0  and Nsv(u) > 0. This ensures that there is a maxi-
mum number of output values that can still be specified to estab-
lish that the fault is detected.
(2) u is such thatNsv(u) is minimum. This ensures that a maxi-
mum number of state variables are already specified at time unit
u, and it is likely that additional specified state variables will
result in specifying output values (this heuristic was also used in
[4]).
(3) The minimum ofNextra(u, i , 0) andNextra(u, i , 1) is as large as
possible.
(4) The maximum ofNextra(u, i , 0) andNextra(u, i , 1) is as large as
possible. The last two criteria ensure that expansion results in as
many specified state variables as possible.

The overall expansion procedure is summarized next.
The procedure maintains a set of state sequencesS. For a given
sequenceS′, we denote byS′[u][ i ] the value of present-state
variableyi at time unitu underS′.
Procedure 2:State expansion
(1) Let S = { S0}, where S0 is the sequence of states that the

faulty circuit goes through under conventional simulation
of the test sequenceT.

(2) For every pair (u, i) such that confl(u, i ,α ) = 1 or
detect(u, i ,α ) = 1 for α ∈ {0,1}:

For every pair (j , β ) ∈ extra(u, i ,α ):
SetS0[u][ j ] = β .

(3) Let E be the set of all pairs (u, i) such that the following
condition is satisfied:

For every sequenceS′ ∈ S, S′[u][ j ] is unspeci-
fied for everyj ∈ sv(u, i).

(4) Let Nout,max = max {Nout(u): (u, i) ∈ E for some i}.
Remove from E every pair (u, i) for which
Nout(u) < Nout,max.

(5) Let Nsv,min = min { Nsv(u): (u, i) ∈ E for some i}.
Remove from E every pair (u, i) for which
Nsv(u) > Nsv,min.

(6) Let Nextra,0 = max {Nextra(u, i , 0): (u, i) ∈ E},
Nextra,1 = max {Nextra(u, i , 1): (u, i) ∈ E}, and
Nextra,A = min { Nextra,0, Nextra,1}.
Remove from E every pair (u, i) for which
min { Nextra(u, i , 0), Nextra(u, i , 1)} < Nextra,A.
Let Nextra,0 = max {Nextra(u, i , 0): (u, i) ∈ E},
Nextra,1 = max {Nextra(u, i , 1): (u, i) ∈ E}, and

Nextra,B = max {Nextra,0, Nextra,1}.
Remove from E every pair (u, i) for which
max {Nextra(u, i , 0), Nextra(u, i , 1)} < Nextra,B.

(7) Select any pair (̃u, ĩ ) ∈ E.
(8) For every sequenceS′ ∈ S:

(a) CopyS′ into a sequenceS′′ and include bothS′
andS′′ in S.

(b) For every (j , β ) ∈extra(ũ, ĩ , 0), setS′[ũ][ j ] = β .
(c) For every (j , β ) ∈extra(ũ, ĩ , 1), setS′′[ũ][ j ] = β .

(9) If the number of sequences inS is NSTATES, stop.
(10) Go to Step 3.

3.4 Fault simulation after expansion
During state expansion by Procedure 2, we mark every time unit
where one or more state variables were specified. For every
sequence of statesS′ ∈ S we then resimulate these time units.
Additional time units are marked and consequently simulated if
they have newly specified state variables. The resimulation pro-
cedure is described next.

For every state sequenceS′, we consider every time unitu
starting fromu = 0. Every marked time unit is simulated as fol-
lows. To simulate a state sequenceS′ at time unitu, we use the
input values fromT and the present-state variable values from
S′[u]. For these input values, we compute an output patternz and
a next-states′. We then check the following conditions. First, we
comparez with the output pattern of the fault-free circuit at time
unit u. If the two output patterns conflict (i.e., there is an output
where they are specified to different {0,1} values), the fault is
detected for state sequenceS′, and S′ is dropped from further
consideration. If the fault is not detected forS′, we compare the
next-states′ with S[u + 1]. If there is a conflict betweens′ and
S[u + 1] (i.e., s′[i ] ≠ S[u + 1][i ] for a state variablei where both
are specified), we conclude thatS′ is not a feasible state
sequence and, again,S′ is dropped from further consideration. If
no conflict is found, we check whethers′[i ] is specified for some
state variablei for which S[u + 1][i ] is unspecified. We set
S[u + 1][i ] = s′[i ] for every such state variable, and mark time
unit u + 1 to indicate that it has to be simulated. Simulation of a
sequenceS′ stops when all the marked time units have been sim-
ulated or if a conflict or detection were identified. For a fault to
be considered detected, either detection or a conflict have to be
established for every sequenceS′ ∈ S.

