
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

Synthesis Using Sequential Functional Modules (SFMs)

Samit Chaudhuri Michael Quayle
Cadence Design Systems

2655 Seely Road, Bldg. 6, MS 6B1
San Jose, CA 95134

Abstract
This paper presents a new method used in our RTL-
synthesis tool to perform technology mapping with Sequen-
tial Functional Modules (SFMs) such as counters, accumu-
lators, shift-registers, or rotators from any target or macro
library. If the library contains SFMs, the method automat-
ically recognizes them. If an RTL design contains patterns
that can be implemented on SFMs, the method maps them
to the SFMs found in the target library. This mapping re-
duces the design time by leveraging the library developer’s
effort, leads to more regular and often smaller and faster
designs, and helps to reduce timing and routing problems
at later stages of the design process.

1 Introduction
Most high-level synthesis systems [7] map data path oper-
ations to generic Register-Transfer Level (RTL) modules to
achieve technology independence. However, in the world
of industrial design, high-level synthesis tools need to map
operations to RTL modules that exist in technology specific
target or macro libraries.

Some RTL synthesis tools [8, 10], on the other hand,
are capable of mapping data path operations to combina-
tional functional modules of technology specific target li-
braries. Such modules include adders, subtracters, incre-
menters, decrementers, or comparators. Tools with similar
capability also exist in the area of embedded processor de-
sign [6].

However, most synthesis tools lack the capability of map-
ping to Sequential Functional Modules (SFMs), such as
counters, shift registers, or accumulators. SFMs are dis-
tinguished from sequential storage modules (eg., registers,
latches) in that they perform some complex combinational
function on data before storing its value.

In a general purpose synthesis tool, capability of map-
ping to SFMs is desirable because many recent industrial
target and macro libraries (both FPGA and ASIC libraries)
contain different counters, accumulators, shift registers, and
rotators. By taking advantage of these modules, it is possi-
ble to synthesize more regular and often smaller and faster
designs.

1.1 Motivation
As an example, consider synthesizing the Verilog RTL de-
sign shown in Figure 1. In this design, the value ofi is
incremented in each clock cycle. In netlists synthesized by
most RTL synthesis tools,i is stored in a register (which

always @(posedge clock)
begin

for (i = 0; i < 4’b1001; i=i+1)
begin

@(posedge clock)
q = q << 1;

end
end

Figure 1 : RTL-level Verilog Description of a Design

is a simple sequential module), and is incremented using
an incrementer (which is a combinational functional mod-
ule). However, if the synthesis tool can map to a counter
in the target library, theni can be stored and incremented
using the counter (which is an SFM). Similarlyq can be
implemented with a shift register. This implementation is
more regular and usually has smaller area than the register-
incrementer and register-shifter implementation.

Automatic inference and mapping of SFMs during RTL
synthesis provides several advantages: (1) The SFMs in the
library are usually carefully designed and pre-routed, en-
abling the designer to leverage the library developer’s effort
and reduce the design time. (2) Typically, SFMs are not
processed during logic-level optimization and technology
mapping. This reduces the CPU and memory requirement
when performing logic synthesis. (3) Designs using SFMs
often have smaller area. (4) An SFM encapsulates a register,
some complex combinational logic, and their interconnec-
tions. Such encapsulation leads to more regular data paths
and helps reduce timing and routing problems at later stages
of the design process. (5) A netlist containing SFMs is eas-
ier to examine; the designer can easily inspect its structure
and perhaps even substitute one SFM implementation for
another.

1.2 Preliminaries and Previous Work
This paper describes a method used in our RTL synthesis
tool to perform technology-mapping with SFMs of any tar-
get or macro library. The set of supported SFMs currently
includes counters, accumulators, shift registers, and rota-
tors, and can be extended to support additional modules.

In our method, the behavior of both the design and the
library SFMs are described in a Hardware Description Lan-
guage (HDL) such as Verilog or VHDL. The method recog-
nizes patterns in the HDL description that are suitable for
SFMs. In general terms, such patterns arise from variables

submitted to ICCAD 1996 1

that are stored across clock boundaries, and are often up-
dated through arithmetic operations such as addition, sub-
traction, increment, or left shift.

If an SFM pattern is recognized in a library module, the
module is further examined to determine whether it is re-
ally an SFM, and not an arbitrarily complex module that
happens to contain an SFM pattern. If an SFM pattern is
recognized in a design, then the pattern is mapped to an ap-
propriate SFM from the target or macro library.

