Symbolic Regression in Multicollinearity Problems

Flor Castillo, Carlos Villa

The Dow Chemical Company

Outline

- Why we need Symbolic Regression in multicollinearity
- A case study
- The proposed approach using GP
- Results
- Conclusions

GP in Multiple Linear Regression (MLR) Models

- GP has been used in two situations
 - design of experiments (DOE) scheme to solve lack of fit situations (LOF)
 - MLR with historical (plant data) to minimize multicollinearity (strong relationship among inputs)

Box-Behnken Experimental Design

Response (Output):

Particle size distribution of a chemical compound

Inputs:

$$\bullet X_1, X_2, X_3, X_4$$

$$S_{k} = \beta_{o} + \sum_{i=1}^{k} \beta_{i} X_{i} + \sum_{i < j} \sum_{i < j} \beta_{ij} X_{i} X_{j} + \sum_{i < j} \beta_{ii} X_{i}^{2}$$

What if LOF is statistically significant?

LOF LOF:Model does not properly fit the

Statistical test can detect LOF

p value for LOF<0.05: Significant LOF

Possible LOF Solutions

- Ignore it
 - Possible limitations on conclusions
- Collect more data
 - Induce correlation
 - Cost of additional sampling, etc.
- Try a different more complex model
 - Current data may not support new model
- Try a different transformed model
 - Transformation to try not obvious (Genetic Programming (GP) can help)

Box-Behnken Data Analysis

Full Model

X4*X2 X4*X3

X4*X4

-2.16 0.0471

-1.57 0.1365

-0.125

Reduced model (without X₁ terms)

$$R^2 = 0.88$$

$$\mathbf{R}^{2} = \mathbf{0.88} \quad S_{k} = \beta_{o} + \sum_{i=1}^{k} \beta_{i} X_{i} + \sum_{i \leq i} \beta_{ij} X_{i} X_{j} + \sum_{i \leq j} \beta_{ii} X_{i}^{2} \qquad \mathbf{R}^{2} = \mathbf{0.85}$$

		SATION.								3500		PER SERVICE	
2	Analysis	of V	ariance					1	Analysis	of Va	riance		
왕	Source	DF	Sum of Squa	res M	lean Square	F Ratio	Significant		Source	DF S	um of Squares	Mean Square	F Ratio
9	Model	14	4.7	711	0.336	7.78	Lack-of-fit in	ĺ	Model	9	4.553	0.506	12.53
	Error	15	0.6	649	0.043	Prob > F	full model	\ /	Error	20	0.807	0.040	Prob > F
ĸ	C. Total	29	5.3	360		0.0002	1011 1110001	Y	C. Total	29	5.360		<.0001
9	Lack Of	Fit							Lack Of I	Fit			
	Source	DF	Sum of Sq	uares	Mean Squa			E	Source	DF	Sum of Squares	s Mean Square	F Ratio
	Lack Of Fit	10)	0.609	0.00				Lack Of Fit	9	0.572	2 0.064	2.98
8	Pure Error	5		0.040	0.00			38	Pure Error	11	0.235	5 0.021	Prob > F
2	Total Error	15		0.649		0.0185		18	Total Error	20	0.807	7	0.0460
共						Max RSq		32					⇔ x RSq
Q.						0.993		93					0.956
8	Paramet	ter Es	timates					g.	Paramet	er Esti			
	Term		Estimate	t Ratio	Prob> t	A	ll Terms		Term	Es	Stil	1,)
9	Intercept		83.2	979.64	<.0001				Intercept	8/	ີ signifi	cant	<u> </u>
R	X1(700,2100	0)&RS	-0.0417	-0.69	0.4984	\sim	ving X ₁ are		X2(20,40)&R	s d	Lack-of	fit in \	
3	X2(20,40)&F	RS	0.30833	5.13	0.0001	not	significant /		X3(3,15)&RS	6.0	_	\	
9	X3(3,15)&R	S	0.28333	4.72	0.0003			10	X4(8,16)&RS	6 0.	redu	cea	
	X4(8,16)&R	S	0.31667	5.27		\sim	The state of the s	13	X2*X2	-0.	₩ mod	lel /	
9	X1*X1		-0.0375	-0.47					X3*X2		-0.2	£17	
	X2*X1		0.125	1.20					X3*X3	-0.	21964 -2.89	0.0090	
	X2*X2		-0.1125	-1.42				=3	X4*X2		-0.3 -2.99	0.0073	
Ü	X3*X1		0.125	1.20					X4*X3		-0.225 -2.24	0.0366	
	X3*X2		-0.25	-2.40				Ġ.	X4*X4	-0.	11964 -1.58	0.1308	
7	X3*X3		-0.225	-2.83									
	X4*X1		0.025	0.24	0.8133								

