Synthesis Using Sequential Functional Modules (SFMs)

Samit Chaudhuri Michael Quayle
Cadence Design Systems
2655 Seely Road, Bldg. 6, MS 6B1
San Jose, CA 95134

Abstract
.) always @ (osedge clock)
This paper presents a new method used in our RTL-| pegin
synthesis tool to perform technology mapping with Sequen- for (i = 0; i < 4'b1001; i=i+1)
tial Functional Modules (SFMs) such as counters, accumu- begin
lators, shift-registers, or rotators from any target or macro @(posedge clock)
library. If the library contains SFMs, the method automat- q=9-<<1
ically recognizes them. If an RTL design contains patterns end
that can be implemented on SFMs, the method maps them end

to the SFMs found in the target library. This mapping re-
duces the design time by leveraging the library developer's Figure 1 : RTL-level Verilog Description of a Design
effort, leads to more regular and often smaller and faster
designs, and helps to reduce timing and routing problems

at later stages of the design process. is a simple sequential module), and is incremented using
an incrementer (which is a combinational functional mod-
1 Introduction ule). However, if the synthesis tool can map to a counter

in the target library, then can be stored and incremented

Most high-level synthesis systems [7] map data path oper-using the counter (which is an SFM). Similadycan be
ations to generic Register-Transfer Level (RTL) modules to implemented with a shift register. This implementation is
achieve technology independence. However, in the world more regular and usually has smaller area than the register-
of industrial design, high-level synthesis tools need to mapincrementer and register-shifter implementation.
operations to RTL modules that exist in technology specific ~Automatic inference and mapping of SFMs during RTL
target or macro libraries. synthesis provides several advantages: (1) The SFMs in the
Some RTL synthesis tools [8, 10], on the other hand, library are usually carefully designed and pre-routed, en-
are capable of mapping data path operations to combinaabling the designer to leverage the library developer’s effort
tional functional modules of technology specific target li- and reduce the design time. (2) Typically, SFMs are not
braries. Such modules include adders, subtracters, increprocessed during logic-level optimization and technology
menters, decrementers, or comparators. Tools with similarmapping. This reduces the CPU and memory requirement
capability also exist in the area of embedded processor dewhen performing logic synthesis. (3) Designs using SFMs
sign [6]. often have smaller area. (4) An SFM encapsulates a register,
However, most synthesis tools lack the capability of map- Some complex combinational logic, and their interconnec-
ping to Sequential Functional Modules (SFMs), such astions. Such encap_su_latlon Ieads_to more regular data paths
counters, shift registers, or accumulators. SFMs are dis-and helps reduce timing and routing problems at later stages
tinguished from sequential storage modules (eg., registersof the design process. (5) A netlist containing SFMs is eas-
latches) in that they perform some complex combinational ef to examine; the designer can easily inspect its structure
function on data before storing its value. and perhaps even substitute one SFM implementation for
In a general purpose synthesis tool, capability of map- another.
ping to SFMs is desirable because many recent industrial L . .
target and macro libraries (both FPGA and ASIC libraries) 1.2 Preliminaries and Previous Work
contain different counters, accumulators, shift registers, andThis paper describes a method used in our RTL synthesis
rotators. By taking advantage of these modules, it is possi-tool to perform technology-mapping with SFMs of any tar-
ble to synthesize more regular and often smaller and fasteiget or macro library. The set of supported SFMs currently

designs. includes counters, accumulators, shift registers, and rota-
L. tors, and can be extended to support additional modules.
1.1 Motivation In our method, the behavior of both the design and the

As an example, consider synthesizing the Verilog RTL de- library SFMs are described in a Hardware Description Lan-
sign shown in Figure 1. In this design, the valuei ofs guage (HDL) such as Verilog or VHDL. The method recog-
incremented in each clock cycle. In netlists synthesized bynizes patterns in the HDL description that are suitable for
most RTL synthesis tools, is stored in a register (which SFMs. In general terms, such patterns arise from variables

submitted to ICCAD 1996 1

ICCAD '96
1063-6757/96 $5.00 [1996 IEEE

that are stored across clock boundaries, and are often upassignmerit So both the LHS and the RHS should be con-
dated through arithmetic operations such as addition, subsidered in an SFM pattern. The notion of an SFM pattern
traction, increment, or left shift. can then be formalized with a (LHS, RHS) pair, called

