Controlling Change Propagation and Project Policies in IC Design

Yves Mathys, Marc Morgan, Salma Soudagar

Semiconductor Systems Design Technologies, Motorola Inc.

Abstract changes are propagated across data dependencies, and

Today's large IC designs involve highly partitioned, which actions are performed upon each change detection.
highly coupled and voluminous design data evolving overThus, the project BluePrint formalizes design methodolo-
time. Tracking design state is becoming an essential comgies and enables their reuse.
ponent of design tracking systems. As in the NELSIS data flow tool [Wolf90], we divided

In this paper we present the project BluePrint, a design the project BluePrint information into:
data flow management tool which is an extension to the < theconfiguration information which specifies the
DAMOCLES tracking system. The project BluePrint is design data views tracked in the project flow and
event driven. It defines project data dependencies and con- the relations between them, and
trols change propagation. The BluePrint allows the sepa- « therun-time information which controls how
ration of project specific information from tool activities design activities modify the state of the project data.
facilitating tool integration. The project BluePrint follows We extended the configuration information of the
the non-obstructive approach championed by the project BluePrint by adding the meta-data model consist-
DAMOCLES tracking system. ing of a set of properties associated to each view and the
inheritance scheme used for version control.

We present a new concept of run-time informattbme,

Today's IC design process incorporates additional toolsrun-time engine, which controls change propagation
to automate the process, to improve design quality or toacross relationships. This engine is awent driven
provide better power and timing analysis. Design data ismachine. Design activities transmit information (such as
viewed from different perspectives. For instance, thethe modification of design data, or designer information
descriptions of an IC circuit as seen through the specifica-about the interpretation of simulation results) to the Blue-
tion by the customer, the system designer, the logicPrint by sending events through the computer network.
designer or the layout engineer are all different but must beJpon reception of a design event, the run-time engine
correlated. The increasing number of EDA tools and of propagates throughout the meta-data the event by selec-
design representations, also called desigmws compli- tively traversing the data relationships. When a change
cates the tracking of the project state for designers. Bypropagation occurs, the state of the design is updated
project state, we mean information about the data reflectinstantly. Designers can retrieve the state of the project by
ing its consistency and validation related to a design flow,performing queries. Therefore, designers know exactly
expressing how tools and data are correlated. As the comwhat data still needs to be modified before reaching a
plexity of the design flow increases, it becomes critical for planned state in the project.
design tracking systems to capture and to manage complex The event driven model simplifies the interface
design flows [Katz85,Cas90,Liu90,Sil89]. The success ofbetween the EDA tool set and the tracking system. The
a tracking system depends heavily on its ability to accom-tools are encapsulated in wrapper programs which are
modate a variety of design flows and project methodolo-independent of the design flow. The BluePrint allows to
gies. Tool integration and minimal system tracking capture the entire information about the design flow and to

1: Introduction

overhead are critical issues for a tracking system. implement design policies for enforcing the project meth-
In this paper, we present a design data flow manageodology.
ment tool, theproject BluePrint an extension to our track- The rest of the paper is organized as follows. In the next

ing system for managing IC design development, section, we present the DAMOCLES meta-database. Sec-
DAMOCLES [Va92,Ma92]. The project BluePrint enu- tion 3 discusses in detail the project BluePrint and its inte-
merates the views which are tracked, describes the relagration into the DAMOCLES tracking system. Section 4
tionships between views, specifies how design stategives a quick comparison of DAMOCLES to related work.

2: DAMOCLES meta-database scripts called wrapper programs. These scripts post event
, messages to the BluePrint. An event message consists of
The DAMOCLES system relies on a database, Wherean event name, a propagation direction (either up or down

information abogt the desigr_1 data is stored. This ,metafthrough the links), a target OID and optional arguments:
database modelizes the project data and the relationship

among design views. The meta-data model defines the
design’s state for each particular design view.
DAMOCLES manages data repositories, called work-
spaces by associating them to a meta-database.

postEvent ckin up reg,verilog,4 “logic sim passed”

As shown in the figure below, the design activities are
converted to events and sent to the project BluePrint,
where they are queued. The BluePrint engine processes the

The DAMOCLES meta-database contains information ueue of events by applying the BluePrint instructions to