The problem addressed here involves automatic recogni-
tion and mapping with SFMs, where both the design and
the library are described in an HDL. Formally, the behavior
of an SFM can be described as a graph template contain-
ing cycles, conditional branches, and storage operations.
Therefore, although the problem is closely related to tem-
plate matching, tree-matching techniques presented by Aho
and Ganapathi [1], or Keutzer [5] cannot be used. Work by
Corazaoet al. [3] does not consider templates with condi-
tionals and storage operations.

Some synthesis tools such as [2, 9] recognize repeated
patterns in a behavior. However, instead of mapping the
recognized patterns onto SFMs in the target library, these
tools implement them as interconnections of simpler library
modules.

Tools such as DTAS [4] can automatically map generic
counters onto target library counters. For example, it can
implement a 8-bit generic counter using two 4-bit counters
from the target library. However, DTAS does not automati-
cally map patterns in an HDL design to 8-bit generic coun-
ters, nor can it automatically recognize 4-bit counters in the
target library (the user has to manually find the counter and
describe it in a special language).

The rest of the paper describes three major phases of our
method:

Recognition: 1. SFM Pattern recognition

2. Library SFM recognition

Mapping: Mapping SFM patterns of the design to
SFMs of the library

Binding: Determining the expressions for the control
and data inputs of the selected SFMs

2 SFM-Pattern Recognition
The first step in our method consists of SFM pattern recog-
nition in target library modules and the RTL design. For-
mally, an SFM pattern can be represented by a graph tem-
plate containing cycles, conditional branches, and storage
operations. Such a representation, although very general,
does not necessarily lead to an efficient solution. As a mat-
ter of fact, a general graph-matching algorithm will be too
expensive to be used on real-life designs.

Therefore we use a special-purpose algorithm that effi-
ciently solves the problem at hand, and we choose a sim-
pler representation of SFM patterns suitable for the algo-
rithm. This representation is based on the understanding
that an SFM implements both the LHS and the RHS of an

assignment1. So both the LHS and the RHS should be con-
sidered in an SFM pattern. The notion of an SFM pattern
can then be formalized with a (LHS, RHS) pair, calledc-
pair , which is introduced through the following definitions.
Definition 1 (c-op) A c-op denotes any arithmetic opera-
tion that an SFM can perform, and must be one of the fol-
lowing: addition, subtraction, increment, decrement, left-
shift, right-shift, or concatenate.
Definition 2 (s-op) An s-opdenotes any storage operation
that an SFM can perform, and must be one of the follow-
ing: synchronous (resp. asynchronous) set, reset, constant-
load (e.g.,x=4’b7), or parallel-load (e.g.,x=a), and no-op
(i.e.,x=x).
Definition 3 (c-rhs) A c-rhs is any expression involving
a c-op; Verilog examples are:x+1’b1 , x + a , x <<
1’b1 , and fx[3:0], 1’b0 g. (see Table 1 for more
examples).
Definition 4 (c-lhs) x is ac-lhsof an expressionf(x), if

1. x needs to be stored across clock boundaries, and

2. f(x) is a c-rhs, and has one of the patterns listed in
Table 1.

For a Verilog example, consider a c-rhsfx[3:0], 1 g.
If x[4:0] needs to be stored across clock boundaries, then
it is a c-lhs forfx[3:0], 1 g. Note that an assignment of
the formx[4:0] = fx[3:0], 1 g can be implemented
on a shift register.
Definition 5 (c-assign) If f(x) is a c-rhs andx is a c-lhs of
f(x), then assignmentx = f 0(x) is called ac-assignwhen
f 0(x) is either (1)f(x), or (2) a conditional expression with
f(x) on one branch. For a Verilog example, ifx is a c-lhs
of x+1 , then the following assignment is a c-assign

x = (ready == 1’b1) ? x + 1 : a;
Definition 6 (c-pair) The pair(x; f(x)) is called ac-pair,
if there exists a c-assignx = f 0(x). In the example used in
the c-assign definition, (x, x+1) is a c-pair.

The following example shows how c-pairs can be used in
recognizing SFM patterns.
Example 1 Suppose a variablex appears in the following
Verilog description:

@(posedge clock)
x = x + 1;
a = y + b;

@(posedge clock)
x = x + a;
y = x + a;

Although the assignmentx = x+a can be implemented
using an accumulator, the assignmenty = x+a requires
x+a to be implemented on an adder because the value of
x+a is not available at the accumulator output in the same
clock cycle. Thus it is more desirable to implementx =
x+1 with a counter,x+a with an adder, and connect the
data inputs ofx andy registers to the adder’s output.

