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Abstract - We present a subjective review of custom cell
generation methods in the context of future advances in
state-of-the-art digital circuit synthesis.  In particular, we
describe three opportunities for coupling circuit
optimization operations with the library development
process.  These operations include electrical optimization,
technology mapping, and cell level place and route.

1.� Introduction

Several methods have been developed in recent years for
the automatic generation of cell libraries.  This effort has
been largely motivated by a need for alternatives to manual
layout thereby reducing library development costs and time
to market.  The most common approaches are layout
generators, re-compaction of existing libraries, and
automatic cell synthesis.

Procedural layout generators, which are either language-
based or interfaced with a symbolic layout system, are a
means of capturing the layout design in a somewhat design-
rule independent fashion.  This is useful in reducing the
layout creation effort as well as in retargeting existing
libraries to new foundry rules.  This productivity benefit is
mitigated by the fact that each cell must be supported by its
own specific generator which must be created by an
experienced cell designer.  Generators also tend to be
unfriendly to drastic changes in cell architecture and
interconnect technology.

Compaction of existing layout data provides a somewhat
more elegant solution to the cell generation problem since a
single generic program can process a wide variety of cells.
A significant drawback, however, is that compaction
requires the availability of existing layouts substantially the
same as the intended cell library as a starting point.  Like
procedural generators, compactors do not lend themselves
well to architectural changes.

Cell synthesis, in contrast to the above methods, is
concerned with creating cell layouts starting with only a
transistor level netlist for each cell.  It is completely flexible
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in terms of a target library architecture and does not require
any pre-existing cell-specific layout information.  It is,
however, a non-trivial problem to automate the creation of
cell layouts competitive with handcrafted quality layouts.
To date, the sheer complexity of the cell synthesis process
has been the main impediment to its commercial success.

Whereas procedural layout generators and compactors can
be used to speed up the library generation process, this
paper advocates the use of cell layout synthesis as the
dominant method.  This is based on the overall flexibility
that layout synthesis provides particularly in the context of
future advances in the state of the art in digital circuit
synthesis.  Indeed the goal of any synthesis technique,
whether it is behavioral, logic, or layout, is to ultimately
produce optimum circuits that meet the designer’s
specifications.  By optimum circuit, we mean an
implementation where the designer and/or synthesis tool
achieves the best tradeoff of design metrics for the entire
circuit.  The most common metrics for digital CMOS
circuits are delay (e.g. input to output propagation, clock
period), silicon area, and dynamic power.   Static power
may also be important for circuits powered by batteries.
Metrics specific to layout synthesis include layout porosity,
manufacturing yield, and circuit reliability (e.g. noise
margins, latch up immunity).

The realization of any custom circuit, whether it be a
standard cell or a complete block, requires three primary
implementation phases:

1.� Creation of a transistor circuit topology that provides a
specific digital function.  By topology we mean the
allocation of N and P type transistors (or other devices)
and their connectivity.

2.� Sizing and ordering the transistors in the circuit
topology.  Sizing means altering the MOS transistor’s
width and ordering means swapping positions of MOS
transistors connecting in series chains or swapping
logical pins.

3.� Placing, routing and compacting the above transistors
into a layout.

All of the above phases involve tradeoffs of design metrics
which must be optimized not only within each phase but
also across all phases.  To date only phase 3 is automated by
most layout synthesis tools.

The coupling between circuit optimization, such as
behavioral, logic or layout, is the key to better utilization of
integrated circuit technology resulting in better products.



This paper describes opportunities for circuit optimization
across design phases.  Following a review of state-of-the-art
cell synthesis techniques in Section 2, we identify three
specific opportunities for expanding cell layout synthesis
technology.  The first is the integration of cell generation
and transistor sizing and re-ordering for the purpose of
electrical optimization (Section 3).  The second is the
coupling between cell generation and the technology
mapping phase of logic synthesis, effectively replacing the
concept of a cell library by a mechanism for generating
cells on-demand (Section 4).  The third is a reduction of
silicon area made possible by a tighter coupling between
cell generation and the automatic place and route system
(Section 5).

2.� Review of Cell Synthesis

Currently cell synthesis consists of mapping a set of sized
transistor netlists into cell layouts based on a target cell
architecture.  In addition to a netlist for each cell, the inputs
to a cell synthesis system include the design rules for the
target process and a description of the architecture and
layout guidelines.  In general, a single architecture
description can be used for a complete cell library.  The
output of a cell synthesis system is a collection of cell
layouts which result from the successive solution of the
three sub-problems of placement, routing and compaction.

