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Abstract: A rational-function hybrid-parameter model for gen-
eral multiconductor transmission lines is derived from a spectral-
method solution of the telegrapher equations, using Chebyshev
polynomials to represent spatial variation. Time-domain macro-
model is then generated by a recursive convolution algorithm
which can be simulated efficiently with arbitrary terminations.
Results from a transient simulator implementing the approach are
presented to demonstrate the accuracy, efficiency and stability of
the derived macromodel.

I. INTRODUCTION

Today's high-speed logic families, with subnanosecond
switching speeds, demand that the physical interconnections
such as in multichip modules and printed circuit boards conform
with the results of distributed-element theory. The design of
state-of-the-art VLSI circuits, therefore, requires accurate and effi-
cient simulation tools for transmission lines (modeling inter-
connections) terminated in  linear/nonlinear networks.

Among numerous simulation techniques available, one ap-
proach [1]-[5] solves the telegrapher equations (associated with
general transmission lines) in the frequency domain. Inverse fast
Fourier transform or numerical (analytical in some cases [5]) in-
verse Laplace transform is then used to transform the frequency-
domain data into an equivalent time-domain description (known
as the impulse-response or Green's function). The dynamic inter-
action of the transmission line with the terminal networks is
evaluated by convolving the impulse-response with the port
variables. The long duration of the impulse response often re-
quires computation that increases quadratically with the simula-
tion time. The numerical inverse transform techniques require
numerous samples of the frequency-domain function. In addition,
some of the frequency-dependent matrix parameters have wide fre-
quency spectrums and often do not become zero as the frequency
approaches infinity. The high-frequency limiting values of these
parameters cannot, in general, be determined analytically.
Consequently, the band-limiting action of the inverse transform
techniques will introduce ringing and aliasing error in the im-
pulse response data.

To avoid the time-consuming direct convolution, a recursive
convolution technique has been developed [6] that requires the
impulse-response to be expressed as sum of exponentials in time
domain (i.e. rational-function approximations in s-domain, s
being the Laplace transform variable). Pade approximation (and a
moment matching technique) used for this purpose [7]-[9] has
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limited accuracy and often suffers from the instability problem in
the form of right-half plane poles. Modifications, such as
enhanced moment matching [10] and multi-point moment match-
ing [11], cannot be extended to include nonuniform transmission
lines in the absence of a generalized moment computation tech-
nique and because of the aforementioned stability problem [12].
An alternative recursive convolution formulation employing ex-
ponentially decaying polynomial approximations (for the im-
pulse-response [12]) guarantees stable impulse-response, and is
applicable to nonuniform lines and frequency-varying parameters
but requires large number of samples of the frequency-domain
function to achieve high accuracy.

This paper describes a spectral method with Chebyshev
polynomials as the basis functions to solve the s-domain  teleg-
rapher equations. Chebyshev expansion, representing the spatial
variation [13], provides an accurate time-domain solution for the
general transmission line problem but requires the computation-
ally expensive evaluation of a matrix exponentials at each time
step. In this work, the accuracy and generality of the spectral
technique are fully exploited to derive a frequency-dependent h-
parameter description of a transmission line. The formulation
also yields a rational function expansion for the h-parameter
network function in partial fraction form. In addition, a common
set of poles is generated for all the elements of the h-parameter
matrix which greatly simplifies the transient simulation scheme.
The extracted rational function model and a recursive convolution
algorithm are then used to construct a time-domain macromodel
that can be easily implemented in a circuit simulator. The macro-
model can also be incorporated as a submatrix in the MNA
(modified nodal analysis) matrix of the overall circuit. The advan-
tages of the proposed method over the other techniques are in its
generality, flexibility,  computational stability and its compati-
bility with conventional circuit simulators such as SPICE. The
method permits the construction of a macromodel of arbitrary or-
der without experiencing the instability problem inherent in Pade
approximation and is general in that it is applicable to both uni-
form and nonuniform lines. It can provide SPICE-like accuracy at
a speed comparable to the techniques that employ Pade approxi-
mation.