1in contrast, a combinational functional module implements only the
RHS of an assignment, and a sequential storage module implements only
the LHS of an assignment.

2

c-rhs for counter:
x� u

c-rhs for accumulator:
x� b

x+ b1 + � � �+ bn
(x + b1 + � � �+ bk�1)� (bk + � � �+ bn)
c-rhs for shift-register (left):
x << u

fx; ug

fx[msb� 1 : lsb]; ug
fx[msb� 1 : lsb]; x[msb]g
c-rhs for shift-register (right):
x >> u

fu; x[msb� 1 : lsb]g
fx[lsb]; x[msb� 1 : lsb]g

Table 1 : Forms for c-rhs considered in Phase 1. In the
above c-rhs expressions, we assume that (i) the range of u
is a subset of f�1; 0; 1g, and (ii) the range of b is not a subset
of f�1; 0; 1g

To deal with situations as above, it is more convenient to
keep track of two c-pairs, (x, x+1) and (x, x+a). We
can first nominate both pairs as candidates: the first pair for
both a counter and an accumulator, and the second for an
accumulator only. Later we select a counter implementation
for the first pair, and reject the accumulator implementation
for the second pair.

Our recognition algorithm consists of two phases: the
first phase,Nomination, finds all possible c-pairs; the sec-
ond phase,Selection, selects the nominated c-pairs based on
a heuristic. These phases are described below.

2.1 Phase 1: Nomination of C-Pairs
The nomination phase finds all possible c-pairs in the de-
sign. It traverses each c-rhs, checks if any of its operands
is a c-lhs, and checks if the c-lhs and c-rhs constitute a c-
pair. Each such c-pair is then nominated as a candidate. The
pseudo-code of this search procedure is given in Figure 2.

During nomination of c-pairs, we consider the semantics
of each c-op (eg., sign and bit-width of the result) as speci-
fied in the particular HDL. Our current implementation re-
quires the library modules to be unsigned, although it can be
enhanced to handle signed library modules as well. If the
design uses a different number representation, then SFM
mapping is performed only when possible. For example, if
a ranged-integer variable contains a constant sign-bit, then
it may be possible to implement all bits but the msb of the
variable with an unsigned counter.

2.2 Phase 2: Selection of C-Pairs
This phase examines the c-pairs nominated in phase 1, and
selects the appropriate ones for SFM implementation. Not
every c-pair should be implemented on an SFM. In Exam-
ple 1, the c-pair (x, x+a), although nominated, should
not be implemented on an accumulator, because thenx+a
would have to be implemented twice: once inside the accu-
mulator, and once on an adder. Thus implementing a c-pair

Nominate C-Pairs:
(1) for each c-op� do

(2) for each c-rhsexp of type� do

(3) for each operandx of exp do

(4) if x is a c-lhs of ofexp then

(5) if there exists a c-assignx = g(exp) then

(6) nominate(x; exp) as a c-pair

(7) end

(8) end

(9) end

Figure 2 : Algorithm for Nominating C-Pairs

on an SFM may involve a trade-off:

SFM Trade-off: An SFM implementation of(x; f(x))
saves area, but also restricts the use of the result produced
byf(x) as follows. If(x; f(x)) is implemented on an SFM,
the result produced byf(x) can be used to updatex only,
and is not immediately available to the rest of the data path.
Therefore iff(x) is needed elsewhere, such as to update
another variable (eg.,y = f(x)), or to compute another ex-
pression (eg.,f(x) < a), then either (1)f(x) will again
have to be computed using a different module, or (2) the
computation will have to be delayed by one clock cycle. In
case (1), hardware will be allocated twice for computing the
same expressionf(x), and may lead to a larger-area design.
In case (2), computations will be delayed and may lead to a
slower design.

The above observation suggests that, while selecting a
c-pair (x; f(x)), all expressions ofx must be examined to
determine SFM trade-offs. In other words, the design must
be globally analyzed before selecting any c-pair.

2.2.1 Global-Analysis Heuristic
For each c-pair(x; f(x)), the entire design is searched for
determining SFM trade-offs. The search visits every assign-
ment whoserhs containsx, computes two quantities called
clashandoverlapand uses them to update the selection in-
formation. This process is described below.