%beot;téztfad:;jf; ((jrz‘ae'r(;rr?cee?jcgyd;iﬁs)igg&?;ﬁt d(;?]rtriﬁzgondst e target OID and updating the meta-data information.
which is defined by a triplet of block-name, view-type and Events are processed sequentially, first-in first-out.
version number. DAMOCLES PROJECT SERVER

The relationship between the design objects are repre- Rules:
sented in the meta-database lbgks Different types of LR when event do ...
relations can be specified, such as hierarchy, derivation, state = ($sim == ok
dependency, equivalence, etc. A Link object can be anno-
tated by property/value pairs. DAMOCLES distinguishes
between two classes of Links: use links which represent
hierarchy and derive links which represent other relation-
ships (derivation, etc.).

Links are used in DAMOCLES to propagate events design event
from one OID to another. The events, which are produced meta-database
by design activities, can be propagated in either direction design event message que
through the Link. Each Link has a PROPAGATE property
which enumerates events which are allowed to propagate Figure 1 BluePrint architecture
through it.

The third type of meta-data objects @enfigurations, 3.2: BluePrint description
which consist of a set of database addresses, referencing
OIDs and Links. This implementation results in light
weight configuration objects, which can be used to store
results of volume queries.

The Configuration management mechanism combines
version history of different data blocks into one configura-
tion instance which can be considered as a higher level o
description of data across time. Configurations can be use
to save the state of the design hierarchy in a snapshot at
each step of the design cycle. They can be built by travers-

ing a hierarchy while following certain rules, or can be Configuration information . .
made as a result of a query, in which case they will be a Template rules enumerate for each view the properties
non-hierarchical set of data ' and links which should be attached to the view. For exam-

ple, a view LayoutGDSII might have a property DRC and
3: The project BluePrint a link which indicates that LayoutGDSII was derived from
the view EdifNetlist.
Template rules are used by the BluePrint to setup new
The information produced by data transactions and toolOIDs and Links as they are created by design activities.
activities, such as creation, deletion, validation or modifi- Each time the BluePrint is informed of a new OID being
cation, is used to track the state of the design. created, it finds the corresponding view in the BluePrint
The integration of design tools into DAMOCLES and attaches properties and Links to the new OID. It
should be kept simple since we face a large number ofhould be noted that OIDs are instances of views defined

tools. The invocation of the tools is encapsulated into shellin the BluePrint. These new properties can either be copied
or moved from the previous version of the OID, or simply

BluePrint engine

A

Prior to processing any event, the BluePrint must be
initialized by the project administrator; this is done by

reading in an ASCII file which contains a set of rules

which the BluePrint applies to the meta-database upon
?eception of each event. Two types of rules are supported:
{emplate rules, which describe the configuration informa-
jon, and run-time rules, which apply to the run-time

ngine.

3.1: Tracking information flow

created on the new version. Property names are nearly all
defined by the project administrator although certain

generic property names are strongly recommended.

create new OID

OID:
view = GDSI|
block = alu
version = 6

" Prop: DRC = ok — copy property

view GDSII
property DRC default bad copy
endview / / \
property default value COPY or MOVE
name for 1st version property from

previous version

Figure 2 Example of a template rule for a property
of view GDSII

Run-time engine

view = NetLish<_- - "y~~~ - -~
block = alu move link
version = 8

block = alu
version = 6

PROPAGATE = OutOfDate
TYPE = derive_fro

create new OID

view GDSII

link_from NetList propagates OutOfDate type derive_from MOVE
endview

Figure 3 Example of a template rule for a derive
link from view NetList to view GDSII

The design state of an OID is given by the value of the
OID’s property. When several properties are attached to
the same OID, the state of the OID can be given by a con-
tinuous assignment combining the value of several proper-
ties (e.g. my_state = ($simulation == ok) and ($DRC ==
good)). Such an assignment is continuously being reevalu-
ated. Continuous assignments are defined in the template
rules of a view, like properties and links.