 Section II describes the spectral method used to obtain an s-
domain h-parameter representation of a transmission line
system. Section III describes the macromodel and the transient
simulation scheme based on recursive convolution of impulse-re-
sponse with piecewise-linear port voltage and current waveforms.
The implementation of the approach in a prototype transient
simulator TRAIN is also described. In Section IV, representative
examples are presented to illustrate the accuracy and efficiency of
the method. Conclusions and suggestions for future work are pre-
sented in Section V.

II. TRANSMISSION LINE HYBRID PARAMETER MATRIX

The telegrapher equations in the s-domain for a system of N-
conductor transmission lines can be written in matrix form as

d

dx

V(x, s)

I (x, s)






= −
0 R(x) + sL (x)

G(x) + sC(x) 0






V(x, s)

I (x, s)






   (1)



where V(x,s)  and I(x,s)  are, respectively, the voltage and current
vectors of length N; R , L , C , and G  are, respectively, the per-
unit-length resistance, inductance, capacitance and conductance
matrices. The per-unit-length parameters are functions of the
distance coordinate x for nonuniform lines.

In general, (1) can not be solved analytically. The
Chebyshev expansions of V(x,s)  and I(x,s) with respect to the
spatial variable x will be used to formulate a numerical solution
to (1). The properties of Chebyshev polynomials, such as
orthogonality, greatly facilitates the mathematical formulation.
Since Chebyshev polynomials are defined on the interval
[-1,+1] whereas transmission-line problems are usually for-
mulated  in the interval [0, l], a change of variable ′x =  2x/l -1
is necessary. The transformed equation is

  

d

d ′x

V( ′x , s)

I ( ′x , s)






=

− 1
2 l

0 R( ′x ) + sL ( ′x )

G( ′x ) + sC( ′x ) 0






V( ′x , s)

I ( ′x , s)






 (2)

A transmission-line system with N conductors can be con-
sidered as a 2N-port linear network. The h-parameter represen-
tation of the network can be written as

V(+1,s)

I (−1,s)






= H(s)
V(−1,s)

I (+1,s)






, (3)

where H(s)  is the frequency-dependent hybrid parameter matrix.
In order to evaluate H(s)  as a function of s, each per-unit-length
parameter is expanded in a Chebyshev series. Truncation of the
series gives a finite degree polynomial with minimal maximum
error for the chosen number of terms [14]. Substituting these ex-
pansions for per-unit-length parameters, voltage and current in
(2) and requiring the weighted error to be orthogonal with the ap-
proximating Chebyshev polynomials, a set of algebraic equa-
tions for the undetermined expansion coefficients are obtained.
The solution of the related matrix equation is then used to
calculate the frequency-dependent h-parameter matrix. To
simplify the description, the case of a single-conductor line will
be described. Extension to a multiconductor-line system is
straightforward.

2.1. Hybrid parameters of a single transmission line

For a single-conductor line, the vectors in (2) are replaced by
the corresponding scalars V, I, R, L, C and G. Here and in what
follows, the dependence of the line voltage and current on the
Laplace transform variable s will be suppressed for notational
convenience. The Chebyshev  expansions are as follows:

R( ′x ) = ′√rkTk ( ′x )
k=0

NC −1
∑ , L( ′x ) = ′√lkTk ( ′x )

k=0

NC −1
∑ ,

G( ′x ) = ′ √gkTk ( ′x )
k=0

NC −1
∑ , C( ′x ) = ′√ckTk ( ′x )

k=0

NC −1
∑ ,

V( ′x ) = ′ √vk Tk ( ′x )
k=0

∞
∑    (4a),    I( ′x ) = ′ √ik Tk ( ′x )

k=0

∞
∑    (4b),

dV

d ′x
= ′ √vk

∗
Tk ( ′x )

k=0

∞
∑       (5a),   

dI

d ′x
= ′ √ik

∗
Tk ( ′x )

k=0

∞
∑       (5b).

