
Forschungszentrum Informatik, FZI
Systementwurf in der Mikroelektronik (Prof. W. Rosenstiel)
Haid-und-Neu-Straße 10-14, D-76131 Karlsruhe, Germany

E-mail: kunzmann/seepold@fzi.de

Arno Kunzmann  Ralf Seepold

Enhanced Functionality by Coupling the
JESSI-COMMON-Framework with an ECAD Framework ✽

✽) This research is supported by the ESPRIT project 7364.

Abstract

Within the electronic CAD domain there exist several
frameworks each with a different set of services, which
results in the specific support of dedicated design activi-
ties. One of the most innovative framework systems is the
JESSI-COMMON-Framework (JCF). In contrast to JCF, a
widespread ECAD framework (called FMCAD) has nearly
complementary goals: while JCF offers strong support for
working with consistent data concurrently, the basic func-
tionality of FMCAD heavily supports the designer. In order
to combine the advantages of both frameworks, a new
hybrid framework was developed by combining JCF and
FMCAD. As described in the paper, this ultimate goal
could not yet be reached, but the achieved results and
experience with the existing prototype emphasize that this
integration and encapsulation could be very helpful for
future frameworks.

1 Introduction
CAD frameworks [Ramm92] provide many different

services to support the development of complex designs.
These developments are typically based on teams working
with a large number of different dedicated tools which
require highly flexible design systems. In the domain of
electronic CAD, very often, tools of different vendors have
to be combined to form one common, efficient design envi-
ronment ([Seep94a] and [Seep94b]). In addition, the com-
bination of company-specific customization and modelling
techniques form a highly complex system with many inter-
relationships. Frameworks can be regarded as a software
infrastructure which support tool integration, concurrent
engineering and modelling techniques to meet the goals of
managing and handling these design environments. In
order to demonstrate the broad range of offered framework
services, some frameworks will be briefly described in the
following.

Most of the existing frameworks offer different levels of
integration. For instance, the JESSI-COMMON-Frame-
work (JCF) ([Stei92] and [Over]) supports three integra-

tion levels, ranging from simple black-box integration up
to very tight white-box integration. The main advantages
of JCF are its combination with very powerful design man-
agement features and different versioning techniques
[Lieb92]. Having a differing focus, the CADENCE™
Design Framework II (DFII) [Cade] provides more func-
tionality at the integration and customization level, and
offers a large number of integrated tools for IC design.
Design management and concurrent engineering are only
rudimentarily supported by the standard DFII and may
cause consistency problems. An important representative
framework of the academic world is the Nelsis framework
[Bosc91]. Compared with JCF, Nelsis supports a more
flexible design flow management, but Nelsis lacks the
strong concurrent engineering and configuration possibili-
ties. In contrast to the JCF release 3.0, Nelsis provides
open interfaces for tight tool integration. The Ulysses
framework [Pari94] mainly supports distributed environ-
ments and automatic execution of tools by dynamic net-
work load balancing and task debugging. Specific designer
assistance is offered by so-calledDesign Consultants like
CADEC [KC92], the Bretschneider approach [Bret91] or
Handicap [Stra94]. The MCC [Alle91] system focuses
very strongly on process control and load balancing. The
latter task is also supported by the FLOPPY [Quel94] and
FLOW [Kash92] system.

The described subset of existing frameworks emphasize
that each approach is a stand-alone approach, focused on
certain domains and application profiles, which conse-
quently results in limited capabilities. In order to combine
the strengths of the available frameworks, a very important
future task is to overcome the existing local boundaries
and to form combined framework-based systems.

In this paper, two nearly complementary frameworks
have been selected for inter-framework coupling: JCF and
a widespread ECAD framework, called FMCAD. The
main goal is to combine the powerful design management,
concurrent engineering and configuration management
with the FMCAD framework, which provides powerful
integrated tools and a very flexible customization lan-
guage. In order to closely couple these framework isles
one framework has to be the master and the other must be



the slave in the coupling scenario. Due to its functionality,
JCF was chosen to be the master. Furthermore, it was
decided that the hybrid framework prototype should con-
tain a couple of different FMCAD tools (schematic entry,
layout editor and a simulator). In order to couple the frame-
works properly, the different data models have to be
mapped onto each other. The following section introduces
the JCF and the FMCAD framework models before the
mapping and encapsulation procedures are described. The
evaluation results and conclusions are reported in Sections
3 and 4 of this paper.