The quantity,clash, is computed to determine whether
the result produced byf(x) is needed to computerhs. Some
examples ofclashare illustrated in Table 2, and the pseudo-
code for computingclashis presented in Figure 3.

f(x) rhs clash
x + 1 fx, 2’b0 g 1

x + 1 x + 1 - a 1

x + a x + a 0
x + a (a == 1’b1) ? y : x + a 0

Table 2 : Verilog expressions for f(x) and rhs, and their
clash

The value ofclashis interpreted as follows:

3

CLASH(f(x), g(x)):
if g(x) is a conditional expression then

for each branchgi(x) of g(x) do

brClash CLASH(f(x); gi(x))

if brClash = 0 then

clash 0

else ifbrClash=1 then

clash 1

returnclash

end

else iff(x) andg(x) are identical then

clash 0

else iff(x) is a subexpression ofg(x) then

clash 1

else

clash 1

returnclash

Figure 3 : Calculation of Clash between f(x) and g(x)

1. A clash of 1 implies thatrhs (or at least one branch
of rhs, if rhs is conditional) uses the value produced by
f(x); consequently, as explained in SFM trade-off, c-pair
(x; f(x)) is not selected.

2. A clashof 1 implies thatrhs does not use the value pro-
duced byf(x); therefore the selection of c-pair(x; f(x)) is
not affected byrhs.

3. A clashof 0 implies thatrhs (or at least one branch of
rhs, if rhs is conditional) is the same asf(x). The selection
of (x; f(x)) then depends onoverlap which is described
below.

When theclashbetweenf(x) andrhs is 0, theoverlap
betweenx and the left-hand side of the assignment is com-
puted;overlaps are illustrated in Table 3.

x lhs overlap
x y none

x[7:4] x[3:0] none
x[7:3] x[3:0] partial
x[7:3] x[7:2] partial
x[7:3] x[7:3] full

Table 3 : Verilog expressions for x and lhs, and their overlap

Example 2 We show an example of how, during selection
of c-pair (x[3:0], x[3:0]+1), clash and overlap are
used when we visit the following assignments:

1. For assignmenty = x[3:0]+1+a , clash is1, and we
disqualify (x[3:0], x[3:0]+1).

2. For assignmentx[3:0] = x[3:0]+1 , clash is 0; so
we compute overlap as “full” (see Table 3), and we favor
the selection of (x[3:0], x[3:0]+1).

WEIGH(x, f(x), assign):
lhs left-hand side of assign

rhs right-hand side of assign

clash Clash (f(x), rhs)

switch(clash)

case1:

weight �1

case0:

switch(overlap ofx andlhs)

casefull:

weight 10

casepartial:

casenone:

weight �1

end switch

case default:

weight 0

end switch

returnweight

Figure 4 : Routine for Assigning weight to a C-Pair

3. For assignmentx[3:0] = x[3:0]+1 , clash is 0; so
we compute overlap as “none” (see Table 3), and we dis-
qualify (x[3:0], x[3:0]+1).

Depending on theoverlapandclash, aweightis added to
the currentweightof (x; f(x)). The pseudo-code for calcu-
lating weights is given in Figure 4. A highweightwill en-
courage the implementation of the c-pair on an SFM. Thus
the weights guide the selection of c-pairs for SFM imple-
mentation.

After the design has been searched for all the c-pairs, only
those withweights above a certain threshold are selected.

3 Library SFM Recognition
Library SFM recognition follows the SFM-pattern recog-
nition process described in Section 2. If a library module
contains any selected SFM, then library SFM recognition is
performed to decide whether the module is really an SFM,
and not an arbitrarily complex module that happens to con-
tain an SFM pattern. Obviously, library SFM recognition is
performed only during library compilation, and not during
design synthesis.

To qualify as an SFM, a library module must contain a c-
pair, and it must also meet other constraints, some of which
are described below:

1. Module contains exactly one state

2. Module contains exactly one c-lhs, and no other regis-
ter node

3. Each operation on the c-lhs is a c-op or an s-op

4

module accum(din,reset,clk,ld,en,udn,q);
input [3:0] din;
input udn, ld, en, clk, reset;
output [3:0] q;
reg [3:0] q;
always @(reset)

if (reset == 1’b0)
assign q = 4’b0000; // async. reset

else
deassign q;

always @(posedge clk)
begin

casex (fld,en,udn g)
3’b1??: q = din; // sync. parallel-load
3’b011: q = q+din; // add
3’b010: q = q-din; // subtract

default : q = q; // no-op
endcase

end
endmodule

Figure 5 : Behavioral Description of an Accumulator in a Tar-
get Library

For example, the module in Figure 5 satisfies the above
constraints as follows: it contains exactly one c-lhs,q, and
each operation onq is either a c-op or s-op, as indicated in
the comments.