In the same way, each time the BluePrint is informed of
a new Link being created, it finds the corresponding link in
the BluePrint and attaches the template properties to th
new Link. The main property of a Link is named PROPA-
GATE and contains a list of events which can propagate
through instances of the link. Derive links also have a
TYPE property which specifies the type of relationship the
link expresses. A link’s type is not directly used by the
BluePrint. Link types are, in a way, like comments which
help the user in visualizing the data flow and propagation
model. Common types of derive links are:

« composition which models the hierarchical decom-
position of data,

 equivalence which ties alternative representations
together (e.g. VerilogNetList and EdifNetlist) (see
also the equivalence plane in [Katz86]),

« depend-on which expresses dependance on a tool
version or a process file,

 derive-from, which expresses that a data view is
derived from another view.

Aside from the template rules, the BluePrint supports
run-time rules which specify what action is to be per-
formed each time a new event is received:

« the properties of the target OID candssigned new

values.
E.g.: when checkindo oid_is_checked_out = false;
last_check in_date = $dadene

 a script can bexecuted (i.e. to send warnings to

users, to invoke tools)
E.g.: when checkindo notify “$owner: Your oid
$0ID has been modifiedfone

a new event can hmosted to a specific OID (as in

example 1 below) or directly propagated from the

current OID (as in example 2):

E.g.1: when checkin do post behavioral_sim_ok
down to VerilogNetListdone

E.g.2:when checkindo postout_of dateup done

The examples above show what actions might be taken

Note that the use link does not specify a parent viewWhen a checkin event is received.

name; since a use link represents hierarchy within a view,

the parent and child views of the use link are of the same When the BluePrint receives an event X which is tar-
view type (e.g. a use link might link OID <cpu, SCHEMA, deted at an OID Y, it processes this event in the following

4> to its hierarchical component <reg, SCHEMA, 2>).

manner. The run-time engine starts by finding the target
OID Y in the meta-database, and the corresponding view
and run-time rules in the BluePrint. Any run-time rules

with assign actions are then executed and all continuougation for the BluePrint, which is based on views, links and
assignments of the OID are reevaluated. The next stevent messages. The golden view of this design flow is the
consists in invoking the scripts which are listed in the execschematic which can be generated automatically by syn-
run-time rules. Finally, the run-time rules which post new thesis and/or manually with the editor.
events are executed. Having executed all three types of
run-time rules, the run-time engine can proceed in propa-
gating the event X as well as any new event which was (HDL model)9 Simulato
posted by a post-type run-time rule. T N
The prop_agation of an event f_rom a tz_argeF O_ID_T to (Synthesis Iib)% Synthesis tool (Waves)
other OIDs in the meta-database first consists in finding all 7
the links of OID T. Then for each link, the event is passed
on to the OID at the other end of the link if the link propa-
gates the given type of event and if the direction of the link \
matches the up or down direction specified in the event |Schematic editC@(Schematic)
message. This process is repeated for each OID receiving \/

Sch. generatol

an event. Netlister
Different BluePrints can be defined for each project, or
for each phase of a project, by writing a new set of rules in (Netlist)9 Simulator

an ASCII file and re-initializing the BluePrint mechanism. T
In this way, early in the design cycle, when the data has not L ¢ edit (W)
yet been validated and changes occur very often, the Blue- ayout editor aves
Print can be “loosened” thereby limiting change propaga- V.

é(Layout)9

tion. DRC LVS

3.3: Tool scheduling

Tool scheduling is implemented by the wrapper pro- Figure 4 Classical representation of a sample
grams. The program queries the meta-database, requesting design flow
the permission to access data and to run the tool. The per-
mission is given based on the state of the input data. For
example, prior to running a simulation, the wrapper makes

) " hdl_sim “result’
sure that the input netlist is up to date. HDL model
The run-time information specifies the action to be per-
formed upon the reception of a design event. This simple,

Synthesis lib
yet powerful, scheme leads naturally to implementing

automatic tool invocation. Let’s take an example where the
netlister has to be invoked every time a new version of %
schematic is promoted (checked in) to the project work- 2
space. The run-time rule would be:

when ckin do execnetlister.sh “$0I1D"done hierarchy

”

. . S . nl_sim “result
where the netlister.sh is a shell script invoking the -

netlister tool and $OID is a built-in environment variable
specifying the schematic OID which received the ckin
event.