2 JCF and FMCAD Mapping
In order to build an efficient hybrid framework by cou-

pling JCF and FMCAD, the individual information models
have to be mapped onto each other. In most cases, nota-
tions and information models differ greatly. To introduce
and motivate the selected mapping, both the JCF and the
FMCAD information model architectures will be presented
in this section. The current encapsulation of the FMCAD
tools is described in the final sub-section.

2.1  JESSI-COMMON-Frame 3.0 Architecture
The main architecture components which are important

for coupling the different models are presented in Figure 1.
JCF makes a clear distinction betweenresources and

project data. Resources are defined by the framework
administrator. Each user becomes a member of the appro-

priate teams and these teams can be used to support
projects. Similar to this definition of teams, eachdesign
flow has to be defined in advance, and therefore, it will
become part of theresources and can be regarded as meta-
data. The metadata are completely under the control of the
framework.

The project organization is described bycells and rela-
tionships betweencells. The cell consists of the attached
flow andteam. Theversion mechanism enables an instanti-
ation of the samecell which is called acell version. Each
cell version may contain a modifiedflow as well as a differ-
ent team. Inside thecell version there exists a second ver-
sioning mechanism which is called avariant. The users
have the ability to derive many differentvariants of the
sameflow in onecell version to store the modifications and
to select the optimal design solution.

Flows are fixed and cannot be modified, i.e., the user
must follow the flow constraints. Furthermore, thework-
space concept of JCF allows only one user to work on a
particularcell version if this cell version is reserved in his
privateworkspace. Other users are only allowed to read the
published parts of the design data. When the work is fin-
ished, the cell can bepublished and then be modified by
other users. Thisworkspace concept is the kernel of the
JCF multi-user capabilities.

Metadata and design data are stored in the common
object-oriented database OMS [Meck92]. In case of encap-
sulation, the required data are copied to and from the data-
base via the UNIX file system. Direct access to the internal

Figure 1. Information architecture of JCF 3.0 (in OTO-D format [Bekk92]) [vdH94]

Part

Cell
Version

Direct.
Path

Design Obj
Version

equivalent derived

Active Exec
Version

Active Exec
Version

precedes

uses

Variant

CompOf
hierarchy

Cell

Project

has
entry

Config.
Version

Configu-

Precedes

Activity
Proxy

Flow

Needs of
VersionNeeds of

VersionNeeds Creates

ViewType

Activity

Tool

Design
Object

ration

Configu-
rations

Flows
Activities

Project
structure

Variants

Design data

Team



structure of the stored data by an appropriate interface is
not possible.

2.2  FMCAD Architecture
In contrast to JCF, the FMCAD stores the design data

not in a common database, but in libraries. The library con-
sists of a UNIX directory and the related.meta-file
describes the contents of the directory (metadata). The log-
ical data objects are namedcells, views, cellviews, cellview
visions andconfigurations. Figure 2 gives a brief descrip-
tion of the architecture. Acell is the basic design object. It
forms an individual building block of a chip or system. It is
a logical, rather than a physical design object. Eachcell has
one or morecellviews.

A view is one type of representation, such as schematic
or layout. Aview has a name and is of one specificview-
type. The viewtype associates theview with a certain
FMCAD application, for example the layout editor. Aview
is also a logical design object.

A cellview is a virtual data file created in association
with a cell and aview. It is more a logical than a physical
design object.

A cellview version is the data file of acellview at a par-
ticular time. Versions are created by checkout/checkin
operations. Acellview can have more than oneversion.
Theversion models the link to the design file in the file sys-
tem.

A configuration is a collection ofcellview versions that
are related. For eachcellview, at maximum oneversion can
be part of theconfiguration.