The prime on the summation symbol means that the first term
should be halved before beginning to sum. The expansion

coefficients for the voltage (current) derivative √vk
∗

(√ik
∗

)  are

related to the expansion coefficients for the voltage (current)
√vk (√ik ) by [13]

√vk =
1

2k
√vk−1
∗ − √vk+1

∗[ ] (6a), √ik =
1

2k
√ik−1
∗ − √ik+1

∗[ ] (6b)

for k=1, 2, ..., ∞. Defining the vectors (of length NC)

  
√v = √v1 √v2 L √vNC[ ]T,     

  
√v
∗ = √v0

∗ √v1
∗

L √vNC−1
∗[ ]T ,

similarly defining √i  and √i∗, and truncating the expansions in
(4) after NC terms and those in (5) after NC-1 terms, (6) can  be
expressed in  convenient matrix form:

√v = QD√v
∗

(7a),         √i = QD
√i
∗

      (7b)

where QD is an NCXNC square matrix with the following entries
for ith row and jth column

QD (i, j) =

1
2i for j = i

− 1
2i for j = i + 2

0 otherwise










for i, j = 1, 2, ..., NC.

Using boundary voltage at ′x = − 1 and boundary current at

′x = + 1, respectively, from (4) and invoking  the  properties

Tk (+1)=1 and Tk (−1) = (−1)
k

 one obtains

V( ′x ) = V(−1) + √vk Tk ( ′x ) − (−1)k[ ]
k=1

NC
∑ (8a)

I( ′x ) = I(+1) + √ik Tk ( ′x ) − 1[ ]
n=1

NC
∑ . (8b)

Inserting these, the truncated expansions for the derivatives from
(5), and the expansions for the line parameters into (2) leads to:

  

′ √vi
*

Ti ( ′x ) =
i=0

NC −1
∑ − 1

2 l *

′
i=0

NC −1
∑ ( √ri + s√li ) √i j

1
2 Ti+ j ( ′x ) + 1

2 T|i− j|( ′x ) − Ti ( ′x )[ ]j=1

NC
∑

 
  
− 1

2 lI(+1) ′ ( √ri + s√li )Ti ( ′x )
i=0

NC −1
∑       and (9a)

  

′ √ii
*Ti ( ′x ) =

i=0

NC −1
∑ − 1

2 l
′

i=0

NC −1
∑

( √gi + s√ci ) √v j
1
2 Ti+ j ( ′x ) + 1

2 T|i− j|( ′x ) − (−1)
j
Ti ( ′x )[ ]j=1

NC
∑

  
− 1

2 lV (−1)
′
( √gi + s√ci ) Ti ( ′x )

i=0

NC −1
∑ , (9b)

where use has been made of the triple-recursion formula [14]

Ti ( ′x )T j ( ′x ) = 1
2 Ti+ j ( ′x ) + T|i− j|( ′x )[ ]. Taking the

Chebyshev inner product ⋅ , Tk ( ′x )  for k=0,1,..., NC on both

sides of (14) and noting that [14]



Tm ( ′x ), Tn ( ′x ) =

0 m ≠ n

π m = n = 0

π / 2 m = n > 0






one obtains  2NC linear algebraic equations  in matrix form:

√v
* = ( √X R + s √X L )√i − ( √ER + s √EL )I(+1) (10a)

√i
* = ( √XG + s √XC )√v − ( √EG + s √EC )V (−1), (10b)

where
  
√X R (i, j) = 1

2 l √ri−1 − 1
2 √ri+ j−1 + √r|i− j−1|( )[ ],

  
√XC (i, j) = 1

2 l (−1)
j

√ci−1 − 1
2 √ci+ j−1 + √c|i− j−1|( )[ ]

for i, j = 1, 2, ..., NC,  √X L  is defined similar to √X R ,  √XG  is

defined similar to √XC ,

  
ER = 1

2 l √r0 √r1 √r2 ⋅ ⋅ ⋅ √rNC −1






T

and EL , 
EG , 

EC   are similarly defined.

Equations (10a) and (10b) can be expressed in compact form:

√v
∗

√i
∗







= √X RG + s√X LC( ) √v
√i







− √ERG + s√ELC( ) V(−1)

I(+1)






(11)

where √X RG =
0 √X R

√XG 0






; √X LC =
0 √X L

√XC 0






;

√ERG =
0 √ER

√EG 0






; √ELC =
0 √EL

√EC 0






.

Equations (7)  and (11) can be readily solved to obtain the ex-
pansion coefficients for the line voltage and current:

√v
√i







= s √X LC − (Q − √X RG ){ }−1
√ERG + s √ELC( ) V (−1)

I(+1)






, (12)

where  Q =
QD

−1
0

0 QD
−1









  .