2.1  Transistor Placement

Placement is the problem of determining the relative
position of each transistor within the target cell architecture.
A common strategy is to maximize the number of
connections that may be made between the devices through
common diffusions and vertically aligned gate wires.
Transistor placement may also be subject to physical
constraints such as keeping the order of IO ports,
minimizing the span of critical nets and accommodating a
variety of transistor sizes.  Furthermore, provisions should
be made to place substrate contacts and allow space for
feed-through nets.

A reasonably large number of notable contributions have
been made over the last fifteen years to the field of
transistor placement [1,2,3,4,5,6,7,8].  Generally, transistor
placement methods combine the following operations:

1.� Transistor pairing: p-type and n-type transistors are
paired if they have common gate and/or source/drain
signal names or if they are associated with the same
gate level structure;

2.� Group/chain formation:  more compact layouts result
when forming groups or chains of series connected
transistors which lend themselves to a locally optimal
layout.  Such groups can result from heuristic
algorithms, chaining algorithms, partitioning, or even
branch-and-bound optimization.

3.� Transistor folding:  large transistors may need to be
decomposed into a set of smaller ones connected in
parallel.  This is the case when transistor sizes exceed
the height (width) provided by the target architecture or
when large imbalances between large and small
transistors would result in a sub-optimal solution.

4.� Group/chain placement:  final placement may be
accomplished by a variety of classical placement
methods either constructive or iterative.  Classical
constructive placement methods include branch-and-
bound and min-cut partitioning.  A classical iterative
method is simulated annealing.  The objective of either
placement method is to maximize the value of some
merit function which reflects the “goodness” of the cell
in terms of measurable attributes such as anticipated
layout area and wire length metrics.

2.2  Routing

Leaf cell routing has been addressed by a number of
different methods.  Most reported systems use classical
routing algorithms such as maze, line-probe, river routing
and the left edge algorithm.  Several researchers reported
using a two phase approach as follows:

1.� Routing over the transistors using special purpose
algorithms to implement horizontal connections
between source/drain diffusions within the same
transistor row.

2.� River/channel routing methods to complete all the
remaining connections in the center region of the cell
between the p- and n-style rows of transistors.

Routers based on the above combination [2] generally rely
on some net classification scheme based on the location of
terminals associated with each net.

General-purpose area or maze routers with obstacles have
also been reported.  Maze routers tend to be more flexible in
terms of layout style and circuit structure but are more
difficult to fine tune to obtain good results in a cell
synthesis system.  In [1] Poirier describes the use of the A-
star procedure which is an improvement over Lee maze
routing based on directing the search preferentially in the
direction of the target subnet.

In addition, some routers complete routing by automatically
inserting either vertical and/or horizontal routing tracks on
the fly [1]. This track insertion can be triggered by detection
of an unfeasible  solution or a time out.

2.3  Compaction

Compaction is the process of generating compact and error
free layout from an initial symbolic or generic layout.
Compaction is also used to transform a layout from another,
usually older, technology to a new target technology with
different design rules.  Automatic compactors for cells have
been around for a long time, most of which compact in only
one direction at a time [10].

A somewhat dated review of compactors can be found in
[9].  Some researchers have reported on two dimensional
compactors [11], where the width and height of a cell are
compacted at the same time.  Compactors that usually
produce the best quality results are based on a constraint
graph model, where nodes in the graph represent layout
elements or polygon edges and arcs in the graph represent
layout design rule and/or connectivity constraints amongst
the elements/edges.



Compaction methods usually require the following
operations:

1. Constructing a constraint graph from an initial layout:
A compactor performs this step by first constructing
the graph nodes after scanning all layout geometry,
then constructing the graph arcs by again scanning all
layout geometry and registering possible design rule or
electrical interactions of neighboring geometry.

2. Solve for the critical (longest) path(s) in the graph:
Algorithms applied are topological sort for simple
constraint graphs [10], or linear programming methods
[11] for two dimensional constraint graphs.

3. Insert jogs on wires linked to critical nodes (elements):
This process helps reduce the cell’s width sometimes at
the expense of the cell’s height, or vice-versa.  The
algorithms used to insert jogs are usually heuristic.

4. Minimize wire lengths for wires not associated with
critical nodes:  This step prevents wires from being
stretched by the compaction process and ensures the
resistance of each wire is minimized.  Graph theoretic
[10] or linear programming methods [11] can be
applied for this problem.

Once compaction is complete, the layout is usually design
rule correct by construction.  In some rare cases, the final
layout may be overconstrained and some violation may
remain, which the compactor will report to the user.

