
Optimizing Designs Containing Black Boxes�y

Tai-Hung Liu Khurram Sajid Adnan Aziz Vigyan Singhal
Electrical and Computer Engineering Cadence Berkeley Labs

The University of Texas Cadence
Austin TX Berkeley CA

Abstract

We define a notion of equivalence for designs containing
black boxes i.e., components whose functionality is not
known; these arise naturally in the course of hierarchi-
cal design. Using this notion, we describe a sound and
complete methodology for optimizing such designs.

1 Introduction

Modern gate-level hardware designs often contain “black
boxes” (components whose functionality is not known).
These black boxes can arise in many ways:

1. In hierarchical synthesis, components are recursively
optimized from the “bottom-up” and then treated as
fixed blocks.

2. The choice for the implementation of certain com-
ponents may not have been made yet; this happens
when different parts are designed separately.

3. A conscious decision may have been made not to
synthesize certain components; these could be pre-
defined blocks which have been already carefully de-
signed and hand-optimized.

In the past, the approach taken for synthesis as well as
verification of designs with black boxes has been to make
the inputs to the black boxes primary outputs, and output
of the black boxes primary inputs.

We will show that, for logic optimization, this approach
is pessimistic in theory and in practice; the flexibility af-
forded by observability and controllability don’t cares in
the portion of the design to be synthesized is not fully
used. Additionally, the fact that certain components may
be instantiations of the same “variety” of black box, and
consequently when presented with the same input are con-
strained to produce the same output is not used in this ap-
proach.

�Research supported in part by a DAC Graduate Fellowship.
y“Permission to make digital/hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copyright is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.” DAC 97, Anaheim, CA
(c) 1997 ACM 0-89791-920-3/97/06..3.50$

To the best of our knowledge, there has been no past
work on synthesizing designs with black boxes which has
done more than treat the black box inputs and outputs
as design outputs and inputs. In the verification com-
munity, Jones, Dill, and Burch have addressed the prob-
lem of verifying designs with “uninterpreted functions”
(UIFs). These UIFs arise in the context of verifying com-
plex operations in microprocessors, and provide a useful
mechanism for abstraction [8]. They can be viewed in
some sense as being black boxes. However, they are ap-
plied to complex datatypes (such as integers), and the de-
cision procedure for verification in the presence of UIFs
is based on a rewrite system [13], which is completely
distinct from our approach, which is based on gate level
designs and BDD based optimization.

The remainder of this paper is structured as follows:
we begin in Section 2 by giving syntax and semantics
to designs using finite state machines and netlists; this
is extended to designs containing black boxes. In Sec-
tion 3, we formulate the appropriate notion of equivalence
for such designs. The inadequacy of existing approaches
to synthesizing designs with black boxes is described in
Section 4; we then formulate a sound and complete syn-
thesis procedure using the concept of an “observability
network”, and present experimental results. We conclude
with a summary of our contributions and suggestions for
future work in Section 5.

2 Models for Hardware

There are two main formalisms for expressing designs,
namely finite state machines and netlists. A detailed dis-
cussion on FSMs can be found in Hopcroft [6]. Netlists
are “structural” and are more relevant to the present dis-
cussion.

2.1 Netlists

A netlist is a representation of a design at thestructural
level. We define two types of netlists, namely,simpleand
complex.

A simple netlistis a directed graph, where the nodes
correspond toprimitive circuit elementswhich could be
gates, latches or primary inputs, and the edges correspond
to wires connecting these elements. For simplicity, we
will assume that the netlist isBooleani.e., all variables
take values inf0; 1g. A simple netlist will be referred to



?

D0
D1

Figure 1: Plug-in plug-out replaceability.

as acombinationalnetlist if no latches occur in it; other-
wise, it will be referred to as asequentialnetlist.

A complex netlist(or simply, anetlist) is a similar to
a simple netlist, with the addition of black boxes to the
set of primitive circuit elements. Black boxes of the same
variety are required to have the same number of inputs. A
more detailed description of the syntax and semantics of
netlists can be found in [7].