Using boundary values V(+1) and I(-1) from (8) and noting that

Tk (+1)=1 and Tk (−1) = (−1)
k

 one obtains

V (+1)

I(−1)






=
V (−1)

I(+1)






+ F
√v
√i







, (13)

where F =
P 0

0 −P






 and P is a row-vector of length NC:

P = 2 0 2 ⋅ ⋅ ⋅ 1 − (−1)
NC





.

Substituting (12) into (13) finally yields

V (+1)

I(−1)






=  H(s)  
V (−1)

I(+1)






 with (14)

H(s) = U2 + F s √X LC − (Q − √X RG ){ }−1
√ERG + s √ELC( ),

where U2 is  a unit matrix of order 2. Straightforward manipula-
tions  yields

H(s) = √D + √C(sU2NC
− √A )

−1 √B , (15)

where √A = (Q − √X RG ) √X LC
−1

, √B = √ERG + √A √ELC

√C = F √X LC
−1

,   and √D = U2 + F √X LC
−1 √ELC .

Here, use has been made of the identity:

s(sU2NC
− √A )

−1 = U2NC
+ √A(sU2NC

− √A )
−1

= U2NC
+ (sU2NC

− √A )
−1 √A

.

One can immediately notice the similarity between (15) and the
transfer-function matrix of a linear time-invariant system de-

scribed in the classical state-variable form, with √A  being the

state-transition matrix. √D  represents the direct transmission
term and is the high-frequency limiting value of the h-parameter
matrix since the remaining term of H(s) is a strictly proper ra-
tional function which tends to zero as s → ∞ .

2.2. Hybrid parameters of a multiconductor transmission line

The h-parameter matrix of a multiconductor line can be
computed in a manner analogous to the one for a single-conductor
line. In this case, however, the following column vectors of
length N*NC will replace the corresponding quantities for the
single-conductor case:

  

√v =

√v1
√v2
M

√vN
















;      

  

√i =

√i1
√i2
M

√iN

















;      

  

√v
∗ =

√v1
∗

√v2
∗

M

√vN
∗



















;      

  

√i
∗ =

√i1
∗

√i2
∗

M
√iN
∗



















The nth entries of √v  ( √i ) and √v
∗

 ( √i
∗

), respectively, contains the
expansion coefficients of the voltage (current) on the nth

conductor Vn ( ′x )  ( In ( ′x ) ) , and its derivative:

√vn = √vn,1 √vn,2 ⋅ ⋅ ⋅ √vn,NC[ ]T ;

√vn
∗ = √vn,0

∗ √vn,1
∗ ⋅ ⋅ ⋅ √vn,NC −1

∗[ ]T
√in = √in,1

√in,2 ⋅ ⋅ ⋅ √in,NC[ ]T ;

√in
∗ = √in,0

∗ √in,1
∗ ⋅ ⋅ ⋅ √in,NC −1

∗[ ]T .
Following the same procedure as in the case of a single conductor
results in an  expression in the state-space form which is identi-
cal to the expression (22). The derivation will not be presented
here due to space limitation. It is to be noted, however, that the

dimensions of  √A , √B , √C , and √D .are, respectively, 2N*NCX2N
*NC,  2N*2NCX2N,  2NX2N*NC,  2NX2N.

III. TIME-DOMAIN MACROMODEL

The time-domain description of the transmission line, corre-
sponding to the frequency-domain relation (3), may be expressed
by the convolution integral:

v(+1, t)

i(−1, t)






= h(t)∗
v(−1, t)

i(+1, t)






= h(t − τ )
v(−1, τ )

i(+1, τ )




0

t∫ dτ , (16)



where h(t) (the impulse-response matrix) is the time-domain
inverse of H (s). To facilitate efficient recursive evaluation of

convolution,  (sU2NC
− √A )

−1
 in (15) is expressed as [15]

(sU2NC
− √A )

−1 =
1

s − λk

q
k

p
kk=1

2NC
∑ , (17)

where qk  and  Pk  are, respectively, right and left eigenvectors of
√A  associated with the eigenvalue λk . It is to be noted that qk is

a column vector and Pk is a row vector of length 2NC, and

  

p
1

p
2
M

p
2NC



















= q
1

q
2

L q
2NC







−1

.