2.4  Other Issues

Several key issues must be considered in order to synthesize
leaf cells of hand-crafted character.  In particular, the
architecture specification must be extremely flexible in
order to accommodate the wide variety of design styles
mandated by different technologies and circuit applications.
A partial list of architectural features include:
•� position and size of power supply rails
•� nature and spacing of substrate and well ties
•� boundary constraints on each design layer
•� size constraints and alignment rules for wells
•� size and offset of I/O routing grid in each dimension
•� constraints on the overall cell size (both height and

width)
•� policy governing the insertion of I/O pins
•� policy governing the use of multiple diffusion contacts

for source/drain connections
•� policy governing the use of non-Manhattan geometries
•� policy governing the insertion on jogs and bends in

wires
•� individual routing policies associated with each routing

layer
�
In addition to a flexible architecture specification, the
system must also provide user control over selected layout
features which have a direct impact on circuit performance.
These include minimization of diffusion regions, frequency
of diffusion strapping, choice of routing layers for critical
nets, etc., and ability to produce results which are friendly
to the leading place-and-route systems.  The latter requires
full control over pin location, shape and layer assignment,
as well as various cell porosity requirements.

3. Coupling with Electrical Optimization

Choosing the best widths of MOS transistors, called
transistor sizing, can improve circuit performance.  Given a
transistor circuit, several researchers have automated
transistor sizing and today some commercial tools can
perform transistor sizing automatically.  The approaches
used in [13,14,15,16] as well as several others, rely on
modelling the transistor-sizing problem as a nonlinear
program and solving the program with well-known
nonlinear programming algorithms.  Other approaches to
transistor sizing rely on using heuristics [12], but do not
achieve the quality of results as a nonlinear programming
approach [16].

The nonlinear program formulations for optimizing
transistor sizes usually take one of two forms:

1.  minimize: Dmax

subject to:

∑ dj (w) < Dmax
 j

∑ wi = Wmax
 i

2.  minimize:  Wmax

subject to:

∑ dj (w) < Dmax
 j

∑ wi = Wmax
 i

In the above formulations, Dmax represents the worst case
path delay, Wmax the circuit active area or dynamic power, w
the size of a transistor, and d(w) the delay of a logic gate as
a continuous nonlinear function of w.  Some researchers
consider only a single worst case path in the formulation
while others consider multiple worst-case paths [13].  Also,
some researchers [13,16] have suggested better area models
than the sum of transistor sizes (Wmax) to reflect the structure
of the target layout realization.  The algorithms used to
solve either formulation 1 or 2 include Lagrangian methods,
such as Augmented Lagrangian [13,14,16], or curve fitting
methods, such as Levenberg-Marquardt [15].

The researchers in [17] automated transistor reordering and
demonstrated the benefits of ordering on speed critical
paths.  They showed that the optimum order requires the
consideration of the complete electrical environment of the
circuit, specifically the input rise/fall transition rates.  These
researchers used a heuristic approach to optimize transistor
order and mention a method for including transistor sizing
into their heuristic.  To date, no one has integrated transistor
ordering with a nonlinear programming approach to
transistor sizing.  It may be possible to model both transistor
ordering and sizing with a single nonlinear programming
model, but this has yet to be publicly demonstrated.

The work in [13] shows a combination transistor sizing and
layout compaction as part of a custom layout entry system
called Tailor.  Marple modelled the combination sizing and
compaction problem as a general nonlinear programming
problem, with a linear objective (cell width or height),



linear layout constraints (design rules between layout
edges), and nonlinear delay constraints (worst case input to
output delays).  The circuit delays were continuous
functions of the transistor sizes (difference in layout edges),
the layout parasitics, and external electrical environment
(input rise/fall transitions and output loading).   Rather than
solving the complete nonlinear program with a general
nonlinear programming algorithm, Marple solved the
problem by employing a longest path compaction algorithm
to reduce the number of linear constraints and then
employing an Augmented Lagrangian algorithm to solve
the reduced nonlinear program.  This two step process
would then repeat until the tool satisfied all layout
constraints and delay constraints and fulfilled the conditions
for an optimum circuit.

Marple’s research on combination transistor sizing and
compaction could be extended to address the broader
requirements of a general layout synthesis tool.  Firstly, a
more accurate and flexible delay model for the circuit is
needed to avoid verification with Spice (or like simulator)
and to handle sequential circuits.  Secondly, a single area
objective (width times height) should be used which would
involve the integration of a two dimensional compactor
with transistor sizing.  Thirdly, transistor placement, folding
(creating parallel transistors), and routing could be
integrated with transistor sizing/compaction to provide an
automated iterative procedure to converge on a overall
optimum layout realization.  Finally, transistor ordering
could be simultaneously handled with sizing and
compaction.