By definition, we require that there be nocombina-
tional cycles, where a combinational cycle is a cycle of
gates. Issues related to combinational cycles have been
dealt with elsewhere [3, 9].

3 Design Equivalence

If designD1 is equivalent to designD0 then the composi-
tion of D1 with any environment should be equivalent to
the composition ofD0 with the same environment; this is
similar to the argument of plug-in plug-out replaceability
given in [14] – see Figure 1.

Here we will discuss only about combinational designs.
We can reason about sequential designs in a similar man-
ner: details can be found in [7]. Since we require that
there be no combinational loop in a design (a reasonable
requirement), we also require that both composition and
instantiation not create any loops as well.

First we consider the problem of equivalence for simple
combinational netlists. Formally, letD1 andD2 be two
simple combinational designs. Let the primary inputs of
D1 bex1; : : : ; xn and the primary outputs bey1; : : : ; ym
similarly, let the primary inputs and outputs ofD2 be
a1; : : : ; an andb1; : : : ; bm.

Definition 1 Two simple combinational designsD1 and
D2 are equivalent iffD1

= fD2
, wherefD1

andfD2
are

the logic functions implemented byD1 andD2.

We can now define equivalence for complex combina-
tional designs:

Definition 2 Two complex combinational designsD1

andD2 are equivalent if for any combinational instan-
tiation � of the black boxes appearing inD1 andD2, we
havefD1[�] = fD2[�].

An example of complex combinational designs which
are combinationally equivalent is given in Figure 2.

4 Synthesis

We now describe algorithms for optimizing designs with
black boxes.

x1

x2

y1

F

1x1

x2

y1

F

a1

Figure 2: Combinationally equivalent complex combina-
tional netlists: for both designs, whenx1 is 1, y1 is zero
and whenx2 is 0, y1 = F (1; x2).

4.1 Traditional Approaches

Traditionally, designs with black boxes have been syn-
thesized by making the inputs to the black boxes primary
outputs, and output of the black boxes primary inputs, and
synthesizing the simple logic [5, 1].

However, this approach is pessimistic for reasons given
in Section 1. This is illustrated in Figure 2, in which gate
a1 can be safely replaced by the constant one, even though
it is an input to the black box.

4.2 Sound and Complete Synthesis

Our approach to synthesizing combinational netlists will
be to first identify all the flexibility available for synthe-
sizing the simple portion of the netlists. This is then used
to minimize the simple logic using existing logic opti-
mization techniques. In particular, the notion of “don’t
cares” sets, i.e., inputs for which a gate can output any
value carries over from logic synthesis on simple com-
binational networks [10]; the same is true of “compati-
ble sets of permissible functions” [4, 11] is useful. The
latter correspond to subsets of the complete set of don’t
cares for individual gates with the property that gates can
be independently simplified with respect to these subsets,
without requiring that don’t cares to be recomputed.

Definition 3 Let D be a complex combinational design.
For a gateG in D onn inputs with functionfG, the input
setS � 2n is a don’t careset, if the gate functionfG
can be replaced by any functionf�G so thatf�G takes the
same values asfG on any inputc 2 f0; 1gn � S (on
inputs fromS, f�G is allowed to take arbitrary values),
while preserving the equivalence of the resulting complex
combinational design andD.

By treating the inputs and outputs of the black boxes as
primary inputs and primary outputs, we can use conven-
tional methods to compute don’t care sets for the gates of
the design. However, as illustrated in Figure 2, this ap-
proach is suboptimal. In order to compute the full set of
don’t cares at a gate we use the concept of aconsistency
network.

Let D be a complex combinational network. We con-
struct the consistency network as follows:

Step 1: Form a new netlistDPM from D: duplicateD to
obtainDdup and combineD andDdup by merging
corresponding primary inputs, and creating a single
primary output which is 1 precisely when there is a



Xn

X2

X1

CON

Y1

Ym

Y1

Ym

A11

A12

A1k

A12

A1k

G

A11

Figure 3: Redundancy removal for complex combina-
tional netlists. The netlist depicted isDCHECKER. The nodes
markedA1j are primary inputs derived from black boxes
from single varietyA; consistency logic has been shown
for a single pair. (Consistency logic exists for pairs within
a netlist too.)

primary output ofD which is not equal to the corre-
sponding primary output ofDdup.