Tool scheduling supports partially or fully automated
design flows which reduce both the risk of errors and the
design cycle time.

drc “result”

aouajeAinba

Ivs “result”

) hierarchy
3.4: Example of a BluePrint

This section discusses the case of a simple design flow. Figure 5 BluePrint representation of the same
The figures below show a classical representation of the design flow
flow, which is based on tools and views, and the represen-

In this example, the project administrator has chosen tothat each time the designers check in a new version of the
track five views. The views for the output of simulations schematic, the uptodate property will be set to “true”. In
were deliberately left out and replaced by event messagefact, these two rules are added to all the views (or rather to
which indicate how the results were interpreted by athe special default view which applies to all the views).
designer. The synthesis library is tracked so that the instal- The syntax for the schematic view would also include
lation of a new version of the library will automatically the hierarchical use link and the derived link from the
invalidate data which depends on it. The netlist view is HDL model which are mentioned above:
tracked in order to receive the event message with the use_link move propagatesutofdate
result of simulation. link_from HDL_model move propagatesoutofdate

type derived

Lets take a closer look at a typical scenario. A group of The two links propagate the outofdate event so that
designers starts out by writing an HDL model for their new when such an event is posted from CPU HDL_maodel, the
design. The top block name is CPU. So they create an OIICPU schematic and all of its hierarchical components
<CPU.HDL_model.1>. They then simulate the model and receive the event. Both links are tagged with nave
get a negative result. In order to tag the OID as not passingeyword to indicate that when a new version of an OID is
simulation, we add a sim_result property to the created, these links are automatically shifted from the old
HDL_model view in the BluePrint. This property has a version to the new version. For instance, if a new OID
value of “bad” each time a new OID is created and is mod-<REG.schematic.2> were created, the use link between
ified each time an hdl_sim event is received. The syntaxxCPU.schematic.1> and <REG.schematic.1> would be

for the HDL_model is therefore: shifted to link <CPU.schematic.1> to <REG.schematic.2>.
property sim_resuldefault bad
when hdl_simdo sim_result =$arg done The BluePrint in this example has been set up to auto-

The variable $arg contains the message passed by thenatically create a new netlist each time a new schematic is
wrapper program of the simulator. It could typically con- checked in. This is done with the syntax:
tain messages like “4 errors” or “good”. when ckindo execnetlister ‘$oid” done

where $oid contains the name of the OID which was

The designers then modify their model and save it as gust checked in and is passed to the netlister script which is
new version <CPU.HDL_model.2>. They run the simula- a wrapper program for the netlister tool. In this way, when
tion again and this time get a “good” result. They then syn-the designers synthesize their design, the OID
thesize the design from their model. This creates OIDs<CPU.netlist.1> is automatically created. In order to mark
<CPU.schematic.1> and <REG.schematic.1>. The secondhis OID as out of date when they modify either the CPU
OID is part of the hierarchy of the CPU schematic. It has aHDL model or its schematic, a derive link is added from
use link (hierarchical link) which points to it from the CPU the schematic view to the netlist view which propagates
schematic. Now the designers look at their CPU schematiche outofdate event.
and decide to change part of the design so they modify
their HDL model thereby creating a new OID Having described most of the features of the BluePrint
<CPU.HDL_model.3>. In order to mark the schematic asfor this example, we include below the complete descrip-
being out of date, we put a derived link in the BluePrint tion of the BluePrint:
between the HDL model and the schematic and we have # note: keywords appear frold and
this link propagate an outofdate event. In this way, when 4 eyent names appearitalics
they check in their new model <CPU.HDL_model.3>, the blueprint EDTC_example
ckin event is used to post an outofdate event to all the view default
derived views. This is implemented in the BluePrint by property uptodatedefault true

adding a run-time rule to the HDL_model which posts an .
. . . h k t te =t t outofdat
outofdate event to all views which are linked to the HDL when ckin do uptodate = truepost outofdatedown

model upon reception of a check in event: done
por P ' when outofdatedo uptodate = falsdone
when ckin do postoutofdatedown done endview

and by adding to the schematic view an uptodate prop-
erty and a run-time rule which takes into account the out-
ofdate event:

property uptodatedefault true

when outofdatedo uptodate = falsdone

The uptodate property has a default value of “true” so

view HDL_model
property sim_resuldefault bad
whenhdl_simdo sim_result =$arg done
endview
view synth_lib