4.� Coupling with Logic Synthesis

Logic synthesis has become the dominant method for
designing logic circuits.  Technology mapping is the final
phase of logic synthesis which consists of mapping an
optimized technology independent logic network into a
circuit realization in a given technology.  Most commercial
technology mapping systems require that all available
physical components be represented explicitly in a pattern
library.  Sections of the logic network are then matched
against this pattern library to identify suitable cells to
implement the circuit.  The size of the cell library may
range from a few dozen cells up to several thousand and is
generally governed by manpower restrictions,
limitations/capabilities of the logic synthesis program
and/or limitations/capabilities of the remaining design flow
to silicon.  Cell synthesis is an enabling technology which
paves the way for significantly larger cell libraries than are
feasible today.  Cell synthesis may also obsolete pre-
defined libraries with cell generation on-demand as part of
the technology mapping process.

Some work on  cell synthesis-based technology mapping
has revealed some promise of exploiting large cell sets.
Experiments with constructive matching [23], for example,
have demonstrated some benefits, albeit modest, in both
area and speed when targeting very large libraries.  A more
recent study [19 ] has shown that the area benefits of large
cell sets increase as the number of interconnect layers
increases.

This is in addition to the obvious power savings which
would result if each non-critical path on a chip could be
down-graded by reducing transistor sizes or selecting

alternative cells so as to meet all timing requirements
exactly.  This power reduction could even take place post-
layout once very accurate loading information is available
for each cell.

5.� Coupling with Placement and Routing

A cell library generation tool must be keenly aware of the
nuances of placement and routing.  One key issue is that the
fundamental algorithms behind all of the leading
commercial routers are grid based and a cell’s pins must
align on a routing grid in both the x and y direction. While it
is true that some of these commercial routers can handle
off-grid pins, their algorithms are inherently gridded and
perform considerably better if the pins are all on-grid.

In a typical cell layout style, the first metal layer (“metal
1”) is used to interconnect the various transistors
comprising the cells. Use of the second metal layer (“metal
2”) is generally avoided except for possibly the most
complex cells, such as flip-flops. The lack of blockages on
metal 2 ensures metal 2 can be well utilized for vertical
routing.   Depending on the cell layout architecture, it may
be a good idea to bring the input and output pins out to
metal 2. Allowing some other signal on metal 2 to pass
directly over a pin left on metal 1 (or poly) may severely
impact routability, in that metal 1 (or poly) is largely
exhausted in interconnecting the cells and thus the router
may find that the pin is inaccessible. If all input and output
pins are brought out to metal 2 in the cell library, pin
accessibility is almost guaranteed during routing. As long as
blockages (i.e. prior uses of metal 2) are minimized, it will
always be possible to route vertically straight up or down
from a pin.

Minimizing blockages on metal 2 and bringing the pins out
to metal 2 or allowing multiple metal 2 access to the pins
are excellent steps to take to enhance routability. However,
another crucial issue is the vertical porosity of the cells. If a
metal 2 pin appears on most metal 2 routing grids, a
common situation for nonfolded combinational cells, the
vertical porosity will be severely compromised if the pins
appear on a horizontal line.

If a cell library is designed without any implicit
feedthroughs in the cells, the width of a standard cell block
placed and routed using these cells (with no vertical
porosity) will be typically 25 to 40 percent wider than a
comparable library with sufficient implicit feedthroughs.

Figure 1. Staggered pin locations can be used to
create implicit feedthroughs.

One way to increase vertical porosity and effectively the
number of implicit feedthroughs, is to stagger the pin
locations in the y direction as shown in Fig. 1. The pins are
typically centered between the p and n diffusions. By using

pin

feedthrough



three vertical tracks (or pitches) for the pin locations and
placing the pins alternately in the top or bottom track, a
router can sneak a “dogleg” feedthrough over the cell. If
there are N pins on a cell, an upper bound of N/2 implicit
feedthroughs may be available. However, as illustrated in
Fig. 2, it can happen, and often does, that the connection to
a pin placed a priori in the bottom (top) row must be routed
to a row above (below). In the worst case, no implicit
feedthroughs are available. Even a moderate number of
unfortunately directed connections can result in very few
implicit feedthroughs as shown in Fig. 3. For a priori pin
placement, since the directions of the connections are
random, experiments have shown that the typical number of
implicit feeds available is usually well short of the
theoretical upper bound. Typically this causes the insertion
of quite a number of actual feedthrough cells, which adds to
the width of a placed and routed standard cell block.