The FMCAD tools run on top of the framework and
each part of the system can be modified by an extension
language. FMCAD provides all necessary interfaces and
inter-tool communication (ITC), e.g., cross-probing
between the schematic editor and layout editor. The view-
type concept is very flexible and it allows viewtypes to be
easily switched with the same tool.

In FMCAD it is possible to have multi-user access to a
library. However, the concurrent access to acellview object
is controlled by a checkin/checkout model. The checked-
out version is theversion which a user is working on. Only
oneversion of acellview can be checked-out at a time. This
means that only one user can change acellview at a time. It
is not possible for two users to work on two differentver-
sions of acellview in parallel. The refreshment of the meta-
data objects is not performed automatically, and therefore,
it is the responsibility of the designer to keep his design up
to date. Of course, this aspect may cause severe locking
problems during the design process.

FMCAD supports non-isomorphic hierarchies because
the hierarchies depend on theviewtypes. The dynamic hier-
archy binding without storing what belongs to what rela-
tionships (by always using the default version of a
cellview) is difficult to handle because the history of the
development is not stored. In contrast to JCF, the metadata
(hierarchy relationship) are not stored separately, and are
part of the design data.

2.3  Data Model Mapping
After the presentation of the different framework infor-

mation architectures, the mapping of the data model has to
be performed. The starting point is the decision which
framework should be the master and which should be the
slave in the coupling environment.

Due to the fact that the JCF framework offers much
more efficient concepts in the area of design management
and multi-user support, and FMCAD efficiently supports
the incorporated design tools, it was decided that JCF was
to be the master.

To summarize the possible mapping of the information
models, Table 1 shows the current mapping strategy. For
example, the FMCAD’sLibrary object can be mapped on
the JCFProject object.

Figure 2. Information architecture of FMCAD [vdH94]

Config in
Config

CVV in
Config Property

Layout
Version

Schema
Version

Symbol
Version

Layout
Schema

Symbol

Symbol
in Sch.V

CellView
Version

CheckOut
Status

CellView

Cell

Library

View

Viewtype

Config

Locked
Flag

.Project

=ViewSubType

.File



Hierarchy is a key feature in VLSI design. Here, the two
frameworks offer conflicting approaches: while in
FMCAD design hierarchies are specified within the design
files, JCF uses separated metadata that must be submitted
manually via the JCF desktop. For the common JCF-
FMCAD environment, this implies that first the complete
design hierarchy information has to be defined and passed
to JCF. In this case, JCF can completely control the data
consistency of versioned hierarchical designs.

Table 1: JCF - FMCAD mapping

Unfortunately, the usage of hierarchies is limited by the
problem of non-isomorphic hierarchies, since, for exam-
ple, the hierarchy of theviewtype schematic can differ
from the hierarchy of theviewtype layout. Since, in con-
trast to FMCAD, JCF 3.0 does not yet support non-isomor-
phic hierarchies, these kinds of hierarchies are not
supported by the current hybrid JCF-FMCAD environ-
ment.

2.4  Encapsulation
The current JCF-FMCAD encapsulation scenario con-

tains three different FMCAD tools:
• Schematic entry tool

• Layout entry tool

• Digital simulator tool.

Since each tool is modelled by one JCF activity, JCF
records all derivation relationships between schematic and
layout versions. In the new JCF-FMCAD environment, the
flow management features of JCF are available to support
the designer’s work. Due to the closed interfaces of JCF,
FMCAD’s ITC could not be used normally. Special wrap-
pers and additional software helped to reduce potential
drawbacks in the current environment and enabled activity
execution when its predecessor was not yet finished and
guaranteed consistency by additional windows which
appear in the FMCAD tool environment. The customiza-
tion of the encapsulation was extended by several exten-
sion language procedures to trigger functions and lock
menu points in order to prevent data inconsistency.

3 Results
In order to discuss the main achievements of the hybrid

JCF-FMCAD framework approach, the evaluation results
are summarized below. The basic criteria cover technical
criteria, design management services and performance
aspects.