Substituting (17) into (15) leads to the rational function
expansion of  H(s)  in partial fraction form:

H(s) = √D +
1

s − λk

kkk=1

2NC
∑ , (18)

where kk = √Cq
k

p
k

√B is the k th residue matrix corresponding

to the pole λk . An important feature of the rational function ex-

pansion (18) is that all the entries of H(s) have the same set of
poles. This common denominator property, which is a natural
outcome of the formulation, simplifies the transient simulation
routine  and greatly  reduces the computational effort. The
impulse response matrix is readily obtained as

h(t) = √Dδ (t) + exp(λkt) kkk=1

2NC
∑ . (19)

In a transient simulation scheme, it is convenient to assume the
port voltage and current waveforms as linear functions of time be-
tween successive time steps. The convolution integration from
time point t to t + ∆t  of the piecewise-linear port variables with
the impulse response function (19) may then be carried out
analytically yielding the recursive formulation:

v(+1, t + ∆t)

i(−1, t + ∆t)






= h
v(−1, t + ∆t)

i(+1, t + ∆t)






+ ck (t + ∆t)
k=1

2NC
∑ (20)

where               h = √D + βkkkk=1

2NC
∑ , (21)

ck (t + ∆t) = exp(λk∆t)ƒck (t) + αkkk
v(−1, t)

i(+1, t)






,

and ƒck (t + ∆t) = ck (t + ∆t) + βkkk
v(−1, t + ∆t)

i(+1, t + ∆t)






with         αk =
1

λk

exp(λk∆t) − 1

λk∆t
− 1









   and

βk =
1

λk

exp(λk∆t) +
1 − exp(λk∆t)

λk∆t









 .

Recursive convolution is effected by updating the vectors ƒck 's at

each time point by using the port voltages and currents obtained
from the solution of the combined linear and nonlinear circuit.
Equation (20) is amenable to the development of Thevenin and
Norton type time-varying circuit model representation of the
transmission line. In an MNA formulation for the network equa-
tions, (20) needs to be manipulated before being assimilated into
the global MNA matrix. These manipulations permit one to ex-
press the MNA stamp for the transmission line as

i(−1, t + ∆t)

i(+1, t + ∆t)






= y
v(−1, t + ∆t)

v(+1, t + ∆t)






+ iok(t + ∆t)
k=1

2NC
∑ (22)

where iok (t + ∆t) = exp(λk∆t)ƒiok (t) + αkTk k
v(−1, t)

i(+1, t)






,

ƒiok (t + ∆t) = iok (t + ∆t) + βkTk k
v(−1, t + ∆t)

i(+1, t + ∆t)






,

y =
h21 − h22h12

−1
h11 h22h12

−1

−h12
−1

h11 h12
−1









 ,   T =

−h22h12
−1

UN

−h12
−1

0









 .

Here, hij (i, j = 1 or 2) are NXN submatrices of the 2NX2N matrix
h defined in (21). The circuit models, based on (21), have been
implemented in a prototype transient analyzer for interconnect
networks (TRAIN). The trapezoidal algorithm of numerical
integration is used to derive time-varying  Norton equivalents for
the reactive elements. These linear one-port models consist of
constant resistances and time-varying voltage or current sources
computed and updated at each time point. An iteration scheme
based on Newton-Raphson algorithm is used to linearize
nonlinear elements. The transient simulation proceeds in a time
marching fashion. At each time step t, a linear system of
equations is solved iteratively and the solution is then used to
update  the time-varying  current  sources  so that the transient
analysis can be carried out at time step t + ∆t .

IV. EXAMPLES AND NUMERICAL CONSIDERATIONS

To illustrate the accuracy, efficiency and versatility of the
proposed method, results for representative circuits are presented
and compared, where possible, with the results given by the sim-
ulator SPICE3E. All CPU times are for an IBM RS6000/530 ma-
chine.