GP Generated transformations Fit model in transformed variables

$$S_{k} = \beta_{o} + \sum_{i=2}^{4} \beta_{i} Z_{i} + \sum_{i < j} \beta_{ij} Z_{i} Z_{j} + \sum_{i=2}^{4} \beta_{ii} Z_{i}^{2}$$

 $y = \frac{\left|x_2\right|^{0.54528}}{\sqrt{\left|\ln(x_3 x_2 + x_3)\right| * x_2 x_4}}$

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	9	4.7080	0.5231	16.045
Error	20	0.6520	0.0326	Prob > F
C. Total	29	5.3600		< 0001

Lack Of Fit

DF	Sum of Squares	Mean Square	F Ratio
9	0.4170	0.0463	2.169
11	0.2350	0.0214	Prob > F
20	0.6520		0.1131
	9 11	9 0.4170 11 0.2350	11 0.2350 0.0214

Max RSq 0.956

Parameter Estimates

Term	Estimate	t Ratio	Prob> t	VIF
Intercept	82.8704	748.58	<.0001	
Z2(4.47214,6.32456)&RS	0.4771	7.31	<.0001	1.573
Z3(0.60768,0.95406)&RS	-0.3578	-6.49	<.0001	1.371
Z4(0.0625,0.125)&RS	-0.4379	-7.14	<.0001	1.477
Z2*Z2	-0.0887	-1.29	0.2128	1.034
Z2*Z3	0.28248	3.50	0.0022	1.415
Z3*Z3	-0.0724	-0.60	0.5556	1.254
Z2*Z4	0.23959	2.75	0.0123	1.151
Z3*Z4	-0.2631	-3.37	0.0030	1.525
Z4*Z4	-0.0166	-0.21	0.8362	1.095

Variable transformations suggested by GP model

Original Variable	Transformed Variable
X_2	$Z_2 = X_2^{0.5}$
X_3	$Z_3 = [Log(X_3)]^{-0.5}$
X_4	$Z_4 = X_4^{-1}$

▼ Summary of Fit

RSquare	0.878
RSquare Adj	0.824
Root Mean Square Error	0.181
Mean of Response	83
Observations (or Sum Wgts)	30

Notice no significant Lack-of-fit

Symbolic Regression in Multicollinearity Problems

- Plant data often becomes the focus of a modeling exercise.
- Initial model consider: multiple regression model (MLR)
- Issues with plant data
 - Data collinearity: relationship between inputs
 - Severe Multicollinearity :
 - Affects the precision of the estimated regression coefficients.
 - Can cause real concerns with the stability, validity, and usefulness of the resulting model

Possible Multicollinearity Solutions

- Use PCA, PLS to create independent meta-variables (linear combinations of inputs)
- Meta-variables are independent of each other however
 variable interpretation is a challenge (plant people)
- Collect additional data (not always feasible)
- Try a different transformed model
- GP can help minimize multicollinearity in MLR models.

Proposed Approach Using GP to Minimize Multicollinearity

- 1. Generate several GP models
- 2. Generate non-linear input transforms according to GP model
- 3. Fit MLR model in transformed variables
- 4. Perform statistical analysis and check Multicollinearity (check error structure, residuals, correlations (VIF))
- 5. Repeat steps 2-4 until a stable MLR model is obtained (multicollinearity is minimized)

Case study with small data set

The data set consisted of three inputs variables (x1-x3) and one response (y) from a chemical process

First order polynomial considered by MLR

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3$$

Tem	Estinate	t Ratio	Prob>t	WF
Intercept	-0.879	-7.145	<0001	
xl	0.265	1.526	0.137	5.46
x2	-4.246	-8.679	<0001	77.58
x1*x2	0.537	2701	0.011	3.00
x3	2549	5.518	<0001	68.20
x2*x3	0.891	4.318	<0001	1.69

large Multicollinearity observed VIF>10

STEP 1. Generate GP models

STEP 2. Generate input transforms according to GP models

Original Variable	Transformed Variable
$\mathbf{x}_{\mathbf{l}}$	Z ₁
x ₂	$Z_2 = 1/x_2^{-14}$
X ₃	$Z_3 = x_3^5$