JCF object FMCAD object

Project Library

CellVersion Cell

ViewType View

DesignObject Cellview

DesignObjectVersion Cellview Version

3.1  Multi-User Design and Concurrency Control
 If IC designs are composed of several JCF cells, the

standard multi user capabilities of JCF can also be used in
the JCF-FMCAD environment. Using the JCF workspace
concept, individual cells can be reserved and isolated from
access by other users. Standard FMCAD does not provide
this flexible method of controlled data access: there is only
one .meta file per project, and the access of all designers
working concurrently in this project has to be explicitly
coordinated. This may cause severe locking problems.
While in FMCAD parallel work on different versions of
the samecellview is not possible, the JCF-FMCAD frame-
work provides this feature. Not yet possible in JCF or in
the combined framework is data sharing between projects.
It would be helpful to also provide access to cells of other
projects.

3.2  Design Management and Data Consistency
Compared with FMCAD, JCF-FMCAD provides a

more flexible design management functionality. For
instance, FMCAD offers a rather simple versioning mech-
anism, while JCF-FMCAD provides a two-level versio-
ning approach: versioning ofcells, and versioning of
design objects(within a cell). A second example addresses
hierarchy information that is stored in JCF metadata, while
in FMCAD this information is hidden in the design files.
This results in a more powerful data consistency check in
JCF-FMCAD. Another essential new design management
feature would be the possibility to control the entities:
users, teams, tools andflows and their relationships. These
entities cannot be distinguished within FMCAD.

3.3  Handling of Design Hierarchies
Handling of design hierarchies was one of the most dif-

ficult tasks during the JCF-FMCAD encapsulation. It is
important to note that FMCAD is very flexible in design
hierarchy manipulations, but this feature is compensated
by poor consistency control of versioned hierarchical
designs. Here, JCF provides much better support. The
existing JCF-FMCAD prototype requires that all hierarchi-
cal manipulations must be done manually via the JCF
desktop before the design is started. In the future, this
drawback could be overcome by a JCF procedural inter-
face which might be used by the design tools to pass the
hierarchy information to JCF. However, JCF release 3.0
does not support this feature. Another major problem is
caused by non-isomorphic hierarchies, i.e., functional and
physical hierarchies differ. This feature will be supported
in future releases of JCF.

3.4  User Interface
In the existing JCF-FMCAD prototype system, the

designer has to work with both the FMCAD and JCF user
interface. In spite of the fact that JCF conforms with the
major user interface standards (using X-Windows and
Motif) and some kind of intuitivelook&feel, the user has
to cope with an extra user interface.



3.5  Flow Management and Derivation Relations
 Standard FMCAD does not support flow management

capabilities. Since the FMCAD user can invoke all design
tools in a very flexible manner, related data management
cannot be provided, and therefore, neither derivation rela-
tions nor the what-belongs-to-what information is availa-
ble. Since JCF provides all these features, the combined
JCF-FMCAD framework provides a solution, but in a
slightly restricted way, since a designer is forced to use
design-specific flows. These flows can only be defined and
changed by the project manager, and the specified order in
which tools can be executed is prescribed and fixed for the
designer. This may lead to some acceptance problems on
the one hand, but on the other hand forced design flows
can be used to ensure quality aspects by forcing the suc-
cessful execution of the required tools.

3.6  Performance
This aspect is of less importance since the main aspect

of the inter-framework coupling is functionality. The per-
formance of metadata operations in the JCF-FMCAD envi-
ronment is sufficiently high. These operations are based on
the JCF desktop methods. For design data manipulations
the performance is strongly dependent on the amount of
data: While the time delay for small designs is acceptable,
more complex and realistic designs may cause problems,
mainly due to the fact that design data have to be copied to
and from the JCF database even in the case of read only
accesses.