If an SFM pattern is recognized in a library module, the pair, which is introduced through the following definitions.
module is further examined to determine whether it is re- Definition 1 (c-op) A c-op denotes any arithmetic opera-
ally an SFM, and not an arbitrarily complex module that tion that an SFM can perform, and must be one of the fol-
happens to contain an SFM pattern. If an SFM pattern islowing: addition, subtraction, increment, decrement, left-
recognized in a design, then the pattern is mapped to an apshift, right-shift, or concatenate.

propriate SFM from the target or macro library. _Definition 2 (s-op) An s-opdenotes any storage operation
The problem addressed here involves automatic recognithat an SFM can perform, and must be one of the follow-

tion and mapping with SFMs, where both the design and jng: synchronous (resp. asynchronous) set, reset, constant-
the library are described in an HDL. Formally, the behavior |pad (e.gx=4'b7), or parallel-load (e.g<=a), and no-op

of an SFM can be described as a graph template contain{j.e. x=x).

ing cycles, conditional branches, and storage operationspefinition 3 (c-ths) A c-rhsis any expression involving
Therefore, although the problem is closely related to tem- 5 c-op: Verilog examples arex+1'bl , x + a, x <<

plate matching, tree-matching techniques presented by Ahoy»y1 ~ and 1x3:01. 1'b0 see Table 1 for more

and Ganapathi [1], or Keutzer [5] cannot be used. Work by exambles) {x{3:0, b

Corazacet al. [3] does not consider templates with condi- L . . .

tionals and storage operations Definition 4 (c-lhs) z is ac-lhsof an expressioff(z), if
Some synthesis tools such as [2, 9] recognize repeated 1. = needs to be stored across clock boundaries, and

patterns in a behavior. However, instead of mapping the 2. r(s) is a c-rhs, and has one of the patterns listed in

recognized patterns onto SFMs in the target library, these Table 1.

tools implement them as interconnections of simpler library) ,

modules. For a Verilog example, consider a c-{x§3:0], 1 }.
Tools such as DTAS [4] can automatically map generic If x[4:0] needs tp be stored across clock boundaries, then

counters onto target library counters. For example, it can |th|sfa c-Ihs4f(())r{x_[3.O], 13_0 }- ;lote that %n asa?nment 3f

implement a 8-bit generic counter using two 4-bit counters € Orrrﬂft([0] = {x[3:0], } can be implemente

from the target library. However, DTAS does not automati- On & shift register. _ .

cally map patterns in an HDL design to 8-bit generic coun- DEfinition 5 (c-assign) If f(x)is ac-rhs and: is a c-Ihs of

ters, nor can it automatically recognize 4-bit counters in the f(x), then assignment = f'(x) is called ac-assigrwhen

target library (the user has to manually find the counter and/' () is either (1)f (z), or (2) a conditional expression with

describe it in a special language). f(x) on one branch. For a Verilog examplexifis a c-lhs
The rest of the paper describes three major phases of ouff X*1, then the following assignment is a c-assign
method: X = (ready == 1bl) ? x + 1 : a;
. N Definition 6 (c-pair) The pair(z, f(x)) is called ac-pair,
Recognition: 1. SFM Pattern recognition if there exists a c-assign= f'(x). In the example used in
2. Library SFM recognition the c-assign definitionx(x+1) is a c-pair.

i i i The following example shows how c-pairs can be used in
Mapping: Mapping SFM patterns of the design to (ecognizing SFM patterns.

SFMs of the library Example 1 Suppose a variable appears in the following

Binding: Determining the expressions for the control Verilog description:
and data inputs of the selected SFMs @(posedge clock)
X =x+ 1
- it a=y+ b
2 SFM-Pattern Recognition Gposedgs clotk)
The first step in our method consists of SFM pattern recog- X =X+ &
nition in target library modules and the RTL design. For- y=x+a

mally, an SFM pattern can be represented by a graph tem- _ .

plate containing cycles, conditional branches, and storage Although the assignmenrt = x+a can be implemented

operations. Such a representation, although very generalising an accumulator, the assignmgnt= x+a requires

does not necessarily lead to an efficient solution. As a mat-x+a to be implemented on an adder because the value of

ter of fact, a general graph-matching algorithm will be too X+a is not available at the accumulator output in the same

expensive to be used on real-life designs. clock cycle. Thus it is more desirable to implement
Therefore we use a special-purpose algorithm that effi-X+1 with a counterx+a with an adder, an,d connect the

ciently solves the problem at hand, and we choose a sim-data inputs ok andy registers to the adder’s output.

pler representation of SFM patterns suitable for the algo-—; — . .