Step 2: Replace all black boxes inDPM by primary inputs
to form the simple combinational netlistDSIMP.

Step 3: For each pair of primary inputs inDSIMP which
correspond to black boxes of the same variety in
DPM, add toDSIMP a “consistency” gate, which out-
puts1 exactly when the pair of primary inputs have
the same value or the inputs to the corresponding
black boxes fromDPM take distinct values. Call this
netlistDCONSISTENT.

Step 4: Form the gateGCONSISTENT by taking the conjunc-
tion of all consistency logic nodes and the output of
DCONSISTENT. Add this gate toDCONSISTENT; designate
GCONSISTENT to be the only primary output. Call the
resulting netlistDCHECKER; we will refer toDCHECKER

as theconsistency network.

The result of this construction is illustrated in Figure 3;
note that the resulting netlist is a simple combinational
netlist. It should be clear from the construction that the
output ofDCHECKER is 0 for any input.

4.2.1 Logic Optimization

We claim that the consistency network embodies all the
flexibility available for synthesis. In order to illustrate
this claim, we consider a simple yet surprisingly power-
ful global optimization technique known asredundancy
removal [12]. This consists of identifying gates which
can be replaced by a constant valued gate, while ensuring

that the resultant design is equivalent to the original de-
sign. These constants are subsequently used to simplify
the logic.

The concept of redundancy removal can be extended to
complex combinational netlists:

Definition 4 A gate is stuck-at-1(0) redundant in a com-
binational complex netlist when it can be replaced by
a gate taking the constant value1(0) and the resulting
netlist is equivalent to the original netlist, where the no-
tion of equivalence is that for complex combinational
netlists, as given in Definition 2.

The following theorem (the proof of which is given in
[7]) demonstrates that we can perform redundancy re-
moval on the simple logic associated withD by perform-
ing redundancy removal on the nodes corresponding toD

in the consistency network.

Theorem 4.1 Let� be any gate inD. Then� is s-a-1(0)
redundant if and only if the node corresponding to� in
DCHECKER is s-a-1(0) redundant.

More generally, one can compute don’t cares which can
be used to simplify the individual gates inD. It is tedious
but straightforward to prove an analog of Theorem 4.1
to the effect that the don’t cares computed for the gate
corresponding to� in DCHECKER are exactly the don’t cares
for � in D. This gives us a mechanism for computing the
don’t cares forD.

After simplifying gateG in D, the don’t cares for other
gates may have changed. Thus it is necessary to recom-
pute the don’t cares for the remaining gates, which is po-
tentially expensive computationally. Almost the same de-
gree of optimization can be achieved using the concept of
compatible don’t cares[4, 11]. These don’t cares can be
used independently to optimize the gates; they too can be
directly computed from the networkDCHECKER.

4.3 Experiments

In this section we report experimental results on the
synthesis of complex combinational netlists; these exper-
iments were performed in the SIS environment [12].

Specifically, we took several ISCAS benchmark cir-
cuits, and “cut out” a region of the logic internal to the
design; this was treated as a black box. We then formed
the consistency network, computed the compatible ob-
servability don’t cares for the gates as described in Sec-
tion 4.2.1, and simplified the functions for the gates using
these don’t cares [2]. All this was relatively simple to
achieve, since we were able to use the existing code for
the full simplify command in SIS which computes
compatible observability don’t cares; we simply restricted
the nodes chosen to be simplified in the consistency net-
work to be fromD and not fromDdup or the consistency
logic.