 The first example involves a single-conductor parabolic
RLC line with R(x)=Ro(1+ax)2 , L(x)=Lo(1+ax)2  and
C(x)=Co(1+ax)2 , where Ro=3Ω /cm, Lo=2.5nH/cm and
Co=1pF/cm. The line has a length of 10 cm and a tapering factor

  1+ al = 2 . It is driven by a CMOS inverter (βn=7.5X10-3,

βp=7.5X10-3 and Vtn=|Vtp|=1V) and is terminated in a 0.5 pF
capacitor. The nonuniform transmission line was modeled in
SPICE3E by a cascaded network of 10 uniform RLC lines. The
output voltage responses due to a trapezoidal input waveform of 5
ns pulse width and  0.2 ns rise/fall time are compared in Fig. 1.
The agreement between the two results is excellent. The number
of terms (NC) in Chebyshev series used in TRAIN was 15 and the
step size was ∆t = 25 ps. The CPU time for TRAIN simulation
was 0.8 s and that for SPICE3E simulation (REL=1) was 66 s.

Fig. 2 shows the TRAIN output waveforms for the parabolic
line computed using different order of approximations NC=7, 10
and 15. The step size ∆t  =25 ps for the three simulations. The



three waveforms are almost identical except in the vicinities of
the fast-varying portions where the waveform is characterized by
oscillations when NC is small. In general, increasing the order of
approximation has two effects: the low-frequency  poles are  com-
puted more accurately and additional high-frequency poles are
generated that enhances the high-frequency details of the
estimated waveforms. A value of NC greater than 15 will hardly
be necessary for the present-day speed requirements in digital
circuits. The proper choice of the  approximation order will be
dictated by the application, the time step used in transient
simulation, and the expected nature, such as presence or absence
of sharp edges, of the waveforms.

The next example is intended to demonstrate the generality
of the proposed method.  A tri-conductor nonuniform coupled
lossy line was simulated by TRAIN. The geometry and  the termi-
nations  of  the  microstrip structure is shown in Fig. 3. L and C
matrices, as a function of distance, were computed using the soft-
ware tool CAP2D [16]. The spatial dependence of R matrix was
taken into account by considering the resistance to vary in-
versely with the conductor width. Least-square polynomial for
each entry of the parameter matrices was computed and the
Chebyshev expansion was then evaluated analytically from this
fitted polynomial. For a kth order interpolating polynomial, the
Chebyshev expansion  does  not  involve terms  of order (k+1) or
higher. This two-step approach of determining the Chebyshev
coefficients gives better accuracy than the direct  integration
approach or the FFT technique. The source signals on the active-
line is a pulse with 4.0 ns pulse-width and 0.1 ns rise/fall time. A
pair of crosstalk waveforms on the nearby quite-lines are shown
in Fig. 4.
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A time step of 25 ps and NC=15 were used. The total simulation
time was 2.8 s. The time required to create the macromodel was
1.2 s.
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Fig. 6. Voltage signals at nodes 1 and 14 of the circuit in Fig. 5.

In the final example, TRAIN was used to simulate the circuit
shown in Fig. 5. It contains two systems of coupled uniform
RLCG lines and a single nonuniform RLCG line. The per-unit-
length   parameters  for  the   uniform   lines  were  taken   from
[7]. The nonuniform line, on a 10 µm thick SiO2 substrate, has a

conductor thickness of 2 µm and a width that varies linearly from

33 µm to 11 µm. The per-unit-length conductance for the
nonuniform line is assumed constant at G=0.1 S/m. The CMOS
inverter is excited by a pulse with a 10 ns width and 0.5 ns
rise/fall time. The voltage waveforms at two nodes of the circuit,
computed by TRAIN using a 50 ps time step, are shown in Fig. 6.
The computation of the macromodels with NC=10 required 1.7
CPU s and the transient analysis of the circuit consumed an
additional 4.2 CPU s.

V. CONCLUSIONS

A time-domain macromodel based on the h-parameter de-
scription of a general interconnect structure has been derived. The
derivation is based on the spectral method solution of the teleg-
rapher equations and a recursive convolution algorithm. The
macromodel can be directly stenciled into the MNA matrix of the
overall circuit. Simulation results on uniform and nonuniform
structures terminated in linear and nonlinear elements have been
presented to demonstrate the accuracy, efficiency and generality
of the derived macromodel. These and other experimental results
suggest that the model is unconditionally stable. A rigorous
treatment of the stability issue showing that all eigenvalues of

the matrix √A  are negative is of interest. Future research will also
include the extension of the approach to transmission lines with
frequency-dependent parameters.
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