. : . . . in contrast, a combinational functional module implements only the

rithm. This representation Is based on the understandingkys of an assignment, and a sequential storage module implements only

that an SFM implements both the LHS and the RHS of an the LHS of an assignment.

c-rhs for counter:
T tu Nominate C-Pairs:
c-rhs for accumulator: (1) for each c-opr do
A== (2) foreach c-rhgzp of typer do
T+by+--+b, (3) foreach operand of exp do
(@ 401+ +bp1) = (bp+ -+ bn) 4) ifzisac-lhs of ofexp then
c-rhs for shift-register (left): . . ;
T << (5) if there exists a c-assign= g(exp) then
{z,u (6) nominate(z, exp) as a c-pair
{z[msb — 1 :1sb],u} (1) end
{z[msb — 1 : lsb], z[msb]} (8) end
c-rhs for shift-register (right): (9) end
r>>u
{u,x[msb—1:1sb|}]] o]
{z[lsb], x[msb — 1 : Isb]} Figure 2 : Algorithm for Nominating C-Pairs
Table 1: Forms for c-rhs considered in Phase 1. In the
above c-rhs expressions, we assume that (i) the range of u on an SFM may involve a trade-off:
is a subset of {—1, 0, 1}, and (ii) the range of b is not a subset
of {-1,0,1} SFM Trade-off: An SFM implementation of(z, f(z))

saves area, but also restricts the use of the result produced
by f(z) as follows. If(x, f(x)) is implemented on an SFM,
To deal with situations as above, it is more convenient to the result produced by(x) can be used to updateonly,
keep track of two c-pairsx(x+1) and &, x+a). We and is notimmediately available to the rest of the data path.
can first nominate both pairs as candidates: the first pair forTherefore if f(z) is needed elsewhere, such as to update
both a counter and an accumulator, and the second for aranother variable (egy, = f(x)), or to compute another ex-
accumulator only. Later we select a counter implementationpression (eg.f(z) < a), then either (1)f(z) will again
for the first pair, and reject the accumulator implementation have to be computed using a different module, or (2) the
for the second pair. computation will have to be delayed by one clock cycle. In
Our recognition algorithm consists of two phases: the case (1), hardware will be allocated twice for computing the
first phaseNomination finds all possible c-pairs; the sec- same expressiof{z), and may lead to a larger-area design.
ond phaseSelectionselects the nominated c-pairs based on In case (2), computations will be delayed and may lead to a
a heuristic. These phases are described below. slower design.

2.1 Phase 1: Nomination of C-Pairs The above observation suggests that, while selecting a

L) . o c-pair (z, f(x)), all expressions of must be examined to
The nomination phase finds all possible c-pairs in the de- joiomine SEM trade-offs. In other words, the design must
sign. It traverses each c-rhs, checks if any of its operand '

is a c-lhs, and checks if the c-lhs and c-rhs constitute a c:-;De globally analyzed before selecting any c-pair.

pair. Each such c-pair is then nominated as a candidate. Th%,z_l Global-Analysis Heuristic
pseudo-code of this search procedure is given in Figure 2. .) L

During nomination of c-pairs, we consider the semantics FOr €ach c-paiz, f(z)), the entire design is searched for
of each c-op (eg., sign and bit-width of the result) as speci- det€rmining SFM trade-offs. The search visits every assign-
fied in the particular HDL. Our current implementation re- Ment whosehs containsz, computes two quantities called
quires the library modules to be unsigned, althoughit can beclasha_ndoverllapand uses them to update the selection in-
enhanced to handle signed library modules as well. If the formation. This process is described below.
design uses a different number representation, then SFM_The quantity,clash is computed to determine whether
mapping is performed only when possible. For example, if t€ result produced b/(z) is needed to computés. Some
a ranged-integer variable contains a constant sign-bit, therfxamples otlashare illustrated in Table 2, and the pseudo-
it may be possible to implement all bits but the msb of the ¢0de for computinglashis presented in Figure 3.
variable with an unsigned counter.