4 Conclusion and Future Work
With the described hybrid JCF-FMCAD framework

prototype it could be demonstrated that a combination of
frameworks with different basic architectures and individ-
ual design support services can provide enhanced function-
ality. The most important resulting features are the support
of concurrent engineering and design management, basic
services of JCF, and the flexible handling of design hierar-
chies, one of the main advantages of the standard FMCAD
environment. In the JCF-FMCAD system, the latter feature
could only be basically implemented due to the restricted
JCF hierarchy management. The other stated goals could
be reached, and therefore, the described connection
between the JCF and the FMCAD framework improved
the functionality of the stand-alone and isolated systems.

Acknowledgement
The authors would like to thank Hans Kok and Kees

Lepoeter (Philips Research, NL) for their constructive dis-
cussions and important contributions to this work and the
prototype implementation.

References
[Alle91] W. Allen, D. Rosenthal and K. Fiduk “The MCC

CAD Framework Methodology Management Sy-
stem”28th DAC, pages 694–698, 1991.

[Bekk92] J.H.ter BekkeSemantic Data Modelling Prentice
Hall, Englewood Cliffs, 1992.

[Bosc91] K.O.ten Bosch and et al. “Design Flow Manage-
ment in the Nelsis CAD Framework”28th DAC,
pages 711–716, 1991.

[Bret91] F. Bretschneider, Ch. Kopf and M. Zolg “Process
Control for Large Complex Systems”Winter Si-
mulation Conference, 1991.

[Cade] Cadence release 4.2.2 documentationCadence
Design Framework II Reference. CADENCE.

[Kash92] Y. Kashai “Flow - A Concurrent Methodology
Manager”EDAC, pages 20–24, 1992.

[KC92] E. Kwee-Christoph, B. Eschermann, O. Haberl,
R. Kumar and A. Kunzmann “The CADEC VLSI
Design Support Methodology”CompEuro, 1992.

[Lieb92] D. Liebisch and A. Jain “JESSI-COMMON-
FRAMEWORK Design Management – The Me-
ans to Configuration and Execution of the Design
Process”Euro-DAC, pages 552–557, 1992.

[Meck92] A. Meckenstock and D. Zimmer “Concept and
Architecture of a Distributed Object-Oriented Da-
tabase Kernel” Technical Report Cadlab Report
13/92, CADLAB Paderborn, 1992.

[Over] JCF 3.0 System Overview.Documentation belon-
ging to JCF release 3.0. ESPRIT Project 7364.

[Pari94] S. Parikh, D. Sarnoff and M.L. Bushnell et al.
“Distributed Computing, Automatic Design and
Error Recovery in the ULYSSES II Framework”
EDAC, pages 610–617, 1994.

[Quel94] T. Quellenberg, J. Schubert and G.v. Bueltzings-
loewen “FLOPPY - A Flow Management for On-
Line Processes in Production Systems”IMSE Eu-
ropean Workshop on Integrated Manufacturing
Systems Engineering, 1994.

[Ramm92] F. J. Rammig and B. Steinmüller “Frameworks
und Entwurfsumgebungen”Informatik-Spektrum
(1992) 15, pages 33–43, 1992.

[Seep94a] R. Seepold and A. Kunzmann “Basic Require-
ments for an Efficient Inter-Framework-Commu-
nication” 4th International Conference IFIP WG
10.2 Working Conference on Electronic Design
Automation Frameworks, Nov 1994.

[Seep94b] R. Seepold, J. Schubert, A. Kunzmann and
U. Weinmann “Modelling a FPGA Design Flow
in the JESSI-COMMON-FRAMEWORK”The
10th ISPE/IFAC International Conference on
CAD/CAM, Robotics and Factories of the Future
CARs and FOF, pages 680–685, Aug 1994.

[Stei92] B. Steinmüller and et al. “JCF-Start-up Phase Fi-
nal Version” Technical Report JCF/CADLAB/
053-02/01-June-92, Internal Report, ESPRIT Pro-
ject 7364, Jun 1992.

[Stra94] M. Straube, W. Wilkes and G. Schlageter “HAN-
DICAP - A System for Design Consulting”DAC,
1994.

[vdH94] P. van den Hamer, H. Kok and K. Lepoeter “Pri-
vate Communication” Internal Discussion, 1994.


	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index