Figure 2. No implicit feeds are available even
though pins are staggered.

Figure 3. Illustrated here is a typical case in which
one implicit feedthrough is available.

A very effective way to increase implicit feedthroughs is to
provide each pin with two possible locations on the same
metal 2(x) grid, one in the top of the three tracks and one in
the bottom track, as illustrated in Fig. 4. When routing the
top (bottom) pin location toward the row above (below),
additional implicit feedthroughs are generated. For example
in Fig. 3 only one implicit feed is available, but in Fig. 4,
two additional implicit feeds are available due to the
flexibility of pin location.

Figure 4. If the global router can “move” the pins,
three implicit feeds result. The dashed squares
indicate alternative pin locations.

To demonstrate the impact of having two such locations for
each pin, we augmented the TimberWolf router [18] to
select the appropriate pin location during its optimization

process. The results for five MCNC benchmark circuits are
shown in Table 1. Notice that 2-4 times more implicit
feedthroughs are available than the number required by the
router. Past experimentation has revealed that any time the
number of implicit feeds is at least double the number
required, then very dense routing will be achieved without
having to add any explicit feedthrough cells. In fact, we
have yet to encounter a random logic netlist for which
explicit feedthrough cells have to be added by TimberWolf
when a pair of locations for each pin is provided as
described above.

Circuit No. of
Cells

Feeds
Required

Imp. Feeds
Avail.

ex2 170 37 171
x1 177 38 116
apex6 406 21 317
C7552 1206 250 783
C6288 1731 500 999

Table 1. Feeds required is the number of row
crossings desired by the router summed over all
rows, and similarly implicit feeds available is
summed over all rows.  The number of implicit
feeds exceeds the number required by a factor of
2-4x, permitting efficient routing.

An automatic cell generator could be used effectively with a
place and route system by providing cell layouts with a
wide variety of pin orderings. For example, all of the
possible orderings, subject to a limit on the number of
diffusion breaks, can be listed [19,21,22]. To minimize
area, one might ask the cell generator to produce all
possible pin orderings corresponding to cells of minimum
width. Then, for a given instance of this cell in the layout,
we can select the particular pin ordering which yields the
least total wire length and/or wire area. Complex cells, such
as flip-flops, or cells including folded transistors, tend to
have very large numbers of possible pin orderings subject to
a minimum number of diffusion breaks. Even nonfolded
combinational cells tend to have at least a few possible
orderings.

We examined the effectiveness of pin-ordering optimization
on the same MCNC benchmark circuits shown in Table 1.
We iteratively examined all of the cell instances in
congested areas on the chip (i.e. cells bordering channels of
peak or near peak density) and selected a legal pin ordering
(i.e. which minimizes diffusion breaks) for each instance
which minimized the total Steiner wire length during global
routing.

Circuit Orig. Pin
Order
#Tracks

Reordered
Pins
#Tracks

Track
Reduction
(%)

ex2 47 40 14.9
x1 63 55 12.7
apex6 75 68 9.3
C7552 177 160 9.6
C6288 191 177 7.3
Average 10.8

Table 2. The number of horizontal routing racks
used by TimberWolf following pin-ordering
optimization is reduced by 10.8% on average.



As the results in Table 2 show, about an 11% decrease in
horizontal routing tracks was achieved, on average. A
comparable decrease in total wire length was observed.
While such area and wire length savings are smaller than
those achieved by selecting pin locations during routing to
maximize implicit feedthroughs, they are nonetheless
significant.

A cell generator for combinational cells addressing the
routability issues described in this section has been reported
[19,20,21,22].

6.� Summary

As covered in this paper, cell synthesis involves the
deployment and integration of many design automation
techniques to produce high quality layouts from an initial
transistor level or low level boolean description.  Key
techniques for cell synthesis include transistor sizing,
transistor/pin ordering, transistor/pin placement, transistor
routing, and layout compaction.  The commercial
application of digital cell synthesis primarily is targeted to
the creation of standard cell libraries used for traditional
ASIC system design.  This not only requires consideration
of the target ASIC technology design rules, but also the
desired cell architecture, I/O pin strategy, and tradeoffs of
layout structures.  Emerging applications of cell synthesis
include automatic technology migration of cell libraries as
well as on the fly cell creation as part of logic
synthesis/technology mapping, cell-based place and route,
and buffer optimization after place and route.  These
applications will become manifest with the future research
and development of cell synthesis technology.
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