In Table 1 we provide a comparison of our procedure
with the conventional approach of making the black box



Benchmark Initial size Conventional Optimization Complete Optimization
(literals) Reduction Time (sec) BDD Size Reduction Time (sec) BDD Size

pm1 144 62 0 12 84 1 12
b9 338 124 1 52 138 4 63
i4 496 156 1 44438 318 6 44438

s208 206 34 1 35 37 2 1901
9symml 720 446 4 58 512 10 58
cordic 266 86 1 139 95 3 175
apex6 1869 988 7 454 1054 47 256
comp 404 238 0 21128 291 3 166125

Table 1: Conventional vs. complete logic optimization.

inputs and outputs primary outputs and primary inputs.
For each design, we report the initial size of the circuit,
the literal savings after optimization, the time taken for
optimization, and the size of the largest BDD built in the
course of computing the don’t cares [11].

Not surprisingly, the experiments show that there is
more reduction to be achieved by using the new proce-
dure; in many cases, this difference is substantial, e.g.,
i4 .

However, the true significance of these results is not the
amount of reduction offered; these examples do not reflect
the kind of hierarchical designs our procedure is suited
to. The main point to note is that the penalty in running
time and memory usage is not significant. Thus we feel
our procedure should take the same order of magnitude
of running time as existing synthesis routines on more re-
alistic designs, while providing substantial improvements
to the quality of the resulting design.

5 Conclusion

To summarize, we have met our goal of establishing a
sound and complete methodology for optimizing designs
containing black boxes. We formalized the notion of a
design containing black boxes, developed criterion for
equivalence, and characterized all the flexibility available
for synthesizing such designs; we pointed out the limi-
tations in existing approaches. Preliminary experiments
performed indicate that the additional flexibility can be
useful for optimization, and the increased time taken for
synthesis is acceptable. We have been offered a large hier-
archical industrial design which contains many uninstan-
tiated components; we are working on applying our pro-
cedure to it.

In the long term future, we would like to relate our re-
sults, which stem from work on logic synthesis, to high-
level synthesis. We feel existing high-level synthesis pro-
cedures lack a well defined characterization of the set
of permissible implementations; we believe we can con-
tribute to an enhanced understanding of these issues.

References
[1] D. P. Appenzeller and A. Kuehlmann. Formal Veri-

fication of a PowerPC Microprocessor. InProc. Intl.
Conf. on Computer Design, pages 79–84, Austin,
TX, October 1995.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. L. Sangiovanni-Vincentelli.Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[3] J.R. Burch, D. Dill, E. Wolf, and G. DeMicheli.
Modeling Hierarchical Combinational Circuits. In
Proc. Intl. Conf. on Computer-Aided Design, 1993.

[4] M. Damiani and G. De Micheli. Don’t care Set
Specifications in Combinational and Synchronous
Logic Circuits. Technical Report CSL-TR-92-531,
Stanford University, Computer Systems Laboratory,
Stanford, CA 94305-4055, July 1992.

[5] L. Stok et al. BooleDozer: Logic Synthesis for
ASICs. IBM J. Res. and Devep., pages 407–430,
July 1996.

[6] J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[7] Tai-Hung Liu. church.ece.utexas.edu/
˜tai/dac-bb-97.ps .

[8] David E. Long. Model Checking, Abstraction and
Compositional Verification. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, July 1993.

[9] S. Malik. Analysis of Cyclic Combinational Cir-
cuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits, 13(7):950–956, July
1994.

[10] Giovanni De Micheli. Synthesis and Optimization
of Digital Circuits. McGraw Hill, 1994.

[11] Hamid Savoj.Don’t Cares in Multi-Level Network
Optimization. PhD thesis, University of California
Berkeley, Electronics Research Laboratory, College
of Engineering, University of California, Berkeley,
CA 94720, May 1992.

[12] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj,
R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Sequential Circuit Design Using Synthesis and Op-
timization. InProc. Intl. Conf. on Computer Design,
pages 328–333, October 1992.

[13] R. E. Shostak. A practical decision procedure for
arithmetic with function symbols.Journal of the
ACM, 26(2):351–360, 1979.

[14] Vigyan Singhal.Design Replacements for Sequen-
tial Circuits. PhD thesis, University of California
Berkeley, Electronics Research Laboratory, College
of Engineering, University of California, Berkeley,
CA 94720, 1996.


	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index