] . f(z) rhs clash
2.2 Phase 2: Selection of C-Pairs X + 1 {x, 260 } 1
This phase examines the c-pairs nominated in phase 1, and i : i X ; }r :,jla 05’
selects the appropriate ones for SFM implementation. Not | | | 2 (@==1b1)? y: x +a 0

every c-pair should be implemented on an SFM. In Exam-
ple 1, the c-pairX, x+a), although nominated, should Table 2: Verilog expressions for f(x) and rhs, and their
not be implemented on an accumulator, becausethan clash

would have to be implemented twice: once inside the accu-

mulator, and once on an adder. Thus implementing a c-pair The value oftclashis interpreted as follows:

CLASH(f(x), g(x)):
if g(x) is a conditional expression then
for each brancly; (x) of g(z) do
brClash« CLASH(f(z), gi(x))
if brClash = 0 then
clash« 0
else ifbrClash= oo then
clash+ oo
returnclash
end
else if f(xz) andg(z) are identical then
clash« 0
else if f(x) is a subexpression gf{z) then
clash+ oo
else
clash«+ 1
returnclash

Figure 3 : Calculation of Clash between f(z) and g(x)

1. A clash of co implies thatrhs (or at least one branch
of rhs, if rhs is conditional) uses the value produced by
f(z); consequently, as explained in SFM trade-off, c-pair
(z, f(z)) is not selected.

2. Aclashof 1 implies thatrhs does not use the value pro-
duced byf(x); therefore the selection of c-pdit, f(x)) is
not affected byhs.

3. A clashof 0 implies thatrhs (or at least one branch of
rhs, if rhsis conditional) is the same g$x). The selection

of (z, f(z)) then depends onverlapwhich is described

below.

When theclashbetweenf(z) andrhsis 0, theoverlap
betweenz and the left-hand side of the assignment is com-
puted;overlaps are illustrated in Table 3.

T Ihs overlap

X y none
X[7:4] X[3:0] none
X[7:3] X[3:0] partial
X[7:3] X[7:2] partial
X[7:3] X[7:3] full

Table 3: Verilog expressions for « and /hs, and their overlap

Example 2 We show an example of how, during selection
of c-pair x[3:0], x[3:0]+1), clash and overlap are
used when we visit the following assignments:

1. Forassignment = x[3:0]+1+a
disqualify &[3:0], x[3:0]+1).
2. For assignment[3:0] = x[3:0]+1 , clash is O; so

we compute overlap as “full” (see Table 3), and we favor
the selection ofy([3:0], x[3:0]+1).

, clash isoo, and we

WEIGH(z, f(x), assign:
Ihs «+ left-hand side of assign
rhs « right-hand side of assign
clash« Clash(f(x), rhs)
switch(clash
caseoo:
weight+ —oo
casel:
switch (overlap ofz andihs)
casefull:
weight«+ 10
casepartial:
casenone:
weight« —oo
end switch
case default
weight« 0
end switch
returnweight

Figure 4 : Routine for Assigning weight to a C-Pair

3. For assignment[3:0] = x[3:0]+1 , clash is 0; so
we compute overlap as “none” (see Table 3), and we dis-
qualify (x[3:0], x[3:0]+1).

Depending on theverlapandclash aweightis added to
the currentwveightof (z, f(z)). The pseudo-code for calcu-
lating weighs is given in Figure 4. A highveightwill en-
courage the implementation of the c-pair on an SFM. Thus
the weighs guide the selection of c-pairs for SFM imple-
mentation.

After the design has been searched for all the c-pairs, only
those withweight above a certain threshold are selected.

3 Library SFM Recognition

Library SFM recognition follows the SFM-pattern recog-
nition process described in Section 2. If a library module
contains any selected SFM, then library SFM recognition is
performed to decide whether the module is really an SFM,
and not an arbitrarily complex module that happens to con-
tain an SFM pattern. Obviously, library SFM recognition is
performed only during library compilation, and not during
design synthesis.

To qualify as an SFM, a library module must contain a c-
pair, and it must also meet other constraints, some of which
are described below:

1. Module contains exactly one state

2. Module contains exactly one c-lhs, and no other regis-
ter node

3. Each operation on the c-lhs is a c-op or an s-op

module accum(din,reset,clk,ld,en,udn,q); always @(osedge clk)
input [3:0] din; casex (m+n)
input udn, Id, en, clk, reset; 4'd08: m =y; Il sync. parallel-load
output [3:0] q; 4'd06: m = m+p // add
reg [3:0] q; 4'd10: m = m-q; I subtract
always @(reset) 4'd07: m = u; I/ sync. parallel-load
if (reset == 1'b0) default : m = m; // no-op
assign q = 4'b0000; [/l async. reset endcase
else
deassign q; . .
always @@osedge clk) Figure 6 : Design Fragment to be Mapped to an Accumulator
begin
casex ({ld,en,udn })
3b1??: q = din; /I sync. parallel-load Each weight indicates how a particular c-op or s-op can
3'b011: q = g+din; /l add be implemented on a library module. For example, if the
3b010: q = g-din; !/ subtract c-lhs requires an no-op (no-operation; just retain the value
default : q = q; /I no-op from the previous state), then a library module with no-op
endcase capability will get a high weight. However, a library module
engrrr]%dule with no no-op can also implement no-op by using parallel
load to feed back the data from the previous state. Thus
such a library module will receive a lower weight. If the c-
Figure 5 : Behavioral Description of an Accumulator in a Tar- Ihs requires an asynchronous reset, then the library module
get Library must have the capability for asynchronous reset; otherwise

the module will not be considered for mapping (i.e., receive
a weight of—o0).

For example, the module in Figure 5 satisfies the above Figure 6 shows part of a design containing a cAh3he
constraints as follows: it contains exactly one c-lipsand required c-ops are add and subtract, and the required s-ops
each operation og is either a c-op or s-op, as indicated in are synchronous parallel load and no-op. The library accu-
the comments. mulator of Figure 5 has capabilities for all the above opera-

Furthermore, certain additional information about the li- tions, and hence is a good candidate for mapping.
brary module is also extracted during SFM recognition.

Such information includes (i) control expression for each 5§ Binding
c-op and s-op, and (for example, the control expression for

the add operationin Figure 5{&d, en, udn }),and (i) After a c-Ihs in the design has been mapped to an SFM in
data ports such as parallel-in, carry-in (resp. shift-in) and the library, the expressions for both the data and control in-
carry-out (resp. shift-out) for counters/accumulators (resp. puts of the SFM have to be specified; this process is called
shift registers). This additional information is used while pinding. For example, Section 4 mentioned that the c-lhs of
binding assignments to an SFM, as will be shown in Sec- Figure 6 can be mapped to the library accumulator of Fig-

tion 5. ure 5. For this mapping, the subsequent binding process is
illustrated below.
4 [\/[apping The design of Figure 6 requires that whemtn =

4'd06 , the library accumulator must perform the addition
Section 2 described a method for selecting the c-pairs in ax+p. This addition can be performed on the library accu-
design. Attempts are then made to map the selected c-pairgulator of Figure 5 by connecting the data indirt to p,
onto SFMs from the target or macro library. This section and the control inputd, en, andudn to 0, 1, and
describes our method of choosing SFMs from the library to 1, respectively. A complete specification of the expressions
map the selected c-pairs. for the data and the control inputs of the accumulator are
Each c-lhs in the design is examined in turn, and is shownin a concise formin Figure 7.
mapped to the least expensive SFM in the library that can The above example illustrates a general method for deter-
implement all the c-ops and s-ops that are performed on themining the expressions of the input ports required to bind an
c-lhs. The c-ops (e.g., increment, add, and left-shift) per- assignment to an SFM. Expressions for the individual ports
formed on the c-lhs can be found from the c-pairs associ-are later minimized using boolean optimization.
ated with the c-lhs. Furthermore, the s-ops (e.g., set, reset)
performed on the c-lhs can be found by examining all the 6 Results
assignments to the c-lhs. Thus a set of required c-ops and
s-0ps is computed. This section presents some experimental results to show the
For each required c-op or s-op, a weight is assigned toeffect of using SFMs on the synthesized designs.
every SFM in the library. Then the SFM with the maximum Table 4 shows the area and timing reports of some de-
total weight is chosen. signs synthesized both with and without SFMs. Design 1

// data inputs
casex ({m+n})

4'd08: din = vy;

4'd06: din = p;

4'd10: din = q;

4'd07: din = u;
default din = 4’bxxxx;
endcase

/Il control inputs
casex ({m+n})

4°d08: {ld,en,udn } = 3'b1??;
4do6: {ld,enudn } = 3'b011; 8
4°d10: {ld,en,udn } = 3'b010;
4°d07: {ld,en,udn } = 3'b1??;
default : {ld,en,udn } = 3'b00?;
endcase

Figure 7 : Expressions for Control and Data Inputs of the the

Library Module of Figure 5.