Furthermore, certain additional information about the li-
brary module is also extracted during SFM recognition.
Such information includes (i) control expression for each
c-op and s-op, and (for example, the control expression for
the add operation in Figure 5 isfld, en, udn g), and (ii)
data ports such as parallel-in, carry-in (resp. shift-in) and
carry-out (resp. shift-out) for counters/accumulators (resp.
shift registers). This additional information is used while
binding assignments to an SFM, as will be shown in Sec-
tion 5.

4 Mapping
Section 2 described a method for selecting the c-pairs in a
design. Attempts are then made to map the selected c-pairs
onto SFMs from the target or macro library. This section
describes our method of choosing SFMs from the library to
map the selected c-pairs.

Each c-lhs in the design is examined in turn, and is
mapped to the least expensive SFM in the library that can
implement all the c-ops and s-ops that are performed on the
c-lhs. The c-ops (e.g., increment, add, and left-shift) per-
formed on the c-lhs can be found from the c-pairs associ-
ated with the c-lhs. Furthermore, the s-ops (e.g., set, reset)
performed on the c-lhs can be found by examining all the
assignments to the c-lhs. Thus a set of required c-ops and
s-ops is computed.

For each required c-op or s-op, a weight is assigned to
every SFM in the library. Then the SFM with the maximum
total weight is chosen.

always @(posedge clk)
casex (m+n)

4’d08: m = y; // sync. parallel-load
4’d06: m = m+p; // add
4’d10: m = m-q; // subtract
4’d07: m = u; // sync. parallel-load

default : m = m; // no-op
endcase

Figure 6 : Design Fragment to be Mapped to an Accumulator

Each weight indicates how a particular c-op or s-op can
be implemented on a library module. For example, if the
c-lhs requires an no-op (no-operation; just retain the value
from the previous state), then a library module with no-op
capability will get a high weight. However, a library module
with no no-op can also implement no-op by using parallel
load to feed back the data from the previous state. Thus
such a library module will receive a lower weight. If the c-
lhs requires an asynchronous reset, then the library module
must have the capability for asynchronous reset; otherwise
the module will not be considered for mapping (i.e., receive
a weight of�1).

Figure 6 shows part of a design containing a c-lhsm. The
required c-ops are add and subtract, and the required s-ops
are synchronous parallel load and no-op. The library accu-
mulator of Figure 5 has capabilities for all the above opera-
tions, and hence is a good candidate for mapping.

5 Binding
After a c-lhs in the design has been mapped to an SFM in
the library, the expressions for both the data and control in-
puts of the SFM have to be specified; this process is called
binding. For example, Section 4 mentioned that the c-lhs of
Figure 6 can be mapped to the library accumulator of Fig-
ure 5. For this mapping, the subsequent binding process is
illustrated below.

The design of Figure 6 requires that whenm+n =
4’d06 , the library accumulator must perform the addition
x+p . This addition can be performed on the library accu-
mulator of Figure 5 by connecting the data inputdin to p,
and the control inputsld, en, andudn to 0, 1, and
1, respectively. A complete specification of the expressions
for the data and the control inputs of the accumulator are
shown in a concise form in Figure 7.

The above example illustrates a general method for deter-
mining the expressions of the input ports required to bind an
assignment to an SFM. Expressions for the individual ports
are later minimized using boolean optimization.

6 Results
This section presents some experimental results to show the
effect of using SFMs on the synthesized designs.

Table 4 shows the area and timing reports of some de-
signs synthesized both with and without SFMs. Design 1

5

// data inputs
casex (fm+ng)

4’d08: din = y;
4’d06: din = p;
4’d10: din = q;
4’d07: din = u;

default : din = 4’bxxxx;
endcase
// control inputs
casex (fm+ng)

4’d08: fld,en,udn g = 3’b1??;
4’d06: fld,en,udn g = 3’b011;
4’d10: fld,en,udn g = 3’b010;
4’d07: fld,en,udn g = 3’b1??;

default : fld,en,udn g = 3’b00?;
endcase

Figure 7 : Expressions for Control and Data Inputs of the the
Library Module of Figure 5.

with SFM without SFM

Design Area Longest Area Longest

Path (ns) Path (ns)

Design 1 1406 20.55 1502 20.55

Design 2 503 5.75 925 8.36

Design 3 2848 2.62 2911 10.15

Design 4 2390 2.24 2687 10.15

Design 5 1237 2.21 1418 1.86

Table 4 : Synthesis Results with and without SFMs

and 2 were synthesized using an ASIC target library that
contains SFMs, while Design 3, 4, and 5 were synthesized
using a different target library in conjunction with an ASIC
macro library. The designs are industrial examples and we
used commercially available ASIC libraries.