STEP 3. Fit MLR model in transformed variables

$$y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3 + \beta_{12} z_1 z_2 + \beta_{13} z_1 z_3 + \beta_{23} z_2 z_3$$

STEP 4. Perform statistical analysis and check (check error structure, residuals, correlations (VIF))

Error structure shows departure from constant variance assumption

Variance stabilizing transformation needed:

•Box and Cox Transformation:

$$y = y^{\lambda}$$

λ= Value that minimizes the SSE

Box and Cox transformation $y = y^{0.5}$

MLR model with variance stabilizing transformation:

$$y^{\lambda} = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3 + \beta_{12} z_1 z_2 + \beta_{13} z_1 z_3 + \beta_{23} z_2 z_3$$

MLR model with variance stabilizing transformation

Term	Estimate	t Ratio	Prob> t	VIF
Intercept	1.370	12.89	<0001	
x1	-0.476	-4.92	<0001	3.60
1/x2^14	0.493	4.52	<0001	5.35
x1*(1/x2^14)	-0.332	-2.49	0.0180	3.66
x3^5	-0.241	-3.00	0.0051	4.37

Improved model:
Stable polynomial model
No evidence of severe
Multicollinearity
VIF<10

adequate error structure:

Normally and independently distributed errors
with mean zero and constant variance

Case study with larger data set

- In another chemical process, data obtained from 3-month process history was used in empirical modeling effort
- A (detrimental) bi-product concentration was response (output) of interest
- All other variables considered potential inputs
- Can a reasonable empirical model be developed to predict how this bi-product output can be minimized?

Case study with larger data set

The data set consisted of thirteen inputs variables (x1-x13) and one response (y) from a chemical process

First order polynomial considered by MLR

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3$$

Term	β Estimate	t Ratio	Prob> t	VIF
Intercept	230.70902	0.33	0.7432	Alle Service State
x1	0.9406677	19.31	<0.0001	3.84056
x2	-2.428614	-22.97	<0.0001	7.05279
x3	0.4005954	2.97	0.0041	9.42801
x4	-10.17105	-0.36	0.7217	861.2503
x5	2.956458	0.20	0.8385	343.7906
x6	10.223555	0.36	0.7164	918.9986
x7	-31.91927	-0.57	0.5686	3431.5002
x8	14.871442	0.35	0.7257	1976.0583
x9	-135.1481	-0.69	0.4919	1000231.8
x10	117.8077	0.68	0.4967	964097.17
x11	16.152238	0.40	0.6930	70850.669
x12	14.186557	0.89	0.3750	77.489476
x13	-19.53814	-0.67	0.5023	19404.123

Undesigned data will often be too unbalanced for standard modeling techniques

large Multicollinearity observed VIF>10

STEP 1. Generate GP models

Selected model

Ratio of Nodes

Pareto front optimization used to select model with "best" balance between performance & complexity

Y = $10275 - 16078 * \frac{x_6(x_2 + x_{11})}{x_1 + x_{13}}$

STEP 2. Generate input transforms according to GP models

	Original Variable	Transformed Variable
	x_{2}, x_{11}	$Z_{1=}(x_2+x_{11})$
1000	x_{1}, x_{13}	$Z_2 = 1/(x_1 + x_{13})$
	X ₆	$Z_3 = X_6$

STEP 3. Fit MLR model in transformed variables

$$y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3 + \beta_{12} z_1 z_2 + \beta_{13} z_1 z_3 + \beta_{23} z_2 z_3$$

Term	B Estimate	t Ratio	Prob> t	VIF
Intercept	2955.597	16.616	<0.0001	
$Z_3 = x6$	-7.265	-5.812	< 0.0001	1.496
$Z_1 = x2 + x11$	-2.148	-32.646	< 0.0001	2.504
$Z_2 = 1/x1 + x13$	-908023.43	-21.148	<0.0001	2.392

Conclusions

Approach using GP to minimized multicollineariy has been applied successfully in the Dow Chemical Company.

Unique features of the proposed approach

- •Combine linear regression models (designed experiments, undesigned data) with GP generated models
- •Uses the unique potential of GP generated models for suggesting variable transforms that minimized multicollinearity
- •Maximizes the use of available data when model extrapolation is required

Advantages of the approach

- •Produces stable polynomial (MLR model) with adequate error structure
- •provides a simple model which is easily understood by engineers and process people and offers
- •statistical analysis: outlier detection on the input space, influential observations and confidence band of the parameters can be applied offering additional assurance on the capabilities of the obtained model
- •Improves model validation (alternative models)