endview
view schematic

property nl_sim_reslefault bad

property Ivs_resdefault not_equiv

let state = ($nl_sim_res == goodhd ($lvs_res ==
is_equiv)and ($uptodate == true)

link_from HDL_model propagates outofdatetype
derived

link_from synth_lib move propagates outofdate
type depend_on

use_link move propagate®utofdate

whennl_simdo nl_sim_res =$arg done

when ckin do Ivs_res ="$oid changed by$user”;
postlvs down “$lvs_res” done

when ckin do execnetlister ‘$oid” done

view netlist

property sim_resuldefault bad

link_from schematicpropagatesnl_sim outofdate
type derived

whennl_simdo sim_result =$arg done

endview

view layout

property drc_resuldefault bad

property Ivs_resultdefault not_equiv

let state = ($drc_result == goodid ($lvs_result ==
is_equiv)and ($uptodate == true)

link_from schematigropagateslvs, outofdataype
equivalence

whendrc do drc_result =$arg done

whenlvsdo lvs_result =$arg done

when ckindo lvs_result ="$oid changed bybuser”;
postlvsup “$lvs_result” done

5: Conclusion

We introduced a project BluePrint concept capturing
data flow information and providing full control over
change propagation to the project administrator. The
project BluePrint defines and maintains the definition of
the state of the project.

Our approach differs from other works by including the
meta-data model to the data flow definition and by provid-
ing a very flexible run-time engine which allows the prop-
agation of design changes across the data relationships.
This mechanism precisely captures a design flow and mon-
itors the state of the data during the design process. The
flexibility of the run-time engine allows to automate tool
execution or to enforce tool scheduling. The separation of
project policy specific information from tool activities
leads to a generic interface which facilitates the tool inte-
gration.

A prototype of the project BluePrint has been devel-
oped and integrated to the DAMOCLES meta-data server.
We are currently investigating ways to incorporate the
notion of design tasks to the project BluePrint which gives
a higher level of description of design activities and their
environment. In addition, we are working on a graphical
interface to visualize the design state relative to its flow.

6: References

[Cas90] Casotto, A. et alDesign Management Based on
Design Tracesin 27th Design Automation Conference, pp.136-
141, 1990.

[Hil90] F. Bretscheider et al., Knowledge Based Design Flow
Management, Proc ICCAD 90 (1990).

[Katz85] Katz,R.H.,Information Management for Engineer-
ing Design Springer-Verlag, 1985.

[Katz86] Katz, RH,A Version Server for Computer-Aided
Design Datain 23rd. Design Automation Conference, pp 27-33,
1986

[Liu90] Liu,L.C. et al,Design Data Management in a CAD

4: Related work Framework Environmentn the 27th Design Automation Con-
ference, pp 156-161, 1990.

In the NELSIS framework the data flow management is Ma921 Y. Mathvs. V. Vasud Tracking desi hodol
driven by design activities, whereas DAMOCLES has an Ogj inalig) A]Mb CitEé’S:EbAéngfvan, racking design methodo
observer approach to design flow control. This approach ~gjigg] Mario Silva et al.Protection and Versioning for OCT
makes DAMOCLES a light weight system which is per- in 26th. Design Automation Conference, pp 264-269.
ceived as non obstructive to the designers since it does not [UI89] M. Bushnell et al., “Automated Design Tool Execution
impose a methodology. in the Ulysses Design Environment”, IEEE, Trans. on Computer-

. : : : Aided Design 8(3) March 1989.

In gontrast with NELSIS, the project BIuePr_lnt prOVId.eS [Va92] Vg.’ Vas(uzjevan et aDAMOCLES, An Observer-Based
a flexible scheme for controlling the propagatlon of deS|gnApproach to Design TrackindCCAD 92.
changes. This scheme allows to define the state of data as [wolf90] P. Van der Wolf et aMeta data Management in the
the result of a sequence of design tasks and to model &IELSIS CAD FramewoylACM/IEEE Design Automation Conf.
variety of relationships between the design views. 1990.

HILDA [Hil90] and ULYSSES [UI89] have provided
mechanisms for selecting the appropriate CAD tools to
achieve current design goals. In practice, we found that

designers prefer to have full control over design activities.

endview
endblueprint

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