. , (1]

with SFM without SFM

Design Area | Longest | Area | Longest

Path (ns) Path (ns) 2]

Design 1 || 1406 20.55 1502 20.55
Design 2 || 503 5.75 925 8.36 3]

Design 3 || 2848 2.62 2911 10.15

Design 4 || 2390 2.24 2687 10.15
Design5 || 1237 | 221 |1418| 1.86 [4]

Table 4: Synthesis Results with and without SFMs
(5]

and 2 were synthesized using an ASIC target library that
contains SFMs, while Design 3, 4, and 5 were synthesized
using a different target library in conjunction with an ASIC
macro library. The designs are industrial examples and we
used commercially available ASIC libraries.

Each design in Table 4 contains some variables that can
be implemented on SFMs. Such variables usually exist in
address generator, clock divider, or event counting modules. [8
Loop index variables also often get mapped to SFMs.

The results in Table 4 demonstrate that the area and tim-
ing of the synthesized designs are improved when SFMs are [qg]
used. An apparent exception is Design 5, where timing in
fact degrades when SFMs are used. This is because of the
inefficient design of the counter in the macro library, where
the longest path goes through a control signal. Such inef-[10]
ficiencies can be avoided by careful design of SFMs in the
library.

6]
(7]

[11]
7 Conclusions and Future Work

In this paper, we have demonstrated that using SFMs in RTL
synthesis often improves the area and timing of the synthe-
sized design. This work can be extended in the following
ways to more effectively exploit the advantages of SFMs.
Experimental results in Section 6 showed that the timing

of a design may be adversely affected by using SFMs that
are not well-designed. SFMs in a target library, which are
not well-designed, should be avoided.

Furthermore, using complex SFMs can affect resource
sharing.
adder and a register, and the adder and the register can not
be shared freely (because the register stores only one partic-
ular variable, while the adder performs only those additions
that involve that variable). The effect of this restriction on
resource sharing needs to be addressed in the future.

For example, an accumulator encapsulates an

Acknowledgment

The authors would like to acknowledge the contribution of
Dr. Richard J. Cloutier in this project. His initial work, and
his suggestions through later long discussions constitute an
essential part of this work.

References

A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code Generation
Using Tree Matching and Dynamic Programmin§CM Trans. on
Programming Languages and Systefii§4):491-516, 1989.

C.T.Chang, K. Rose, and R. A. Walker. Cluster-Oriented Scheduling
in Pipelined Data Path Synthesis.Rroc. of the IEEE International
Conference on Computer Desjg@ambridge, Massachusetts, Oct. 3-
6 1993. IEEE Computer Society Press.

M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. M. Rabaey.
Instruction Set Mapping for Performance Optimization . In [11],
pages 518-521.

N. D. Dutt and J. R. Kipps. Bridging High-Level Synthesis to RTL
Technology Libraries. IiProc. of the 28th ACM/IEEE Design Au-
tomation Conf.pages 526-529, San Fransisco, California, June 17-
21 1991. IEEE Computer Society Press.

K. Keutzer. DAGON: Technology Binding and Local Optimization
by DAG Matching. InProc. of the 24th ACM/IEEE Design Automa-
tion Conf, Miami Beach, Florida, June 1987. IEEE Computer Soci-
ety Press.

P. Marwedel. Tree-Based Mapping of Algorithms to Predefined
Structures. In [11], pages 586—-593.

M. C. McFarland, A. C. Parker, and R. Camposano. The High Level
Synthesis of Digital System$roceedings of the IEEE8(2):301—
318, Feb. 1990.

] M. Quayle and C. L. Huang. Complex Operator Synthesi®rbe.

of the IEEE International Conference on Computer Desjgpges
514-517, Cambridge, Massachusetts, Oct. 10-12 1994. IEEE Com-
puter Society Press.

D. S. Rao and F. J. Kurdahi. Partitioning by Regularity Extraction. In
Proc. of the 29th ACM/IEEE Design Automation Cppages 235—
238, Anaheim, California, June 8-12 1992. IEEE Computer Society
Press.

B. Sharma, M. Mahmood, N. V. Zanden, and A. Ginetti. Flexible
Datapath Synthesis Using Parameterized HDL Componerfson

of 3rd Asia Pacific Conf. on Hardware Description Languaggges
82-85, Bangalore, India, Jan. 8-10 1996.

Proc. of the IEEE/ACM International Conference on Computer-
Aided DesignSanta Clara, California, Nov. 7-11 1993. IEEE Com-
puter Society Press.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