Each design in Table 4 contains some variables that can
be implemented on SFMs. Such variables usually exist in
address generator, clock divider, or event counting modules.
Loop index variables also often get mapped to SFMs.

The results in Table 4 demonstrate that the area and tim-
ing of the synthesized designs are improved when SFMs are
used. An apparent exception is Design 5, where timing in
fact degrades when SFMs are used. This is because of the
inefficient design of the counter in the macro library, where
the longest path goes through a control signal. Such inef-
ficiencies can be avoided by careful design of SFMs in the
library.

7 Conclusions and Future Work
In this paper, we have demonstrated that using SFMs in RTL
synthesis often improves the area and timing of the synthe-
sized design. This work can be extended in the following
ways to more effectively exploit the advantages of SFMs.

Experimental results in Section 6 showed that the timing

of a design may be adversely affected by using SFMs that
are not well-designed. SFMs in a target library, which are
not well-designed, should be avoided.

Furthermore, using complex SFMs can affect resource
sharing. For example, an accumulator encapsulates an
adder and a register, and the adder and the register can not
be shared freely (because the register stores only one partic-
ular variable, while the adder performs only those additions
that involve that variable). The effect of this restriction on
resource sharing needs to be addressed in the future.

8 Acknowledgment
The authors would like to acknowledge the contribution of
Dr. Richard J. Cloutier in this project. His initial work, and
his suggestions through later long discussions constitute an
essential part of this work.

References
[1] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code Generation

Using Tree Matching and Dynamic Programming.ACM Trans. on
Programming Languages and Systems, 11(4):491–516, 1989.

[2] C. T. Chang, K. Rose, and R. A. Walker. Cluster-Oriented Scheduling
in Pipelined Data Path Synthesis. InProc. of the IEEE International
Conference on Computer Design, Cambridge, Massachusetts, Oct. 3-
6 1993. IEEE Computer Society Press.

[3] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. M. Rabaey.
Instruction Set Mapping for Performance Optimization . In [11],
pages 518–521.

[4] N. D. Dutt and J. R. Kipps. Bridging High-Level Synthesis to RTL
Technology Libraries. InProc. of the 28th ACM/IEEE Design Au-
tomation Conf., pages 526–529, San Fransisco, California, June 17-
21 1991. IEEE Computer Society Press.

[5] K. Keutzer. DAGON: Technology Binding and Local Optimization
by DAG Matching. InProc. of the 24th ACM/IEEE Design Automa-
tion Conf., Miami Beach, Florida, June 1987. IEEE Computer Soci-
ety Press.

[6] P. Marwedel. Tree-Based Mapping of Algorithms to Predefined
Structures. In [11], pages 586–593.

[7] M. C. McFarland, A. C. Parker, and R. Camposano. The High Level
Synthesis of Digital Systems.Proceedings of the IEEE, 78(2):301–
318, Feb. 1990.

[8] M. Quayle and C. L. Huang. Complex Operator Synthesis. InProc.
of the IEEE International Conference on Computer Design, pages
514–517, Cambridge, Massachusetts, Oct. 10-12 1994. IEEE Com-
puter Society Press.

[9] D. S. Rao and F. J. Kurdahi. Partitioning by Regularity Extraction. In
Proc. of the 29th ACM/IEEE Design Automation Conf., pages 235–
238, Anaheim, California, June 8-12 1992. IEEE Computer Society
Press.

[10] B. Sharma, M. Mahmood, N. V. Zanden, and A. Ginetti. Flexible
Datapath Synthesis Using Parameterized HDL Components. InProc.
of 3rd Asia Pacific Conf. on Hardware Description Language, pages
82–85, Bangalore, India, Jan. 8–10 1996.

[11] Proc. of the IEEE/ACM International Conference on Computer-
Aided Design, Santa Clara, California, Nov. 7-11 1993. IEEE Com-
puter Society Press.

6

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

