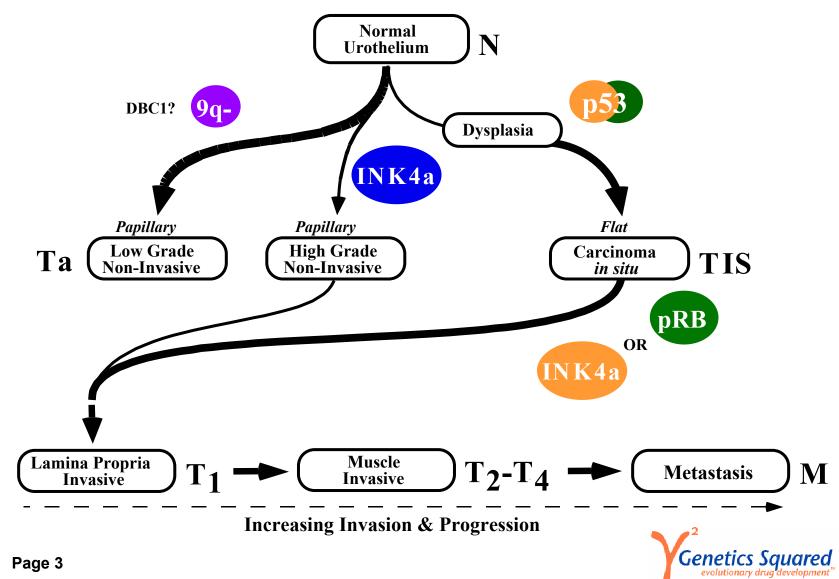
Using GP To Develop Rules For Staging Bladder Cancer

Bill Worzel



USC Bladder Cancer Study

- Characterizing stages of bladder cancer
 - ▶ Ta, T1-T4; Normal Samples
- RT-PCR data on selected genes
 - Gene Express StaRT-PCR
 - ▶ 70 Genes seleted by researchers at Richard Cote's lab
- Is there a molecular signature associated with each stage?

USC: Bladder Cancer

Standardized RT PCR (StaRT PCR)

- Quantitative PCR based on competitive RT-PCR (Ref)
- Comparison of StaRT PCR with Real Time PCR (Ref)
 - ▶ Efficient, reproducible and less expensive
 - Good sensitivity
 - ▶ Detect variations as low as 7% in transcript quantity
 - Low consumption of cDNA sample

Genes Profiled

StaRT PCR: Key Pathway-specific Transcripts Quantified

Anti-oxidation

GSTM3, GSTP1, GSTT1, SOD1

Apoptosis / Cell Cycle

BCL2L1, CDC2, CDK7, CDK8, CDKN1A, CDKN1B, CDKN2C, E2F1, E2F2, E2F4, E2F5, GAPDH1, GAPDH2, JUN, JUNB, MAD, MAX, PCNA, RB1, RBL2, TNF, TNFRF1A, TP53

Growth factors

IGF1, IGF2R, PDGFB, PDGFRL

Signal Transduction

MAP2K6, MAPK12, MAP2K9, MAPK8, MYC, STAT3

Angiogenesis

FGF5, FGFR4, VEGF

Apoptosis

ANXA5, BAD, BCL2, CYPIA2, DAP, HSF1, KDR, NIK, PTGS2, TGFBR2, TGIF, TNFAIP1, TNFSF10, TRAF4

Cell Cycle

CDKN2A, CCNA2, CCND3, CCNE1, CCNG1, CDC25C

Invasion

CDH3, ICAM1, MMP16, TIMP2

Transcription factors

FOS, FOSL1, NFKB1, SP1

Bladder Cancer: Results

Rules based on known clinical stage

- ▶ Training subset (1/3rd study set)
- Validation subset (2/3rd study set)

Example:

▶ IF [KDR >= ((if (MAPK29 > sqr(FGFR4)) then GSTP1 else PDGFB) + MMP16)] THEN Ta

Results:

- ▶ 26/38 (68%) stage prediction is matches clinical staging
- ► Errors may be gray areas in clinical staging (such as T1/T2 or T3/T4) if so, then accuracy of ~83%

Bladder Cancer: Of Interest

- Later analysis suggests that at molecular level there may be two stages: Early Stage and Late Stage Tumors
 - ▶ Different genes show up in rules for Ta, T1 and T2 when compared to T3 and T4
 - Angiogenesis lags Growth factors in Early Stage
 - Cell signalling and repressor genes are used to distinguish Late Stage
- "Normal" tissue taken beyond surgical margins shows characteristics of tumor
 - Samples are classed the same as resected tumors

Other Applications

- Toxicogenomics
 - Pre-clinical study of toxicity based on gene chip analysis
- Cheminformatics
 - Correlating structure-activity relationships from high-throughput screening (HTS) data
- Clinical Drug Response
 - Multiple myeloma study with the Van Andel Research Institute of Grand Rapids, MI
 - ▶ Study on effectiveness of immunosuppresant after stem-cell transplant with Fred Hutchison Cancer Research Center
 - ▶ From baseline data, can we predict the best course of treatment for a patient? Stay tuned...

Comments on the Industry

- Some general rules:
 - Danger of overfitting data is high
 - Small number of samples, high dimensionality of data "The curse of dimensionality!"
 - Must use validation techniques (eg, N-fold cross validation)
 - ▶ If possible, reserve samples as a validation set
 - Prospective proof of generality needed
 - Results change from lab-to-lab
 - Results change from chip-to-chip
- You must satisfy the statisticians or you get no where!