4. Experimental results
We applied the proposed simulation procedure to ISCAS-89
benchmark circuits and to circuits from [8] using a limit of 64 on
the number of state sequences of the faulty circuit after expan-
sion. The results are shown in Table 2(a) as follows. After cir-
cuit name we show the total number of faults. We then show the
number of faults detected by conventional simulation. The
results of the procedure from [4] with the same limit of 64 on the
number of state sequences after state expansion are shown next.
In the last two columns of Table 2(a) we show the results of the
proposed procedure. For each procedure we show the total num-
ber of faults detected and the number of faults detected beyond
conventional simulation. All the faults identified as detected in
[4] are also identified by the proposed procedure. Moreover, in
many circuits, additional faults can be detected by using back-
ward implications, compared to the numbers of faults detected in
[4]. For example, fors5378, 11 additional faults are identified as
detected by the proposed procedure, whereas no additional faults
were identified by the procedure of [4]. In the case of the larger
circuits, the procedure from [4] could not be applied whereas we
are able to apply the proposed procedure to detect additional
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faults.

Table 2: Results using random patterns

detected faults
total [4] proposed

circuit faults conv. tot extra tot extra
s208 215 73 86 13 86 13
s298 308 143 150 7 150 7
s344 342 314 320 6 320 6
s420 430 125 150 25 150 25
s641 467 343 347 4 347 4
s713 581 415 419 4 419 4
s1423 1515 331 338 7 338 7
s5378 4603 2352 2352 0 2363 11
s15850 11725 85 NA NA 87 2
s35932 39094 22357 NA NA 22367 10
am2910 2573 1234 1259 25 1272 38
mp1_16 1708 1259 1278 19 1280 21
mp2 10477 666 670 4 676 10

It is interesting to note that fors5378, all the faults
detected by the proposed procedure were aborted by the proce-
dure of [4] when the number of state expansions reached the
limit of 64 states. This demonstrates the effectiveness of using
backward implications to complement state expansion. As
another indication of the effectiveness of backward implications,
we collected the following information. For each fault, we main-
tained three counters, calledNconfl( f ), Ndet( f ) and Nextra( f ).
The counters were initially set to zero. They were incremented
during the simulation procedure according to the state variables
and time units selected for expansion. Suppose that present-state
variable yi at time unitu was selected for expansion. Then the
following rules were applied.
• If setting Yi at time unitu − 1 to α ∈ {0,1} resulted in fault
detection (i.e.,detect(u, i ,α ) = 1), thenNdet( f ) was incremented
by one andNextra( f ) was incremented byNextra(u, i ,α ).
• If setting Yi at time unitu − 1 to α ∈ {0,1} caused a conflict
(i.e., confl(u, i ,α ) = 1), then Nconfl( f ) was incremented by one
andNextra( f ) was incremented byNextra(u, i ,α ).
• In all other cases, Nextra( f ) was incremented by
Nextra(i , u,α ) + Nextra(i , u,α ).

In Table 3 we show the averages of the counts above,
where the averages are computed over all the faults detected by
the proposed method. Without backward implications, the num-
ber of detections and the number of conflictsNdet( f ) and
Nconfl( f ) are zero. The number of state variables whose values
are specified with every state expansion is two (only the selected
state variable is assigned two different values, 0 and 1). Since we
allow at most six state expansions per fault until the number of
state sequences reaches 64, the value ofNextra( f ) is at most 12.
The values of Table 3 are significantly larger, indicating that
backward implications resulted in many additional specified val-
ues. In addition, significant numbers of detections and conflicts
are obtained.

Using the deterministic test sequence generated by
HITEC [9] for s5378, the proposed method detected 14 addi-
tional faults, whereas the procedure of [4] detected 12 additional
faults.

5. Concluding remarks
We presented an improved procedure for fault simulation under
the multiple observation time approach. The procedure was
based on state expansion. The proposed approach used back-
ward implications to take advantage of every present state vari-

Table 3: Effectiveness of backward implications

circuit detect confl extra
s208 19.54 12.00 54.54
s298 6.71 36.57 60.71
s344 281.67 0.00 304.33
s420 24.88 7.60 57.60
s641 234.25 0.00 400.75
s713 178.75 0.00 219.75
s1423 10.29 91.71 195.71
s5378 616.18 142.00 1082.27
s15850 114.00 89.00 264.50
s35932 5958.00 0.00 6711.60
am2910 225.79 8.53 331.29
mp1_16 2038.57 25.38 2096.05
mp2 2996.50 50.10 3449.00

able value specified under state expansion. Thus, when state
variableyi was set to a valueα ∈ {0,1} at time unitu, the next-
state variableYi corresponding toyi was set toα at time unit
u − 1, and implications of this assignment were computed at time
unit u − 1. Several results are possible. (1) A conflict at time unit
u − 1 indicates thatyi can only assume the valueα at time unitu.
(2) The assignment may help detect the fault under consideration
by assigning one or more primary output values at time unit
u − 1. (3) Additional next-state variables may be specified at
time unit u − 1, allowing additional present-state variables at
time unit u to be specified. Consequently, fewer states need to
be considered after state expansion, fewer state expansions are
potentially needed for every fault, and the number of faults that
can be efficiently considered is increased. Experimental results
were presented to support this claim for the case where state
expansion is done only in the faulty circuit. This case is impor-
tant as it is consistent with the conventional test application
scheme.
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